
A TRANSPLANTATION THEOREM FOR JACOBI SERIES

BY

1. Introduction

Let P(’)(x) be the Jacobi polynomial of degree n, order (a, ), defined by

(1 x)"(1 + x)P("’)(x) (-1) a [(1 x)+"(1 + x)+],
2,n dx , > --1.

These polynomials are orthogonal on 1, 1 with respect to 1 x)( 1 4- x )8
nd

[P("’)(x) (1 x) (1 - x)dx
--1

2++r(n + a + 1)r(n + + 1)
(2n + a + + 1)r(n + 1)r(n + a + + 1)

Then the functions

(’)(0) t(’)P,’(cos 0)(sin 0/2)+1/2(cos 0/2)+1/2 2++

are orthonormal functions on (0, ) with respect to Lebesgue measure. The
functions ("(0) are (2/)2 sin (n 1)0, n 0,1, and
q(1/2’-/) (0) (2/r)/ cos nO, n 1, 2, (-/"-/) (0) 71"-1/2. Fourier
series with respect to these two sets of functions have been studied extensively.
Fourier series for Jacobi polynomials have not been as extensively studied and
many fewer results are known. The one type of result that has been studied
in any detail deals with equiconvergence theorems. This type of result comes
from asymptotic formulas for (’)(0) which are valid for e -<_ 0 -<_ e.
However, for many of the results in Fourier analysis we want to use all the
values of 0,0 _-< 0 <= r. In this paper we show how to set up abounded
mapping between Fourier series with respect to Jacobi polynomials which
allows one to read off many of the deep results for Fourier-Jacobi expansions
from the corresponding results for ordinary Fourier series.

I haven’t discussed this work with Stephen Wainger, but mny of the ideas
that are used arose in connection with other work we hve done together nd
I would like to acknowledge my indebtedness to these discussions.
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Let f(0) be integrable on (0, r) and define

(1) a,, f(O)("’)(O) dO.

Then formally
f(0)--

_
a(’)(0).

Keeping the same a we consider the series

(2) gr(O) Trf(O) a,r(’)(O),

Our main theorem is as follows

0<r<l.

THEOREM 1. Let 1 p < , a, , ,, >--_ --1/2
--1 < r < p 1. Let (sinO/2) (cos0/2)lf(0)
and g( O be defined by 1 and (2). Then

--l<<p--1,
e L1 (0, r) and let a

gr(O)lP(sin 0/2)(COS 0/2) d0 _-< A f0 f(0)l’(sin O/2)(cos /2) dO.

Also there is g( O so that g( O g( O a.e.,

olg(O)
g(0)iV(sin 0/2)(cos 0/2) -+ 0,

and

g(0)l(sin 0/2)(cos 0/2) dO <= A fo f(0)l(sin 0/2)(cos 0/2) d0.

In [1] Wainger and I prove the same theorem for ultraspherical series, i.e.
for the case , , i. We used an integral representation which is un-
known for Jacobi polynomials and we also use some work of M:uckenhoupt
and Stein [7] which is also unproven for Jacobi series. The techniques we
develop in this paper allow one to prove the analogue of some of the results of
Muckenhoupt and Stein for Jacobi series. In particular we get a proof of the
Marcinkiewicz multiplier theorem which was first obtained for ultraspherical
series by them. As a special case of the 1V[arcinciewicz theorem we obtain a
new proof of the mean convergence theorem for Jacobi series which was first
obtained by Po.llard [8].

II. Preliminary information

We need a number of facts about Jacobi polynomials.

(3) 1("’)(0)1 -<_ A, n 0,1,-..,0 <= 0 <_- r,

We also need an important asymptotic formula of Darboux [4].

[9, (7.32.8)]
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(4)

(a ,f0 (0)

+ cot +
+ 0( (n sin O)-), n 0,1, ...,0 < 9 < -.

We must sum a series of Jacobi polynomials by parts, and we need

p(..,0) (cos O) +x("’)(cos O)
p(-,o) (1) D(-,O+1(1)

p(-+l m)(2n+ a+ fl+ 2) (1 cosO) (cosO)
2(a + 1) p(.+l,a)(1)

We also need the estimate

(6) P("’) (cos O) -<- p(..,o) (1) <= An" for 0 < 0 < r/2

Also

2 sin

Finally from Fourier series we need

D.(O) + coskO
k=l

1 1--r(7) + r eos nO P(r, 0).
= 2(1 2rcosO+ r)

(8) r" sin nO
r sin 0 Q(r, 0).

= 2(1 2rcosO+ r2)

(7) is the Poisson kernel and (8) is the conjugate Poisson kernel.
the following inequalities for integrals involving P and Q.

If

f(r, O) f(O- 9)P(r, 9) d

](r, O) f(O 9)Q(r,,) d9
then

and
If: f(r, O)1 doll/’<= If: If(o)i ’ dOl/,

If_:l](r, O) l" dOl/" <__ A, f(O) l" dOl/’,
uniformly in r, 0 <= r < 1.

[9,(4.5.4) ].

[9, (7.32.2)1.

We have
See [10, Vol. I].

l<p< oo

i <p< o,
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There are also versions of these inequalities with weighted norms, e.g.

If(0) I" si 0/2 cos 0/2 dO

For results of this type see [6].

II!. Proof
The proof of Theorem i is dual to the proof of the dual result which is given

in [4]. It was originally thought that results of this type are substantially
harder thn re the dul results. This is just nother example of Littlewood’s
dictum, look for the dual result and dulize the proof.
We first estimate wht should be the hrder term the one where

0/2 =x=< < 0. Since
(a,#) n (,a)

we may also assume haO /2. We have g, (e) fg K,(e, x)(x) gx
where

[/01-(9) K,,(O, x) =or’)(O)("’e)(x) =o + [/e] I + J.
(,e) (3), weSince (x) < A, see have

=0 (x)’ () o( ).

To estimate J we must use n important symptotic formul due to Drboux
[4]. We cn ignore the error term when we put (4) in (9). This is so because

1/ (nO)
0(1/0) for k 2,3,4.

Similarly terms which rise from products with n-O- cn lso be ignored.
Then we get

A r os n+a+5+ 1
nil 2 X-- 2 x-- (2+ 1)

+A

similar terms}.
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Then the series we need to consider are

=1/0 r cos n(0 x),

::=, r" si n(0 x),

_,:=rx/ol r cos n

and so forth.

=[1/e] r cos n(O

_,:=/o r sin n(0 -t- x),

:=/ol (r sin n(O x))/n0

The summation in each of the first four terms we can extend to --0, since
the added terms give a contribution of 0 (1/0). Then we have either a Poisson
or a coniugate kernel and each of these gives a bounded operator on the spaces
in question. The hardest of the remaining terms is

=rl/l (r cos n(0-
This is

r/ )l r cos n(0 x)
_

1 cos n(0 X)

The second term is 0 1/0 since we cn sum the series by prts nd get

)1 D,(O x) 0
1 11

n
0

0 n=[1/(O--x)] 0 X n=[ll(O--x)]

In the first term we replace cos n(O x) by 1 + O(n(O x)) and get

-+ 0 n(o- x)
0 [/Ol

The second term is clearly 0(1/0). The first term is

0
k0

log
0

since =/ 1In log k + 0(1). In [2] Wainger and I showed that the dis-
crete analogue of this type of kernel is a bounded operator on weighted
spaces, and we remarked that the same argument works in the contuous case.
Thus all the expressions which arise give rise to bounded operators. This
completes the term where 0/2 N x N 0.
We now assume that x N 0/2. Then break the sum into 0 + 30

J: + J. J: 0(1/0)asabove. In Jwereplce’(0) by its asymptotio
formula. Then we get

(sin x/2)+:’ =,0 <n’P(:’o> (cos x)[eos (n:O + c)

+ (sin(n:0 + c))/nO + 0(0-)]
where n: n + ( + + 1)/2, c (2: + 1 )/4 and where we ignore terms
that are the same as ones we write multiplied by n-:. Again the error term is
negligible since it is 0(0-:). For the term invoMng sin (n: 0 + c), we write
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it as

-+, rn_,+ P’(cos x) sir (no + c).
=z P’)(1)

Summing by parts and using = sin(nO c) 0(0-) we have the esti-
mate

Taking differences in order we get the estimate

o-( r)

Pn+I(COSX)]xa+I/2+ P ’)(1) + )
We have used (3). We have to be a little more careful with the third term.

l/xThe part= is bounded since

PY’) (cos + (cos
p(,)

(2n+a++ 2) (1 cosx) 0(nx)
2( + 1) py+.)()

by (5) and (6). Thus the sum we estimate here is

o-x"+’+ ., n-+"+1 0(x0-) 0(0-).
However, to handle the other part we must go back a step and see that what
we must sum is essentially

nl/ X

since we had a Dirichlet kernel when we summed sin(n0 c).
Using one term plus an error term in the asymptotic formula for

P"+’) (cos 0) we have

(x/0) :=. r n [cos(nx + c) + 0(n-lx-)] sia (me + c)]

0[(X/0) := rn- cos [n(x 0)] + 0(X/0)]
Summing the first ter by parts we get the estimate

(x/o)x/(x- o) o(x/0) o(1/).

So we may consider

rn (cosx cos n0.

We take the liberty of dropping the subscript on n and of dropping the phase
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angle as they only add to the confusion without adding any difficulty. Then
as before we sum by parts to get a higher power of x. We then have

1/O ,:=1/o A(’,--’-l/2("’a)n- (cos x)x"+/)e

u (cos x)

x rnX/2+,+i (cos X) einOXa+3/2

where we use e=a instead of either cos n0 or sin nO, to simplify the writing.
The first term is 0(1/0). Ia each of the second and third terms we may use

P"’) (cos x) 0(1)

and sum only to 1/x and get terms that are 0(1/0). Now in the sums from
1/x we can use the asymptotic formula for P"’) (cos x) to get

1 reosxeosO+ 1 _1

X r
s X+y cosnx++0((ff) e

by the sme arguments we hve used before. This takes care of the part
where x 0/2. This gives us the first part of Theorem 1. Unfortunately
the Abel summability of Jacobi series in L is not done anywhere in the litera-
ture so we must say a little more to complete the proof of the theorem. One
wy is to use the type of argument given in [3] and handle the Abel summabil-
ity directly. Another way is to assume that f(0) is C with compact support
in (- 1, 1). Then the Abel summability in L is easy. Then a standard
approximation argument combined with our norm inequality for g(0) gives
the rest of the conclusion of Theorem 1.

IV. Applications and comments

From Theorem 1 we get a form of the Marcinkiewicz multiplier theorem in
the same way that it was obtained in [1]. The only difference is that we must
appeal to a slightly stronger form of this theorem for Fourier series, one with
weight function of the form (sin 0/2) (cos 0/2). Hirschmun bus this form
of the Marcinkiewicz theorem in [6].

In connection with the work of Muckenhoupt and Stein, it is of interest to
consider _, a,P("’) (cos 0) and nt’,.n--l"

D(a’{’l’+1) (COS 0) sin 0,
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where t 1 4- O(1/n). It should be possible to choose t so that these two
series are conjugate functions in the sense that their Abel means when
considered as functions of x r cos O, y r sin O, satisfy equations which
generalize the Cauchy-Riemann equations. Then it should be possible to set
up an H theory for p =-> 1 and even for some p 1. For p I the methods
used in this paper suffice to obtain an analogue of the M. Riesz conjugate
function theorem for any t 1 + O(1/n).
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