
RESTRICTED GORENSTEIN RINGS

BY

ABRAA ZAKS

Recently, Faith [4] and Levy [7] studied restricted quasi-Frobenius rings. Ia
this note we discuss some generalizations.
We start by observing that R is restricted qusi-Frobenius ring iff R is

restricted Gorensteia ring. Furthermore, R is restricted Gorenstein ring, nd
R is Gorensteia ring iff RIM is Gorenstein ring for every mximl ideal
MinR.
We define sequence of classes of rings G0, G by G RR/M is

Gorensteia ring wheneverM is a prime ideal and ht M i}. It turns out that
R is a G-ring R is direct sum of ideals R R,, and R is an Artinian
ring, or, a Dedekiad domain for every i, i 1, t. Also, R is G-ring for
i > 2 iff Krull-dim R < i.
We also study the classes G+ {R]R/I is a Gorensteia ring whenever I

contains prime ideal M such that ht M j}. It turns out that G contains
all rings of Krull dimension less than i. Rings of Krull dimension i that have

"n Vfinite global dimension are G-n gs. Ia there are rings of Krull dimension
one, the global dimension of wch is not fite.

O. Preliminaries

All rings are presumed to be commutative rings with an identity.
For a prime ideal M in R we denote byR the local ring of R at M. We set

ht M Krull-dimR.
A ring R is a Goreasteia (quasi-Frobenius) ring if R is a Noetherian ring,

and ini dim R < (ini dim R 0).
A ring R is a restricted Gorensteiu (quasi-Frobenius) ring if R/I is a Goren-

stein (quasi-Frobeaius) ring whenever I is a non-zero ideal.
Let F be a field and A an F vector space. By dimy A we denote the (vector

space) dimension of A over F.
By Spec R we denote the variety associated to R by taking the Zariski

topology on the set of prime ideals of R.
We quote some useful facts.
A. Let R be an Artiniaa local ring, with radical M, and set RIM.

Then R is a Gorenstein ring iff R is a quasi-Frobenius ring, and this is so
iffdim Hom. (], R) 1 (cf. [1]).

B. Let R be a Noetherian ring, and M a prime ideal. The kernel of the
canonical map R -- R is the intersection of the primary components of (0)
which are disioint from R M, e.g. [9, Theorem 18, p. 225].
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C. Let M be a prime ideal in a Noetherian ring R, that is generated by r
elements, then ht M _< r [8, p. 26].
D. Let R be a Noetherian ring of finite Krull dimension. If R is a Goren-

stein ring, then

inj dim R Krull-dim R SupM ini dimM R,
and

gl dim R Sup gl dim R,
where M ranges over all maximal ideals of R.

E. Let R be a Noetherian domain. If dim/ M/M 1, for every
maximal ideal M in R, then R is a Dedekind domain [2].
A ring R is indecomposable if for every two non-zero ideals, M, N such that

R M N, the intersection M n N is non-zero. Notice that R is indecom-
posable iff 0 and 1 are the unique idempotents in R.

F. Let R be a Noetherian ring without nilpotent elements, then RM con-
tains no nilpotent elements for every prime ideal M in R.

It might be helpfull to think of dimR/ M/M for a maximal ideal M in R,
as the "dimension of the tangent space to Spec R at M". The condition
M N for a prime ideal N in R can then be viewed as "M is not an isolated
point on Spec R" or "M lies on a subvariety of Spec R, of dimension at least
one". Finally, R being a regular local ring should be understood as "M is a
non-singular point of Spec R".

].

A ring S is a G0-ring if for every prime ideal M, S/M is a Gorenstein ring.
If S is an Artinian G0-ring, then it readily follows that S is a direct sum of

ideals $1 St, where S is a local Artinian, uniserial ring for i 1,
[cf. 7]. Furthermore, one easily verifies that such a ring S is necessarily a
G0-ring. This completes the study of Artinian G0-rings.
Let S be a Noetherian ring, and let N be its nilpotent radical. Set R SIN.

Since idempotents from R can be lifted to S, it follows that R is a direct sum of
ideals R1 Rt iff S is a direct sum of ideals S St, and R S/N n S
for i 1, t. In particular S is indecomposable iff R is indecomposable.

Let M’ be a.maximal ideal in S, and M M’/N the corresponding maximal
ideal in R.
LEMMA 1. If dims/M, M’/M’2 1 then RM is a regular local ring of dimension

less than or equal to one.

Proof. If M’2 : N, then from dims/, M’/M’2 1 it follows that
M’ M’2 -t- N. Since M M’ - N/N M’/N, it follows that in R,
MR (MRs)2. Since MR is the Jacobson radical of R,

[:= (MRs) (0),
therefore MRM (0) and RM is a field.



OtherwiseM’2 N and thus dim./u M/M dims/, M’/M’ 1. Hence
there exists an element m such thatM Rm + M2. Therefore in Ru we have
MRM mRM + MRM mRu + (MRM), and by the lemma of Naka.yama
we conclude that MR mrs. Therefore, Krull-dimR _< 1. If Ru is
Artinian, then since R contains no nilpotent elements it follows that Ru is a
field. Otherwise Krull-dim Ru 1, and since MRu mRu, it results that
R is a regular local ring, of dimension one. This completes the proof ofthe
lemma.

PROPOSITION 2. Let S be a Noetherian indecomposable ring. If

dims/, M’/M’ 1

for every maximal ideal M’ in S, and if S is not an Artinian ring, then S is a
Dedekind domain.

Proof. By Lemma 1, R is a regular local ring of dimension at most 1 for
every maximal idealM in R. Thus gl dim R <_. 1. Since R is not an Artinian
ring it follows that gl dim R 1. But aa iadecomposable ring of global di-
mension one is a domain, since for every element r 0 in R, Rr is a projective
ideal, hence the exact sequence 0 -- ann (r) R ----> Rr 0 splits, thus
ann (r) (0). Therefore R is a Dedekind domain. This implies that N is a
prime ideal in S. Since S is not an Artinian ring, then for every maximal ideal
M’ of S, it follows that M’ contains N. The condition dims/, M’/M’ 1
implies the existence of an element m in M’ such that M’ =Sm + M’. Local-
izing at M’ it now readily follows that M’S, mS,, i.e. S, is a principal
ideal ring. Since M’ D N, it results that Krull-dim S, k 1. Hence S, is
a regular local ring. In particular S, is a domain. Since (0) in S is a primary
ideal, the canonical map S -- S, is an embedding. In particular this implies
N 0. Therefore S R is a Dedekind domain.
The assumption dims/, M’/M’ 1 holds whenever S/M’ is a quasi-

Frobenius ring. Since we consider only maximal ideals, S/M’ is a quasi-
Frobenius ring iff S/M’ is a Gorenstein ring.
Remark that if S is a Dedekind domain then all its proper residue tings are

quasi-Frobenius rings [7].
Finally, notice that if Krull-dim R 1, then for every maximal ideal M,
MO.
We therefore proved

THEOREM 3. Let R be an indecomposable Noetherian ring of Krull dimension
one. Then the following are equivalent"

(i) R is a Dedekind domain.
(ii) All proper residue rings of R are quasi-Frobenius (Gorenstein ).

(iii RIM is a quasi-Frobenius (Gorenstein ring for every maximal ideal
MinR.
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LEMMA 4. Let R be a Noetherian ring that is a direct sum of ideals R1 0 and
R2 O. Then R is a Go-ring iff RI and R2 are both Go-rings.

Proof. The proof is an immediate consequence of the fact, that for each
prime ideal P in R either P n R R or else P n R R.
We thus obtain the following combining Theorem 3, Lemma 4, and the

Artinian case.

TIEOREM 5. Let R be a Noetherian ring, then the following are equivalent"
(i) R is a direct sum of ideals R Rt Each Ri is either an Artinian,

uniserial, local ring, or a Dedekind domain.
(ii) R and all its proper residue rings are Gorenstein rings.
(iii) RIM is a quasi-Frobenius (Gorenstein) ring for every maximal ideal

MinR.

Under each of these equivalent conditions, inj dim/z R/I

_
1 for every

ideal I in R, and gl dim R/M

_
1 for every prime ideal M in R.

If R is not an indecomposable ring, then one easily verifies that condition
(ii) is equivalent with

(ii)* All proper residue rings of R are Gorenstein rings.

Theorem 5 can be viewed as the characterization of G0-rings. Another char-
acterization may be obtained from

POPOSTON 6. Let R be a Noetherian ring and M a maximal ideal; then
RIM is a quasi-Frobenius ring iff RM is a principal ideal ring.

Proof. If RIM is a quasi-Frobenius ring then dim/M M/M 1. This
implies the existence of an element m in M for which M Rm nu Ms. Then
localizing at M this implies MR mRs, therefore RM is a principal ideal
ring.

Conversely, R being a principal ideal ring is either a uniserial Artinian ring
or else a Dedekind domain. In any event RM/MRM is a quasi-Frobenius ring.
Since RIM (R/M2)(/) R/M2R it follows that RIM is a quasi-
Frobenius ring.

2. Gz-rings
Let S be a Noetheria ring, N its nilpotent radical and set R S/N.

Throughout this section we assume that R is an indecomposable, non-Antinian
ring, unless otherwise specified.
We recall that R is a G-ring if RIM is a Gorenstein ring whenever M is a

non-minimal prime. Then if R is an Artinian ring then obviously R is a
Gl-ring.
Observe that if R is a domain then R is a G-ring iff R is a G0-ring; therefore

we have
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PROPOSITION 7. Let R be a Gl-domain then R is a Dedekind domain.

Our first aim is to study the ring R instead of studying the ring S; we need

LEMA 8. If S is a Gl-ring then so is every residue ring of S.

Proof. Let I be any ideal in S, and consider the ring S/I. If S/I is an
Artinian ring, then obviously we are done. Otherwise, there exists prime
ideals M1, Ms in S such that I M M.. Since S is a G-ring we have
that S/M is a Gorenstein ring. Assume furthermore that Ms is a maximal
ideal in S. This implies by Proposition 6 that Su is a principal ideal ring.
SinceM M. it turns out that Krull-dimS >_ 1, therefore S, is a regular
local ring. In particular M S2 0. It therefore follows that Krull-
dim S _< 1. In particular Krull-dim S/I _< 1, therefore it suffices to prove
that for every non-minimal prime M’ in S/I, we have that (S/I)/M’ is a
quasi-Froebenius ring. But from I M1 we now obtain

IS, c7. MI SM, 0 and (S/I)(u/) S2/IS,

i.e. (S/I)(/x) is a regular local ring. Therefore by proposition 6 we havethat
(S/I)/(M/I) is a quasi-Frobenius ring. This proves that S/I is a G-ring
In particular if S is a G-ring then R is a G-ring. We quote the following

as a corollary.

COROLLARY 9. If S is a G-ring then Krull-dim S _< 1.

This was proved while proving Lemma 8.
Since R is presumed to be not an Artinian ring we will restrict ourselves to

the case Krull-dim R 1. In R there are no nilpotent elements, thus there
are no nilpotent elements in RM. Hence if Krull-dim RM O, RM is a field.
If Krull-dim RM 0 then necessarily Krull-dim RM 1. This implies that
M is not a minimal prime. Therefore, if R is a G-ring, RIM is a quasi-
Frobenius ring hence RM is a regular local ring.
We therefore proved that R is a regular local ring for every maximal ideal

ia R if R is a G-ring. Since R is assumed to be indecomposable, from
gl dim R Sup gl dimR 1--where M ranges over all maximal ideals M
in R--it follows that R is a Dedekind domain.

Thus, if S is a G-ring, we have by Lemma 8 that R is a G-ring, hence R
is a Dedekind domain. It follows that N is a prime ideal in S. Since Krull-
dim S 1, we have that for every maximal ideal M in S, M /N. Hence
S/M is a quasi-Frobenius ring. By Proposition 6, SM is a principal ideal ring.
M Dr N implies that Krull-dim SM _> 1, therefore SM is a regular local ring.
The canonical map S -- SM is thus an embedding of S in a domain, therefore
N 0, i.e. R S/N S is a Dedekind domain.

Finally, notice that if R is the direct sum of ideals R1 0 and R. 0 then
R is a G-ring iff R and R. are G-rings.
We therefore established the following:
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THEOREM 10. Let R be a Noetherian ring. Then the following are equiva-
lent"

(i) R is a Gl-ring.
( R is a direct sum of ideals R R. For every i, 1 <_ i <_ t, R is

either an Artinian ring or else a Dedekind domain.
(iii) For every proper ideal I of R that properly contains a prime ideal N of

R, R/I is a Gorenstein ring.
(iv) For every maximal ideal M of R, if M is not a minimal prime then

RIM is a quasi-Frobenius ring.
Under each of these equivalent conditions R/I is a quasi-Frobenius ring when-

ever I is a proper ideal that properly contains a prime ideal N. Furthermore, for
any prime ideal N in R, gl dim R/N <_ 1.

3. G-rings
A similar treatment to the one used above will lead to the following con-

clusion" If M is a maximal ideal and RIM is a quasi-Frobenius ring then
ht M < 1. Therefore we have
THEOREM 11. Let R be a Noetherian ring. Then R is a G-ring (i > 2)

iff Krull-dim R < i.

Some further properties that can be easily derived are that if R is a G-ring
then so are all its residue rings. Conversely, if all residue rings of R are G-
rings then R is a G-ring if R is not a domain. If R is a domain then R is a
Gi+l-ring.

If I is an ideal that contains a prime ideal M in a G-ring R, then R/I is a
G-lt M-ring.

4. G-rings
We start with G-rings. Recall that R is a Gl-ring if R/I is a Gorenstein

ring whenever I contains a prime ideal. This readily implies that if R is a
Gl-domain, then R is a Dedekiad domain. Futhermore, if N is prime ideal
then R/N is a Dedekind domain. This results since if N is non-maximal, and
M is any maximal ideal containing N, then (M/N) M - N/N M/N;
thus RIM - N is a quasi-Frobenius ring. In particular this implies that
Krull-dim R < 1.

Since every Artiniaa ring is obviously a G-ring, and since if R is a direct
sum of ideals R R then R is a Gi-ring iff Ri is a G-ring for i 1, t,
we will restrict ourselves to indecomposable rings of Krull dimension 1.
Furthermore, if S is a G-ring, and N its nilpotent radical, then R SIN is
again a G-ring. Then R is an indecomposable G-ring without nilpotent
elements.

If M is a maximal ideal in R and M is a minimal prime, then RM is neces-
sarily a field. If M is a maximal ideal that properly contains a prime ideal
M, then R/MIR is a regular local ring of dimension one and RM is a field.
This implies the existence of an element m in M such that MRM mR
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M R. Since R (R) is field it follows that the kernel of the
canonical mpR --,R is MR. Unless MR (0), this implies that
(0) MRa... a MtRM, where MR are prime ideals for every
i,i 1,---,tndMRMMRM.

Set N M.R... aMtR, nd set M’ MRM+ N. Since
R/ is regular local ring, nd since M’ is direct sum, it follows that
for some integer j, j > 0, m" e N. Since N is the intersection of prime ideals,
this immediately implies that m e N. Hence M MRs, nd N mR.
One my now proceed by induction to prove that MR is the direct sum of the
cyclic ideals N for/ 1, where N is the intersection of M RM for
ik.

Conversely, if for every mximl ideal M in R, MR is direct sum of cyclic
ideals then R is G-ring. We will be done if we cn prove that for ny prime
ideal K in R, R/KR is uniserial, Artinin ring, or Dedekind domain,
whenever K M. But if K is prime ideal then KR MR is prime
ideal. Therefore, if MR mR -+- mR (direct sum), then KR
contains m m, except, mybe, for one i, sy m KR. Thus R/KR
is residue ring of R/(..._.+...,.) that is regular local ring of dimen-
sion one, since m is not nilpotent modulo (m m_l, m+ m).

Since in S, every prime ideal contains N, the bove result means that S is
G-ring iff for every mximl ideal M in S, MS/NS is direct sum of cyclic
ideals.
The Artinin rings nd the Dedekiad domains re trivial examples of

G-rings.
Another example results by tking ring S with non-zero nilpotent radical

N, so that S/N is Dedekind domain. Such ring my be obtained s
residue ring of domain A of global dimension 2, by primary ideal.
As for G-ring for i >_ 2, one esily verifies that if R is G-ring then so re

11 its residue rings. Conversely, if ll proper residue rings of R re G-rings
then R is a G+-ring. It will be G-ring if R is not domain.

Also if R is direct sum of ideals R Rt, then R is G-ring iff R re
G-ring for./ 1, t.

Finally if R is a G-ring then, by rguments similar to the one used bove it
will result that Krull-dim R

_
i 1 or else Krull-dim R i nd RIM is

Dedekind domain for every prime ideal M in R for which htM i 1. The
converse my be verified esily. Remark that these conditions re stisfied
by rings of finite global dimension, nd of Krull-dim R i. At least for
i 1 we hd G-rings of Krull dimension one hving infinite global dimension.
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