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Introduction

An averaging operator was defined by G. Birkhoff to be a linear operator L
on a Banach algebra A satisfying the condition that L (fLg) Lf. Lg for f
and g in A. in this paper it is shown that if A is a subalgebra of C (X), any
projection of norm one onto a subalgebra of A is an averaging operator. This
theorem was first established by J. L. Kelley under the additional assumptions
that the projection was positive and A was the algebra of all real continuous
functions that vanish on some point of X. The main tool used in our proof
is a generalization of a theorem due to G. Seever. We replace a hypothesis
in Professor Seever’s theorem that a projection be positive by a weaker con-
dition on the range of the projection.

Notation and definitions
Let X denote a compact Hausdorff space. We denote the Banach space of

all real-valued continuous functions on X, topologized with the sup norm by
Cr (X).2 If B is a linear subspace of C (X), we can define an equivalence rela-
tion on X by saying that two points x and y in X are equivalent if f (x) f (y)
for every f in B. The partition of X into closed subsets corresponding to this
equivalence relation will be called the B-partition of X. The dual of a normed
linear space P will be written P*. If F is in C (X)*, supp (F) will denote
the support of the unique Radon measure on X which represents F. For x in
X, is the linear functional defined on C (X) by (f) f (x) for all f in C (X).
Such a linear functional is termed a point evaluation functional. If P is a
normed linear space, S (P) is the set of all points in P with norm less than or
equal to one. If K is a convex subset of a normed linear space, ext K is the
set of extreme points of K. The composite of two functions f and g is written
f o g. A projection L on a normed linear space is an idempotent (L L L)
linear mapping of the space into itself. If f is a function defined on a set X,
the restriction of f to a subset Y of X will be written ft.

Let P be a linear subspace of C(X). We say that P has a weakly separating
quotient if for every two distinct points x and y in X and for each scalar 1
such that p t we we have that p is not in the set ext S (P*). In par-
ticular the range, P, of a positive projection, L, defined on a sublinear-lattice
of Cr (X) has a weakly separating quotient. For suppose x is a point inX such
that is in ext S (P*). Then there is a function p in P such that p (x) 0.
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Sincep p /0Wp/0, eitherL(p /0)(x) 0orL(p /k0)(x) 0.
If L (p k/ 0)(x) 0 then since L is positive operator, there is no y in X
such that e e. The nlogous rgument is vlid for the cse in which
L(p/ 0)(x) 0.

Main results
The following theorem was proved by G. Seever [6] in the case where A is

the subalgebra of C (X) of all functions which vanish at a given point, and L
is a positive projection of norm one. See also S. P. Lloyd [4, Theorem 2].

Let A denote a subalgebra of C (X), and let B be a linear subspace of A
which has a weakly separating quotient.

1. THEOREM. If L is a projection of A onto B which has norm one, then
L (fLg) L (Lf. Lg) for all ] and g in A.

Proof. Let K denote the B-partition of X, and let q represent the quotient
mapping of X onto X/K.

Let H denote the subalgebra of C (X) of all functions which are constant on
the members of K. The map, J, which carries each function f in C (X/K)
onto f o q is an isometric linear isomorphism of C (X/K) onto H.
Every extreme point p of S(B*) has an extension to a point p of

ext S (C (X)*) i.e. p’ restricted to B agrees with p. Clearly then the set

Q {x in X 2 is in ext S (B*)}
is nonempty, and every extreme point of S (B*) or its multiple is contained
in {2. x in Q}. We continue the proof by establishing the following lemma.

2. LEMMA. If X is in Q and F is any linear functional in C(X)* of norm
one that agrees with 2 on B, then F is positive and supp (F) is contained in
--1q q(x).

Proof of lemma. We show first that for such a functional F, F. 2,.

Let B’ J (B). Since J is an isometric isomorphism of H onto C (X/K),
2 J, is an extreme point of S (B’*). It is also clear from the definition of
J and the assumptions on F that the linear functionals F o J-, 2 o J-, and

^ B’o B’(q (x)) all agree on Since separates the points of X/K no other point
evaluation functional $, (y in X/K) can agree with (q (x))^ on B’. More-
over since B has a weakly separating quotient, there does not exist a point y

^ B’in X/K such that t$ agrees with (q (x)) on for any with Itl 1.
Since (q (x))^ is the only extreme point of S (C (X/K)*) that agrees with

F o J- on B’, it in fact is the only member of S (C (X/K)*) that agrees with
FoJ- on B’. For if

D {M in S(C(X/K)*) Ms, F J-,}
then, with the weak topology induced by C (X/K), D is a compact convex set.
It therefore is the closed convex hull of its extreme points. Now every extreme
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point of D is an extreme point, d, of S (C (X/K)*). For if p and q are in
S (C (X/K)*) and 1/2p 1/2q d, then since de, is an extreme point of S (B’*)
both p and q agree with d on B’; thus p and q are in D. Since d is an extreme
point of D, p q d. Since (q (x))^ is the only extreme point of D it must
be the only member of D. Finally since the norm of F j-1 is one, F o j-1
agrees with (q (x))^ on all of C (X/K).
Hence for each h in H, F (h) is the constant value that h assumes on q-lq (x).

Since the constant function 1 is in H, the last statement implies that F (1) 1.
Since F has norm one this implies that F is positive.

It remains to show that supp (F) is contained in q-q (x). Suppose that y
is a point of X which is not contained in q-lq (x). To show that y is not in the
support of F it will suffice to exhibit a nonnegative continuous function h
such that F (h) 0, and h (y) 1. Let ] be a function in C (X/K) that is
nonnegative, vanishes at q (x) and is one at q (y). Then h ] o q is the
desired function.

This completes the proof of the lemma.

Proof of theorem continued. It follows from the lemma that for x in Q,
L is the restriction to A of a positive linear functional whose support is

contained in q-lq (x). From this we observe that if f is in A and f is constant
--1on q q (x) (where x is in Q), then Lf attains precisely the same constant value

on this set.
Now consider ( L)(fLg) for x in Q. Since Lg is constant on q-lq(x),

( L) (fLg) Lf (x). Lg (x). Thus for each x in Q, L (fLg) agrees with
LfLg on q-q (x), and LfLg agrees with L (LfLg) on each of these sets. This
however implies that L (fLg) agrees with L (LfLg) on each extreme point of
S (B*). Hence they must be equal. Our proof is completed.

3. COnOLLARY. A projection, L, of norm one from a subalgebra of C (X)
onto a further subalgebra, B, is an averaging operator.

Proof. Since the square of every function in B is also in B, B has a weakly
separating quotient. Since B is an algebra, L (LfLg) LfLg. Hence L is an
averaging operator.

4. COROLLARY. A projection, L, of norm one from a subalgebra of Cr(X)
onto a further subalgebra, B, is a positive projection.

Proof. Since B is a subalgebra of Cr (X) it must in fact be densein the sub-
algebra of Cr (X) of all functions which are constant on each member of the
B-partition of X, and which vanish on the common zeros (if any) of members
of B. It follows that for each x in X, the restriction of x to B is either an
extreme point of S (B*) or the ero functional. By the lemma L is either
positive or the zero functional. Since this is true for every x in X, L itself
must be positive.



692 DANIEL E. WULBERT

Remarks. In the theorem und corollaries we assumed that the projection
L ws defined on sublgebm A of C (X). In Theorem 1 und Corollary 3
this was done to guarantee that if f nd g were in A, then also fLf and LfLg
were in A. In Corollary 4 it would suffice to assume that A were a linear sub-
space of C (X) which contained the subalgebr of C (X), B.
The assumption in Theorem 1 that B has a weakly separating quotient can

not arbitrarily be dropped.

5. Example. LetA C[-1, 1],letf(x) xandletB {rf r a real
number}. For g inC[-1, 2] let Lg 1/2(g(1) g(-1))f. NowL is a
projection of norm one of C[-1, 1] onto B. However if H represents the
constant function 1,

L (hLf) f 0 L (Lh. Lf).

Now suppose A C (X). The rnge of any averaging operator must be
an lgebra. If in ddition the operator is u projection of norm one, Corollary
4 implies that the operator is positive. It is also known that a positive aver-
aging projection has norm one [3, Remark 2.3, p. 219]. Hence u projection
onto a subalgebm of C, (X) is a positive averaging operator if and only if it
has norm one. It is not true however that every positive projection onto a
subalgebr of C (X) is an uveraging operator.

6. Example. Let X [0, 1] u {2/ hve the topology it inherits from the
real line. Let B be the subalgebra of C (X) of all functions that vanish at the
point 2. Let h be the function which is identically one on [0, 1], and vanishes
at 2. ForfinCr(X) leLf f.h +f(2)h.

Cleurly L is u positive projection onto B. However if g is the function which
takes the constant value one on X, then L (gLg) 2h, but LgLg 4h.
A functional representution has recently been given [10] for the spaces

which are the range of a norm one projection on C(X). Also some related re-
sults on veraging operators have been announced by Dhombres [19].
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