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1. Introduction
Let m > 3 be a cardinal number and let S (z, r) denote the cell

fy:llz -yl <r

in a real normed linear space N. The space N is said to be m-hyperconvex [1]
if every pairwise-intersecting family & of cells in N with card § < m has non-
empty intersection. The m-hyperconvex normed spaces are exactly those
spaces N for which the continuous linear operator T’ in the diagram

L-L.n
Al
M

has a norm-preserving extension to M whenever dim M < m.

In the case m > card N the m-hyperconvex normed spaces were charac-
terised in [6] as the spaces C (S) consisting of all continuous real-valued func-
tions on an extremally disconnected compact Hausdorff space 8. It wasshown
further in [1], for a general m, that the m-hyperconvex spaces which are of the
form C (X)) for some compact Hausdorff space X are those for which X has the
topological property @ (m, m). This is the case m = 1 of the following:

DeriniTioNs. Let X be a topological space, and let m and n be cardinal
numbers with m > 3 and n > 3.

(a) A pair (U, V) of disjoint non-empty open subsets of X is a (m, n)-
pair if

U = U{‘U,, :2el} and U = U{’Oj 1jed},

where U;, V; are open for all ¢ and j, ¢l U; € U for all 7, ¢l V; & O for all 4,
card I < m and card J < n.

(b) The space X has property @ (m, n) if each (m, n)-pair (U, V) satisfies
clUunel U # 0.

The present paper considers m-hyperconvex Banach spaces with m > 5,
and the spaces are required to have at least one extreme point on their unit
cells. The main result is that every such space is isometrically isomorphic
to a normed space of the form 4 (K ), consisting of all real continuous affine
functions on a Choquet simplex K with the property that the set EK of ex-
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treme points of K satisfies @ (m, m) in its structure topology. This topology,
introduced by Effros in [4], has for its non-trivial closed sets the intersections
with EK of the closed faces of K.

We recall from [1] that every m-hyperconvex normed space with m > Ny is
complete.

2. Interpolation properties in partially ordered spaces

(2.1) DerFintTioNs. Let V be a partially ordered vector space.

(a) V has the (m, n)-interpolation property, (m, n)-Int, if for every two
non-empty subsets A and B of V with card 4 < m, card B < nand a < b for
allain A and b in B, there exists vin V witha < v < bforallain 4 and bin B.

(b) When V has an order unit, V will satisfy the bounded (m, n)-interpola-
tion property B (m, n)-Int if the property in (a) holds when the sets A and B
are bounded in the order-unit norm of V.

In the above, « will denote “a cardinal number strictly greater than card
V. Itis clear that (n, m)-Intis equivalent to (m,n)-Int. If V hasan order
unit and m and n are finite, then B (m, n)-Int and (m, n)-Int are equivalent.
Also V is a lattice if and only if it has (8, «)-Int and V has the Riesz de-
composition property if and only if it has (3, 3)-Int.

(2.2) LEMMa. Let V be a partially ordered space with order-unit e and the
order-unit norm. Let m > 3 and n = 3 be cardinal numbers.

(@) If Vis (m + n — 1)-hyperconvex, then it has the bounded (m, n)-
interpolation property.

(b) If V has the (m, n)-interpolation property, then it 7s (m /\ n)-hyper-
convez.

Proof. (a) Let Vbe (m-+ n— 1)-hyperconvex. Let A and B be bounded
subsets of ¥V with card A < m,card B <nande < bforallain 4 and b in B,
and put

t =supf{|lz —y| :2,yed uB}.
Consider the family
F = {S(a + te, t):aeA} u {S(b — fte, t):beB}.

We have in all cases that card¥ < m 4+ n — 1
From 0 < b — a < te we obtain

—2te < (b—te) — (a+te) < —te
which shows that

| b —te) — (@a+te)|| =2t and S(a+te,t)nS(b — te,t) = 0.
Also if @ and ¢ are in 4, then

| @+te) = (cH+ite)]| =lla—c| <t
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showing that

S(a + te,t) n S(c + te, t) = @.
Similarly

S —te,t)nS(d — te,t) # @

when b and d are points of B.
Since V is (m + n — 1)-hyperconvex there exists

veN{S(a + te,t):aeA} n N{S(® — te, t): beB}.
For all @ in A and b in B, we have
—~te<v—a—te and v — b+ te < te,

showing that @ < v < b. Hence V has the bounded (m, n)-interpolation
property.
(b) Suppose V has the (m, n)-interpolation property and let
{S(xs,rs):1el,card I < m A n}
be a pairwise-intersecting family of cells in V. Consider the sets
A=1{x;+rie:iel} and B = {x; — rje:jel}.

For each 7 and 7, ; — rje < x; + rse. Sincecard 4 < mand card B < n
there exists v in V with
z; —rje < v < x;+ rie forall Zandj.
This shows that
N{S(xi,r:):1el,card I < m A n} = 0,
and that V is (m A n)-hyperconvex.

(2.3) CoroLLARY. The following are equivalent:

(a) V 48 5-hyperconvex,

() V has (3, 8)-Int,

(¢) Vhas (myn)-Intforallmandnwith3 £ m £ Noand3 < n < Ny,
(d) V s m-hyperconvex for all m with 5§ < m < No.

Proof. By Lemma 2.2(a), (a) = (b). We may show by induction that
for all finite m, n > 3
(m, n)-Int = (m, n + 1)-Int.

This shows (b) = (¢). That (¢) = (d) now follows from Lemma 2.2(b)
and the implication (d) = (a) is trivial.

(2.4) CoroLLARY. Let V be a partially ordered normed space with order-unit
and the order-unit norm. Then for any cardinal m 2> 5,
V has the (m, m)-interpolation property

= V s m-hyperconvex

= V has the bounded (m, m)-interpolation property.



156 D. K. OATES

Proof. The first implication is a consequence of Lemma 2.2(b). The
second implication follows in the case of finite m from Corollary 2.3. In the
case m > Ny, we observe that 2m — 1 = m and use Lemma 2.2(a).

The following result, part of [7, Theorem 4.7], relates the above to our as
yet un-ordered 5-hyperconvex normed spaces.

(2.5) ProposiTioON. Let N be a 4-hyperconvex normed space whose unit
cell U has an extreme point e. When N is partially ordered by the cone
R* (e + U), the order-unit norm derived from e coincides with the original norm.

3. The property Q(m, n)

Let m and n be cardinal numbers with m > 3 and n > 3. We shall prove
that if a Choquet simplex is such that A (K) has the bounded (m, n)-inter-
polation property, then EK has the property @ (m, n) in the structure topology.
This then gives a representation theorem for m-hyperconvex Banach spaces
whose unit cells possess an extreme point.

The following known results (3.1)-(3.5) concerning Choquet simplexes
will be required. For further details see [2], [4], [8].

(8.1) TueoreEM (Edwards [3]). Let K be a compact convex set in a locally
convex Hausdorff space, and let C be the set of lower semicontinuous concave
real functions on K.

The following are equivalent:

(1) K s a Choquet simplex;

(i) For all f and g with —f, g in C and f < g, there exists a in A (K) with

f<a<y;

(i) A(K) has (3, 3)-Int;

(iv) A(K) has the Riesz decomposition property.

(3.2) CoroLLariEs. Let F and G be closed faces of a Choquet simplex K.
(a) (Urysohn’s Lemma for simplexes) If F n G = @, there exists a in
A (K) with
0<a<ealF=0 and a|G =1

(b) The set H = co (F u G) 1s a closed face of K and
HnEK = (FuG)nEK.

Proof. (a) Apply Edwards’ Theorem with f = x¢ and ¢ = ¢ — xr,
where x¢ and xr are the characteristic functions of F and G.

(b) The last assertion and the fact that H is closed follow by elementary
arguments.

It remains to show that H is a face of K. Suppose kisa pointin EK \ (Fu @).
By part (a), there exist f; and gx in A(K) with 0 < fi < 6,0 < g < ¢,
fe(k) = gr(k) = 1 and fi(F) = g:(G) = {0}.
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Now let 6; be the function with
(@) =0(@=k), &Ek) =1

The functions f = & and g = fi /\ g» satisfy the conditions of Theorem 3.1,
and so there exists 7 in A (K) with

hE) =1, h|] FuG@) =0 and 0 < h <e
The sets

Hy = {teK:h(z) = 0} and H' = N{H,:keEK\ (Fu G)}

are closed faces of K containing H. But H n EK = HnEK,andso H = H
and H is a face of K.

Corollary 3.2(b) gives directly the non-trivial part of the proof that the
structure topology is a topology. We recall that with the structure topology
EK is compact, but may not be Hausdorff. With the relative topology as
a subset of K, EK is a Hausdorff space.

(3.3) ProprosiTiON. Let K be a Choguet simplex. The following are equiva-
lent:
(1) EK 1s closed in K;
(i) EK <s a Hausdorff space in the structure topology;
(iii) the relative topology and the structure topology of K coincide;
Gv) A(K) s a lattice;
(v) AK)= C(EK).

The following is a consequence of Lemma 4.3 of [5].

(3.4) ProposiTiON. Let V be a partially ordered vector space with order-unit
e and the order-unit norm. Let K be the positive face of the unit cell in the dual
space V*. If V is complete, then it is isometrically isomorphic to A (K), where
K is taken with the relative weak™-topology.

(3.5) TueoreM. Let N be a 5-hyperconvex Banach space whose unit cell
has an extreme point e. Then N s isometrically isomorphic to a space A (K)
where K s a Choquet simplex.

Proof. Since N is 4-hyperconvex, Proposition 2.5 shows that it may be
regarded as a partially ordered normed space with order-unit e and with the
order unit norm coinciding with the original norm. By Proposition 3.4,
using the completeness of N, N is isometrically isomorphic to A (K'), where K
is the positive face of the unit cell in N*, with the relative weak *-topology.

By Corollary 2.3, N has the (3, 3)-Int property, so by Theorem 3.1 K is a
simplex.

(3.6) TurorEM. Let K be a Choquet simplex. If A(K) has the bounded
(m, n)-interpolation property m = 3 and n 2> 3, then the set EK has property
Q(m, n) in the structure topology.
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Proof. Let
U= Uf{u;:4el} and 0 = U{V;:jed}

be a (m, n)-pair in the structure topology of EK.
Since cl U; € AU for all 7 in I, the sets ¢l U; and EK \ U are disjoint closed
sets. By Corollary 3.2 (a) there exist functions f; in A (K) with

0<fi<e filelu;=1 and f,|(EK\‘u)=0
Similarly, for each j in J, there exists g; in A (K) with
0<g;<e gilcdV;=0 and g;|] (EK\V) =L

The sets A = {fi:¢elI} and B = {g;:jeJ} satisfy the requirements of
property B(m, n)-Int, since f; < g;for all 2in I and j in J, card 4 < m,
card B < n, and A u B & 8(0, 1). Thus there exists » in A (K) with
fi<h<g;forallzinI andjinJ.

Now & (u) = 1foruin U and A (») = O for v in U, so that the sets 27" ({1})
and £ ({0} ) are disjoint closed faces of K containing 4L and U respectively.
This shows that in the structure topology the closures cl U and ¢l U are dis-
joint and EK has property @ (m, 1n).

(8.7) TurorEM. Let m 2> 5. If N 4s a m-hyperconvex Banach space
whose unit cell has an extreme point, then N is isometrically tsomorphic to a
space A (K), where K is a Choquet simplex such that EK satisfies @ (m, m) in
the structure topology.

Proof. By Theorem 3.5, N is of the form A (K) for a suitable Choquet
simplex K. By Corollary 2.4 it has property B(m, m)-Int and the result
now follows from Theorem 3.6 .

(3.8) ProrosiTiON. Let m > 5 and suppose that N is a m-hyperconvex
Banach space whose unit cell has an extreme point e.

(a) If N <s isometrically wsomorphic to C (X ) where X 7s a compact Hausdorff
space, then X satisfies Q (m, m).

(b) If N s a lattice under the natural ordering given by e, then the set EK s
closed in K and satisfies Q(m, m).

Proof. Let K be the simplex given by Theorem 3.7. In case (b), 4 (K)
is a lattice and by Proposition 3.3, 4 (K) =2 C(EK), where EK is closed in K.
In case (a), X is homeomorphic to EK with the relative topology. Using
Proposition 3.3 again, the two topologies on EK coincide. So since EK
satisifies @ (m, m) ints structure topology, EK and hence X satisfy @ (m, m)
in their induced topologies.
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