SOME SUBGROUPS OF (V) GENERATED BY
GROUPS OF ROOT TYPE 1

BY
BETTY SALZBERG STARK

1. Introduction

The groups of the Lie type of Chevalley, Tits, Steinberg, Suzuki and Ree
are generated by one-parameter subgroups, each isomorphic to the additive
group of the field F in question. A standard notation for such a one-parame-
ter subgroup is

%, = {x(t) | r is a root and ¢ € F}.

We say that H is a “group of root type” in G if H is a subgroup of a group G
of Lie type such that a(H) = %, for some root r and some automorphism
aof G.

We will call a subgroup Gy of G an “RT group” if G, is generated by groups
of root type in G. In this paper we will classify certain RT subgroups of
Q(V), the commutator subgroup of a finite orthogonal group.

Several results on RT groups have already appeared. For example, Jack
MecLaughlin [4], [5] and Harriet Pollatsek [6] have studied BT subgroups of
SL(V), V finite dimensional over a finite field.

The recent work of John Thompson [11] on quadratic pairs is also related
to the study of RT groups. Thompson defines a quadratic pair to be a finite
non-trivial group @ and an F, G module M such that G acts faithfully and
irreducibly on M and G = (Q) where

Q=1{9¢G—(1}| M@ — 1) =0}
Thompson first proves that if p > 5 and (G, M) is a quadratic pair then there
exist quadratic pairs (G, M;) such that
O M=M,® - M,
(2) G is a central product of the G.’s
8) for all 7, G;/Z (G;) is simple.

Thompson’s main result is a classification of the quadratic pairs (G, M) with
p > 5 such that G/Z (G) is simple. Specifically, he shows that G/Z (G) must
then be isomorphic to one of the following:

A.(), A.(9),  Bu(@), Cale),
(*) Da(g),  °Da(g),  °Dulg),  Ge(a),
F4(Q)y Eﬁ(Q): 2E5(Q)’ E7(Q)7

where ¢ = p° for some ¢ > 0.
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It turns out that many groups of root type have a natural representation
in which the elements of the group are represented as linear maps with quad-
ratic minimal polynomial. For example, the groups of root type in SL(V)
mentioned above, and the groups of “root type 1” (which we define below)
in (V) have such a representation.

In fact, for all the quadratic pairs (G, M) for p > 5, G is an RT group, and
this fact arises in Thompson’s proof. However, not all RT groups have
representations as quadratic pairs. For example, PSL,(F,) is isomorphic
to @ (V) for V three dimensional over F, , and can be generated by two groups
of “root type 2” (defined below) in @(V). (See [8] for a proof.) However,
every group @ of a quadratic pair (G, M) for p > 5 must contain SL,(F,)
by Thompson’s proof [11]. Thus PSL,(F,) is an RT group, but has no rep-
resentation as a quadratic pair. Another example is Es(q) since it is a group
of Lie type which does not appear on Thompson’s list.

In this paper we classify the subgroups G of @(V) (for V finite dimensional
over a finite field F of odd characteristic, | F | = ¢) which are transitive on
the singular one dimensional subspaces of V and generated by groups of
“root type 1”. We find

(1) G/Z(G) = ’4,(q), unitary groups,
@) G = G/Z(G) = Gy(q), or
3) G@=qQ).

We recall @(V)/Z(Q(V)) = B.(q), D.(q) or *D,(g). Since (G, V) is a
quadratic pair by the hypothesis of our theorem, G must be a central product
of groups G; such that G/Z(G;) is on Thompson’s list (*). However it is
not trivial to determine which of the groups on Thompson’s list () satisfy
our hypothesis. In fact, we do not use Thompson’s methods or results at all.
Instead, we rely on the geometry of V for a completely independent proof.

In a previous paper [8], the author has determined the subgroups G of
Q(V) which are transitive on the singular one-dimensional subspaces of V
and generated by groups of root type, but not solely by groups of root type 1.
These are:

1) G=A;,dimV = 4,index 1, F = F;,

(2) G = Gy, the semi-direct product of an elementary abelian group of
order 16 by A5, F' = F; and dim V = 5,

B) G=eWV),dimV =3or4,index V = 1.

(We remark that if the index of V is greater than 1, Q(V) is generated solely
by groups of root type 1.)

Thus this paper combined with [8] yields a determination of all RT' sub-
groups of Q(V) which are transitive on the one-dimensional singular sub-
spaces of V.
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2. Terminology and restatement of theorem

Let V be a finite dimensional vector space over a finite field of characteristic
not 2. Let B be a symmetric bilinear form on V. B determines a quadratic
form @ on V by B(z, ) = 2Q(x). In addition, suppose there is no ¢ = 0
in V such that B(x, y) = O for all y in V. Then we say B is nondegenerate
on V. In this case, the group of linear transformations on V preserving B is
called the orthogonal group (with respect to B), and is denoted O (V). The
commutator subgroup of O (V) is denoted 2 (V).

Ifforallz e S = {0}, S C V,B(x, ) = 0, wesay S is singular. We remark
that the condition S # {0} is non standard. Our “singular vectors” and ‘‘singu-
lar subspaces” are always non-zero. If a vector u is non-zero and not singular,
it is non-singular. This is standard. Further, we use projective termanology.
Thus, a one-dimensional subspace is a point and a two dimensional subspace is a
line. Let ( ) denote “subspace generated by”. Thus (x) is the point
generated by the vector .

The set of vectors z such that B (x,y) = Oforally ¢ Y C V is denoted Y.
If X C Y* wesay X is perpendicular to Y. Since B is bilinear, this is equiva-
lent to saying (X) is perpendicular to (¥). Since B is symmetric, X C Y*
implies Y C X,

Now let z be a singular vector (hence non-zero by definition), and let u be
in z*. Define a linear transformation p,., as follows: for z € %, p,,. sends 2
to z + B(z, u)z. This transformation preserves B on the (n — 1)-dimen-
sional space z*. (Note that in case u e (x), p,,. acts as the identity on z*.)
By Witt’s theorem (see, for example, Artin [1, p. 121]), every linear transfor-
mation which preserves B on a subspace of V can be extended to a member of
O (V). Tamagawa [10] shows that the extension p of p,. to a member of
O (V) is unique. In fact, if y is a singular vector such that B (y, u) = 0 and
B(z,y) = 1 (when u ¢ {x), such vectors always exist) then p sends y toy —
Q @)z — u. We abuse notation by allowing p, . to stand for its extension to
a member of O (V). p,,.is called a Siegel transformation.

Since, as a direct sonsequence of its definition,

(1) Pz,u Pz,v = Pz,utv
we see that the set

2 = {pow | « singular, u e 2", u ¢ (z); z, u fixed, k € F}

is a group isomorphic to the additive group of F. If u is singular we say =
is a group of root type 1. If u is non-singular we say 2 is a group of root
type 2. The groups of root type in (V) as defined above have this form.
One can see this by using the explicit representations for the one-parameter
groups of B, and D, given in [8], plus the paper of Steinberg [10] defining
’D, . There will be no need, however, to refer to the Chevalley structure in
the proof of our theorem. Instead, we use only the properties of Siegel
transformations.
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In order to have a group of root type 1, we must have a singular line {x, u).
The dimension of a maximal singular subspace of V is called the index of V.
Thus we must have index at least 2, and since the index of V is at most half
the dimension (see Artin, [1, p. 143—-144), the dimension of V is at least 4.
In this case {z)* is always spanned by singular vectors (again see Artin [1, p.
143-144]). Say ()" = U1, ¥2, - - - Ys), where the y; are singular. Then if
u e ()",

U = Elgigkaiyi, a; el
So
Pz = Pz,2 ajy; = HISiSk Pzaiy;

by (1). Thus every Siegel transformation is a finite product of Siegel trans-

formations p., with singular y. Hence the subgroup of O (V) generated by

all groups of root type 1 contains all p,,,, . Tamagawa [10] proves that the

oz, generate @ (V) and that @ (V) is transitive on the singular points of V.
Let | F | = ¢, dimension V = ¢ and index V = ». We restate our

TaeorREM. Let G be a subgroup of Q(V) generated by groups of root type 1
and transitive of the singular points of V. Then either

1) G =2 Gq(q), simple groups discovered by Dickson in 1901 [2],

() G = SU@/2, ¢°), groups of determinant one linear transformations
preserving a hermitian form on a vector space of dimension t/2 over a field with
¢ elements (see, for example, [3, p. 12]) and t = 4m + 2, » = 2m, m > 1 or
t=4m,v =2m,m > 1, or

3) G@=qa).

3. Correspondence between groups of root type 1 and
singular lines; axis lines

We first show that groups of root type 1 are in one to one correspondence
with the singular lines of V. It is trivial that a group of root type 1 deter-
mines a singular line. Let I be a singular line. Define =l to be
{ps,u|l = (x, u)} u{l}. In order to prove that ZIis a group of root type 1,
we need only show that if I = (&, u), psu = pzg,ku, fOr some fixed x, , uo such
that I = (2o, uo) and k e F.

To do this, we observe that for any Siegel transformation p,,.

(2) Pzutkz = Pz,u, ke F,
and
(3) Pz,cu = Pez,u y C € F,*

If, in addition, v is singular, then

(4) Pzu = Peu,z .

One need only show that both sides of (2), (3), and (4) agree on z™*, since
ps. has a unique extension from its representation on z*. For example, let
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us prove (4). If ze(x, u)*, pou(®) = p_ue(®) = 2. There is a singular
vectorz; in z* such that B(z;, —u) = 1. (Takesomez’ inz*, 2’ not inu*,then
21 = k(' + tu) for some ¢ eF and k ¢ F*). Recall that when Tamagawa
proves the uniqueness of the extension of p,,from its action on s* to its
action on V, he shows that if y is a singular vector such that B (y, s) = 1 and
B(y,t) = 0, then p,;sendsytoy — ¢ — @ (¢)s. In this case our ¢ is singu-
lar, so Q(¢) = 0. Thus

puz(@) =21 — 2 =24+ Bar, u)z = psul2).

Since z* = ({(z, u)*, 21), we are done.

Nowlet ¢ = axo + buop ,w = a’zo + b'up where a, b, o/, b’ e F. If b 0, we
apply (2) t0 obtain pusy+bug.arzetbug = Pazo+bup,tzy Wheret = a’ — b'ab™". Since
l=(z,u), ué¢(x)and t # 0. Hence we can apply (4) to get paso+bug,tzo =
P—trg.azet+bug - 1f b = 0, one begins with this form. Now apply (2) and (3)
for the desired result.

If 21 C @ we say lis an axis line of G. Since our groups @ are to be tran-
sitive on singular points, and since for 7 ¢ O (V),

) P2 (ZTPouT ) = Priorcwr

(proved by showing both sides agree on (z)*), each singular point lies on
the same geometric configuration of axis lines for G. For example, suppose
(x, y) and (x, 2) are axis lines of @ and B(z, y) = k, k e F. Then for any
T eG, {(r(x), 7(y))and (7 (z), 7 (2)) are axis lines of G and B(v (2), 7(y)) = k.
In particular, we note that (5) implies that any element 7 of a group G sends
axis lines of @ to axis lines of G.

4. Standard basis notation; The group G generated by
2l and Zl, where I N I;* = {0}

We use a standard basis notation:
V=@,c1) @ (X, ® - - D(m,z0) ®W

where the z; e W*, W containr no singular vectors, B(z;, z_;) = 1, and all
other products of the z; are 0. W must have dimension 0, 1 or 2. Artin
[1, p. 143-144] proves that V can always be represented in this way.

Witt’s theorem implies that if Uy, ---, U, are non-zero vectors in V with
the same multiplication table (B(U;, U;)) as some subset of a standard
basis, the Ui, ---, U; can be extended to a standard basis. We use the
notation {#, x_1, - - - , 2} to denote a set of vectors having the same mul-
tiplication table as the corresponding vectors of a standard basis.

We begin by investigating the group G generated by 2l and Zl, where
In loJ' = {0}

The freedom allowed us by Witt’s theorem for using the standard basis
notation enables us to represent I by (2, x2) and Iy by (2_1, z—s). Then
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Ps_y.kz_y SeDds
(1, @) to (&1 — kx_o,x + ka_y).

Therefore =l and Zly generate a group G whose axis lines include
(@1, 29, and (@ — ka_z, 22 + ka_s)

for k ¢ F. Further, the sets of singular points

0: = {{2-1), (@ + kz_1) | b e F}
and
0: = {{(z2), (1 + ka_2) | k ¢ F}

are fixed by =l and Zl,, hence by G. We show that the axis lines above are
the only ones for G. Let U = (I, ;). @ fixes U* vectorwise since its genera-
tors fix U" vectorwise. Suppose there is an axis line ! of G containing a
vector ¥ which does not lie in U, i.e. y = w + v where w e U, v ¢ U* and
v # 0. Since U* isnon-degenerate [1], there is an zin U™ such that B(z,v) 5 0.
Choose {z) to be the point on I in (z)*. (We recall that 2* has dimension
n — 1, hence dim(z* n W) = dim W if W C z* or (dim W) — 1 other-
wise. In particular z* n (a line I) has dimension 1 or 2, i.e. for any point {x)
there is always a (non-zero) point (y) on a given line I such that y e z*.)

Then p,,, does not fix , contradicting » 2 0. Thus all axis lines of @
must lie in U. The only other singular lines in U are (r_;, x2) and
(rx — kay, 2 + kx_1) k e F. But no group of root type 1 with these axis
lines fixes O, and O .

Since the axis lines of G do not intersect, there are (¢ + 1) points of U on
these axis lines. But this is the number of singular points in U. So each
singular point of U is on one axis line of G. If we consider V = U we have
exhibited a subgroup of (V) generated by two groups of root type 1, where
each singular point is on exactly one axis line of @, but G is not transitive on
the singular points of V.

In fact, as we show in section 7, G is isomorphic to SU (2, ¢*), the deter-
minate one unitary group in 2 dimensions over a field of ¢* elements.

5. The lemma on the group generated by 2/, and 2,
where [, n Iy is a point

The following lemma, is a very important tool in the remainder of this paper.

LemMA. If Iy and Iy are axis lines for a group Gy such that ly n l; = {0} and
the dimension of l n l,* is one, i.e., h n " = P, a singular point, then P lieson
two independent axis lines of Gy, namely l, and (P, R), where R 18 the point on
L in L™

Proof. Using standard basis notation, let ly = (z1, 2), and let P = (x,).
Thus 1 ¢ ", but 2, e b*. Let (y) be the point on l; in 2;*. Since all of L is
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perpendicular to @,y eli". Thus (y) = R, and we may name y “z3”. If
(z) is a point on [, different from (xs), then € {x; , x3)" but z ¢ (21)*. Hence
we may name (z) “(@_1)”’. But ps,._, sends (s, @) to (¥, 21 + 23). We
note that by (1), Pag,—kay Pas b(ay+ag) = Pagkeg » k€ F. Thus (z2, x3) = (P, R)
is an axis line of Gy as claimed.

Remark. In general, (1) of Section 2 implies that if (x, y) and (x, 2) are
axis lines for @, so is (x, y + kz) for any k ¢ F. In particular, if {(z, y) and
(z, y + 2) are axis lines, sois (&, y + 2 — y) = (x, 2).

6. Elimination of certain possibilities for dimension and index
of V under the assumption of one axis line
per singular point

In §6 and §7 we assume @ satisfies the hypothesis of the theorem and in
addition each singular point is on exactly one axis line. The lemma of §5 im-
plies that under this assumption, if l; and I, are axis lines of G, hnlzy = [; or
(0). In particular, if /1 is an axis line of @, and P is a point in li , then the
axis line [ of G containing P must liein Iy .  (Otherwise Inly = P.) Further,
if R is a point not in I and Q is the point on I, in B*, then if the axis line l,
containing B is (R, T), T ¢Q*. (Otherwise bnli = Q). This information
can be extensively exploited.

Suppose Iy = (x1, 22) is an axis line for G. Since B is non-degenerate, there
is a point (z_1), z_1 ¢ 21, 73 ex2. Let ! = (x_1, y) be theaxisline containing
(x—_1), and choose (y) to be the point on ! in 1. By the above argument, y
must not lie in 2;. Hence we may name y “z_s"".

In §4, we saw that the group H generated by ZI and Zl, is not transitive on
the singular points of U = (I, l,), but that every singular point of U is on an
axis line of H. So if H is a subgroup of Hy, a group generated by groups of
root type 1 in 4-dimensional space (index two), then either H = H, and H,
is not transitive on singular points, or H is a proper subgroup of H, and there
are axis lines of Hy which are not axis lines of H. Thus H, would have singular
points on more than one axis line. Hence for any group satisfying the
hypothesis of this section, the dimension of V is greater than 4.

Now we proceed by induction. Suppose we have a system Sy of axis lines

@1, x2), (X1, T2), -+, (Fm-1, Tow), (T_@r-1) T_2w).

Let U = (Si). Let (y) be a singular point in U*. Then the axis line I con-
taining (y) is perpendicular to each line in S, so I € U*. Using Witt’s
theorem, we name ! “(Xog41, Z2xs2)’’. Then by Witt’s theorem, since B is
non-degenerate, there is a point we may call (x_qx42) which is perpendicular
to U and to {zx+1) but not to (xarr2). Then if Ij = (¥_@r+2) , ¥) is the axis
line of G containing 2_@42) , where (y) is chosen to be in 2342, wWe see (y)
must be in U and in 2@ and (y) must not be in z3,1. Hence we may
name {y) “(x_@r+n)’”’. Thus we obtain a system Siy1. Since by Witt’s
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theorem, every singular space is contained in a maximal singular space of
dimension the index of V, we see that the index of ¥ cannot be odd.

Now suppose we have even index and have a system S;, of axis lines as above.
Suppose the dimension of Vis 4k + 1 (i.e., the dimension of the W of standard
basis notation is one). Let W = (2) where Q) = g eF*. Then

(m—grat2) = ()

is a singular point perpendicular to every axis line in Sy except (x1, 2) and
{x_1, z_»). Hence the axis line I containing (y) must lie in (@1, z2, 21,
T_s, 2). Let (x) be the point on I in 2*. Then (z) is in (21, 2, T_1, T_2).
But by §4, we know every singular point in this space is already on an axis
line in the group generated by Z(x;, x2) and Z(x_1, _2). Hence the dimen-
sion of V cannot be 4k + 1.

7. The existence of a group with each singular point
on one axis line

The only remaining possibilities are dim V = 4k, index 2k, k¥ > 1; or
dim V = 4k + 2, index 2k, k > 1. We show that in these cases a group @
satisfying the hypothesis of the theorem and with each singular point on one
axis line exists.

We have a system S; of axis lines as above. Suppose dim V > 8. Let
(22 4+ 24, y) be an axis line. Let (y) be the point on (2 + x4, y) in x5 .
Then since x; + 4 is in

(21, 2", (s, x)t, (@5, xe), v, (T—@e-n , T_o)”
so0is y,i.e. y e (a1, 22, 3, &4 , W) where W has dimension 0 or 2 and contains
no singular vectors. Since y must be singular,
Y €{xs, T2, Tz, Ty).
Since i e x5,y € (¥1, Tz, T4). Since
(@ +s,y) ¢ (X, 20)" and 25 e (x2+ )™,

r_; ¢y",1.e. y hasan z; component. Similarly, y has an x; component. Hence,
() = (21 + axs + bay) where a e F* and b ¢ F. )
Rewrite az; + bzs as “zs”. Then (23, x) = (@3, 2,) and if

iy = —a b + x4 (@ # 0) and aly = o g,

then (z_;, 2_4) = (z_5, z_4) and the relationships among x; , 24 , _3 and z_4
are exactly those among 3, a4 , #.5 and a_s. So without loss of generality
we may assume {(xz + ¥4, T1 + x3) is an axis line for @. But we cannot juggle
things this way twice.

We may suppose (x; + 3, 21 + ax; + bxy) is an axis line for G.  (This
time b 52 0.) The product p._,,ec_, Pog,tcs Po_s.ko_y = T Wheres = —k/(1 — tk)
sends x5 to (1 — th)xs and x to (1 — th)a,. (Assume 1 — ¢tk # 0.) Let
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1 — tk = r and apply = to (x2 + 24, 21 + x3) to obtain
@ 4+ rea, ¢ + raz) = U
Similarly if 1 — tk = j, v sends
@+ @3, ;1 + axs + bry) to (x + jas, 1 + ajes + bjxry) = k.

On [, there is a point
{¢a + maxy + ray + mra).
On I, there is a point
(2 + mar + jrs + majrs + mbjas).
Let mbj = r and j + maj = mr. Eliminating m in these two equations we
obtain b + (r/f)a = (r/j)’. Thus if b + Xa = X” has a solution in F,
then these two distinet axis lines, I; and I, , contain a common point. Hence,
X* — aX — b is irreducible in F.
Now suppose dim V' > 12. As above, we get axis lines

@ + @, 11 + x) and (11 + @'z + bws, 22 + )

where X*> — &/X — b’ = 0 is irreducible in F. We show ¢/ = ¢ and b’ = b.
First, note p,_, »_, sends

@+ 2,22+ 2) to (14T o+ 3,0 — 20+ 2
and sends

(@1 + axs + bay, 22 + x5) to (w1 + 22 + x5 + by, 2 — rg + x3).
Then the product ps_,,e_; Pr_5,o_g Pry+o_gteg,zp—n_1+2, SEDNAS

(1'2 + %, 1 + 1‘5>
to

l=@ai— 2+ o3+ 2+ 25, —To— T3 — T4+ &5 — T_g)

and Pzy+w_g+azg+bay,co—T_1+3 sends

(xe + x5, @ + d'zs + b
to
(@ — 23+ @5, — x2 — axz — bry + a'ay + bag) = 1.

Since (x_1 — a3 + x5) is in I*, the second vector of l; must also be in I*. So
g =0 and b = b

Suppose dim V' = 4n + 2. Hence dim W = 2 and W = (w;, w.) and we
may set Q (wi) = 1, Q(ws) = g where —g¢ is a non-square and B (w, , w.) = 0
[1]. The singular point {(z; — z_» + w:) lies on an axis line I with a point
{y). Say (y) is the point on I in wi. Then

) = (exs + ex_s + car + dz_y + wo)

where ¢d # 0 since ¢ + ¢d = —g, a non-square. Let y be that member of
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(y) whose ; coefficient is 1, i.e.
y = e m + e ey + 2 + déey 4+ s
Let ¢ = ec, d = dc¢™, ws = ¢ 'ws, and Q(wé) =c¢7. Letcg =g.
Then if dim V' > 10, ¢’ = —a/2 and d’ = b. (Hence —¢g’ = a’/4 + b.)
Proof. The product ps_,,—dss_y Prg—s_g+w1,oy+d72_1+ez_g+e’ss-+uwy’ SENAS

@ 4 20, @1 + x3)
to

(A 4+ 20+ a1+ doey + e'w + ws + 2 — dos,

o+ dee — does + dw + 2+ day) = 1.
Further p,_, 4:2_, sends
(T2 + 23, 21 + axz + bxy)
to
(w2 + doy + @3, &1 — d'vs + axs + bay) = L.

But (2, + d'z_y + x3) is in Ii , so the second vector of J, must also be in /5.
This yields the desired equations.

Suppose now that either dim V' > 8, defining ¢ and b, or if dim V = 6 and
(@ — & + w1, 21 + d'z_y + €z, + €2_y + w,) is an axis line, define a
to be —2¢/ and b to be d’. Then let a be a root of X* — aX — b. We embed
V onto a vector space U of dimension {/2 (where dim V = ¢) over F (a) by
the following equations:

6 = Ty, b = Tai,
(@ — a/2)e_; = gz_piy where —g = @’/4 +b = (a — a/2)"
e—i = T2 + (a/2)z_qi-
€ = Wi, (@ — a/2)ey = wy whendim V = 4k + 2.

Then each of the following lines in V is a “point”’ in U (i.e. a one-dimensional
subspace in the vector space U over F(a)):

<Q’31 3 372), R (x%—l ’ x%))

(@1, 22), =+, (X_@i—1) , T_k),

(@1 + @3, 22 + @), -+, (@1 + Topr, T2 + T,

(@ + axs + bay, a2 + x35), -+, (T + arma + dra, T + Tumoa),

(@2 — g + w1, 21+ bry — (a/2)2_2 — (a/2)x2 + wh).

Call this system of lines “L”.

For the remainder of this section some familiarity with unitary groups is
needed and we refer the reader to Dieudonné [3].

Let B’ be a map from U X U to F («) with the following properties:

(i) B'(a+ a,y) = B (z1,y) + B'(22,9),
(ll) B’ (xy hn + y2) = B (CB, yl) + B, (3’), y2)v
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(i) B'(x,ay) = aB'(x, y) for a e F (a),
(iv) B'(ax,y) = o(a)B (z, y) for a ¢ F (a) and ¢ the automorphism of
F (&) fixing F and taking « to its conjugate.

It follows that B’ (z, y) = ¢(B’(y, ©)). B’ is called a hermitian form. If,
in addition, thereisno ¢ ¢ 0 in U such that B’ (z, y) = 0 forall y in U, say
B’ is non-degenerate.

Let B’ be a hermitian form on U such that B’ (e;,e_;) = 1for1 <i <k
and B’ (e, ¢;) = 2 and let all other products of these basis vectors be zero.
Then B’ is non-degenerate. We call the group U (U) of linear transforma-
tions on U fixing B’ a unitary group. The subgroup of U(U) consisting of
determinant one transformations is denoted SU (U).

We claim B’ (z, y) = B(z, y) + 8'B(z, By) where we abuse notation by
allowing the same symbols for corresponding vectors in U and in V. We
define 8 = @ — a/2. We repeat some relations defined earlier. Recall @ is a
zero of X* — aX — b.

e = o, a =8+ a/2,
ae; = Iz, g = —g =b+d/4,
—B7e; = T_eiy, o' = aa + b,
af el = 29, ala) = —B + a/2,
e = wi, a(B) = —B,
Beo = ws ac (o) = —b.

Let z be an arbitrary vector in V. Then
T = (Zi#o,~2kgi§2k a; %) + aw + a6 Wy
where the a;, ao, ao € F. Thus in U,
¢ = 2 aci<r {(0ai + amii)e; + (@B7'a2i — B la_@ip)e—i} + (Bas + ap)eo,
Let
Yy = Zlgigk{(b% + ab%—l)ei + (aﬁ_lb*% - Bhlb—(Zi—l))e—i} + (Bb(’) + bo)eo'
Then
B'(z,y) = Yacici { (@2 + 0(0)a2i1) (@B bosi — B b_iyy) .
- B—l (0 (a)a__% - a—(2i—1)) (bm' + abzi—l)} + 2 (ao - 60/0) (Bbo + bo)
= Zlgigk {agi b_ei(1 + 1087 + Griab_@iy (1 — 2aB™)
— b8 M agic1 bgi — B 2 b_iyy + i bai(1 — 107
+ @i bai (;l /+ 1ag™) -|/‘ 3'_10/_(21'—13 bei + Bba_2:baia}
+ 2(“0 bo + gao bo) + 23—1 (gao be — gao bo)
= Bz, y) + 87 (Dici<t {0_in (habzi1 + b2)

+ a_si(—3abs; + bbsia) + azi(%ab—wl‘— b_<2i_1),)
+ a2 (—Fab_giy — bb_zi)} + 2¢ (ao by — aobo).
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We remark that in case = y, (i.e., a; = b; G 5 0), ao = by, ag = b‘;), the
above equation implies B’ (z, ) = B(x, ).

By = Doaci<e {(Bbas + Babsia)ei + (absi — bosix)e—s} + (—gbo + Bbo)co
= < {(((@ — 3a)by + (ax + b —3aa)bsia)e:
+ (0 + 3a0)B 7o — (@ —3a)8 b_qinles) + (—gbs + Bbo)er
Z {(+b2i + %abzi—l)x2i-1 + (bei-—l - %abzi)d&i
+ (Gab—o; — b- (imn)2_2s + (—F0b_@icy — bb_2i)x_i-1}
’
- gbo’wl + bo’lﬂz .
B(x, By) = Zlgigk {a_@i_1y (bai + 3absi1) + a2 (bb2iy — 3abs;)
+ ag (%ab_m' - b—(2i—1)) + Qi —%ab—(zi—n - bb_m‘)}
+ 2a0bo(—g) + 2gao bo .
We are done.

The lines in @ are points in U. ThusifleL, ! = (z, Bz) in V and a non-
identity element in 2l can be written p. s, k € F*. If B(z, ) = 0, pyige
sends z to 2 + kB(z, Bz)z. In this case BB (2, ) = B(z, Bx) and since
B'(z, ) = BBz, Bz) = B7't where t ¢ F, we scc B' (2, ) = —B (z, 2).
Thus when B (z, ) = 0, pyip. sends 2z to 2 — kBB’ (x, 2)xz. If B(z, Bx) = 0,
Pekfs = Ppo,—ko SENAS 2 10 2 — kB (x,2)Bx. In thiscase B(z,2) = B'(x,2) ¢ F.
Since the vectors in z* and in Bz* in V span V (over F) and since p, g, is
a linear transformation in V, p, 1, sends any zin V to z — kBB’ (z, z)x.

If a transformation = on U sends z to z 4 AB’(x, z)x where (x) is isotropic
(i.e., B’ (z, ) = 0and z 5 0) and o (\) = —\/0, we say 7 is a unitary trans-
vection with center (x). Hence the Siegel transformations with axis lines in
L act as unitary transvections on U. We remark that ¢ (\) = —N\if and only
if N = kB, k e F. The set of all unitary transvections on U generates SU (U)
[3, pp. 43-47]. If 7 e J, a subgroup of U (U), we will say (x) is a center for
J. Since 7" = mrr ' for m e U(U) is a unitary transvection with center
(r(x)), elements of a group J send centers to centers. Hence a group which
contains all the unitary transvections with a given center and which is also
transitive on isotropic points will be SU (U).

The groups of root type 1 with axis lines in I correspond to the groups of
all unitary transvections with centers

(), (e—i), (er+e), (&1t ae), 1 <i<k

i

and

(r — (1 + 3a(a — 3a) e + a).

We wish to show that the group H generated by the groups of root type 1
with axis lines in L, when considered as a group of unitary transformations
acting on U is SU (U). Therefore, we have only to show that H is transitive
on the isotropic points of U. This is done in the Appendix.

Since B’ (z, ) = B(x, z), the singular vectors of V correspond to the iso-
tropic vectors of U. Then since SU(U) is transitive on the isotropic vec-
tors of U, for dim U > 3, (see the appendix), we see that H is transitive on
the singular vectors and hence the singular points of V.
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We remark that we have already proved that any group @ satisfying the
hypothesis of this section must contain H. But since H is transitive on the
singular points of V, each singular point is on at least one axis line of H.
Thus G can be no larger than H. We have only to show that each singular
point is on no more than one axis line of H. Suppose each singular point
is on more than one axis line. (Recall H is transitive on singular points,
hence all singular points have the same incidence structure of axis lines
containing them.) Then p,,, e H where y ¢ (21, 2). Then by (1) we can
write y with no z» component. But then p,,,, fixes 25 but not 1. 8o ps, 4
is not linear on U. 8o ps,,, cannot be in H. So each singular point is on ex-
actly one axis line in H.

Thus (for t = dimV > 6;¢ = 4m + 2, v = 2mor ¢t = 4m v = 2m)
H = SU({/2, ¢*) is a subgroup of (V) transitive on the singular points of
¥ and generated by groups of root type 1 in V such that each singular point
of V is on exactly one axis line of H.

8. The system T,

In Sections 8, 9 and 10 we assume that our group G satisfies the hypothesis
of the theorem and in addition the space of axis lines containing a given singu-
lar point is spanned by two linearly independent axis lines perpendicular to
other. For example, the space of axis lines containing (x;) might be spanned
by (@1, x2) and (21, x3), but not by (21, ) and (21, z_s).

We begin by choosing to call our first axis line “(z_1, ;). This is done
so that our notation eventually conforms with Dickson’s [2]. We shall show
that with this assumption, there exists standard basis vectors z; , s, x5, 23
such that (x_1, o), (&2, x_3) (€3, @), {1, T_2) and (x_5, x;) are also axis
lines for G. We call the system of six axis lines thus obtained “T'.

First we note that there must be a singular point P in z2; which is not in
z3. We may call P “(z_3)”. We call the space spanned by the axis lines
containing z_; “Z”. Then z*3 n Z must have dimension 2 and include (2_;).
Say 2535 n Z = {(x_1, y). Thus, since every two-dimensional subspace of Z
containing (x_;) must be an axis line for G by (1), (z_1, y) is an axis line. By
the definition of y, y € (x_1, 23, _3)".

Let the space of axis lines containing (z_3) be Z’. Then {3} n Z’ has two
dimensions and we define

@) n Z' = {2, w).

Since (x_1)* n {2z, w) has dimension 1 or 2, we may assume without loss of
generality that () e 22; (i.e. at least one point on (z, w) must be in (z_1)*).
Then p,_, ., sends (2, 2_3) to (2, 2_3s + 2_1). By (1), (-1, 2) is an axis line.
Thus z = ax_; + by + cx; for some a, b, ce F. But z e (x_3)" since (2, x_3)
is an axis line. Hence ¢ = 0 and z € {x_1, ¥).

If wis also in ()™, then w e (x_, y) by the same reasoning. But this
would imply (2, w) = (x_3,y). Then the space of axis lines containing (z_s) is
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(23, ®_1, ¥), which implies that (x_3, z_;) is an axis line, contradicting the
assumption that the space of axis lines containing (x_;) be singular. Hence
w ¢ (x_1)*, but w e (x5, 2z_3)*. Thus we may call (w) “(21)”’. This yields the
axis line (z_s, 21). Let 9/ be the point on (z_;, ) in z7. Then

Y e{xs, x_1, 21, _3)".

Hence we may name (') “(2,)”’. This yields the axis line {(x_1, ;). Recall
zer_1,y) = (21, ) and z ew™ = 2. Thus (¢) = (2,) and this yields the
line (w_3, z2).
Now suppose {x;, 2') is an axis line where 2’ ¢ (¥1, 2_3). Then 2’ can be
chosen in
<CI§1 s L1 ,%3, 1?_3)*.

Thus p:_, =, sends (21,2’) to {x1 — 23,2’). So (x3,2’)is an axis line. If 2 ex3,
then p,_, .o, sends (21, 2') to (&1 — 22, 2'). But then (x:, 2’) is an axis line
and 2’ is on too many linearly independent axis lines. Thus 2’ ¢ zz. Hence
we may name {2’} “(x_2)”. Thus we obtain the axis, lines (z; , z_») and (z_» ,
23). This completes our system 7 .

9. Elimination of some possibilities under the assumption that the
space of axis lines containing a given point is
3-dimensional and singular

Under the assumptions of Section 8 we shall eliminate all possibilities ex-
cept dim ¥V = 7. We recall we have the following system T of axis lines:
(X1, @3), (X1, T2), (T3, 21), (T3, T2), (21, T2) and (x5, T2).

Let Uy = (w1, €2, 23, T3, T, 2_1) = (To). Suppose x ¢ Uy and is
singular. Suppose {(z, ¥) is an axis linc. Suppose y ¢ Us. Without loss of
generality, say ¥ has an 2_; component. Then p,,,._, sends (x, y) to (x, y 4+ )
where ¢ € (x_1, z3), and p., ._, sends {z, y) to (z, y + s) where s € (x5, )
(s, t ¢ (xs)). Since y has an z_3 component y ¢ (s, £). Thus z is on too many
linearly independent axis lines. Hence y € Us.

We thus build a system 7 isomorphic to T and in Ty.  We can keep build-
ing T'7s until we run out of singular pointsin 77 ,j < 7. We see the index of
V must be a multiple of 3.

Look at the axis line (21 + 21, y) where 2 € (T,) and 1 e (Ty). First,
y e Ti for all 7 > 1. The perpendicular of all the 7'; is our standard basis
space W of dimension 0, 1 or 2 containing no singular vectors. So y must have
a component in (Ty, T1). Say y has an 2 component. Then p,_, ., sends
ytoy + ¢ wheret e (z_s, #s). Thus, by (1), (& + a1, t) is also an axis line.
Further p,r_, 2., (from Th) sends (#1 + 21, 1) to (&1 + z1 — s, 4), 50 is on
too many axis lines. Identical proofs work for any other components except
z1and z1. Thus, y e (x1, 21, W). But y is singular, so y e (2, 21). Take
the point on (z; + 1, ) in z*;. Tt must be (z1). But then (x1) is on too
many axis lines. Therefore, the index of V is 3.

Thus the dimension of V is 6, 7, or 8. Suppose the dimension of V is 6.
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Then (z_; + @, v_1) is an axis line and (z_; + 2, y) is an axis line where
y ¢ (x_1, z) but ¥y e (x_1, 2)*. Hence

Yy = ar_y + bxye + cxs + de_s, a,b,c, d eF.

Since y is singular, cd = 0. Suppose d = 0 and assume (y) is the point on
(1 + 22,y)in21. Theny = bx, + cas where ¢ # 0, because ¢ = 0 implies
y € (&1, x2). Since (x_1, x2) and {(¥_1, x3) are axis lines, (1) implies {x_,
bxy + cxz) is an axis lines. But then again by (1), (x:, bxe + ca3) is an axis
line, contradicting the hypothesis that the space of axis lines containing {x,)
be singular. If ¢ = 0, assume y is the point on (x_; + z,, y) in z_3 for a
similar contradiction. Thus dim V is 7 or 8.

We now show that each point of form {x; — Q(w)z_; + w) withw e W C Uy
ison an axisline with (—az_s + bx,) where a,b e F*. But (—ar_s + b2y ,z_3)
is an axis line in Ty . Hence (—axr_; + bx,) cannot be on axis lines with two
distinet points of form (z; — Q (w)z_y + w). Hence the number of ratios
a/b in F* determines the number of vectors w ¢ W. Thus dim V = 7. Now
suppose {y) is the point on the axis line (x; — Q (w)r—y + w, y) in w™.

Lety =aqym + a2+ gz + asxy + a3 23 + a_z2_3 + w, where
w' ¢ Wand w' ew”. Then p,,_, fixes (1 — Q(w)z_1 + w) and translates
yby —askr_s + kasaz.. By (1), (&1 — Q (w)2r_1 + w) must then be on an
axis line with {(—a_s x_3 + a3 22). Clearly either a_s and a3 are both zero or
neither is zero, because (x_;) and (x:) are already on two axis lines in T .
If they are both zero, then we show a_3; and a; are both non zero. For sup-
pose @z, a_s, a3 and a_; are zero. Then y = ar a1 + a1 21 + w'. Then
@mas = —Qw) and ay — a1 Qw) = 0, s0 ayay = a3 Q(w). Hence
—Qw') = af Q(w). But if Q(w) is a square then —Q (w’) cannot be and
vice-versa, or W would contain singular vectors. So suppose a_; and a; are
not both zero. Then using p,_, .., we see that (#1 — @ (w)z_1 + w) is on an
axis line with (—a, 3 + a_3 r_2). (Again we cannot have just one of a_3 and
ay be zero.) Thus in all cases (x1 — Q(w)x_; + w) is on axis lines with
(—ax_3 + baxs) and (bxs + ax_z) where a and b € F*. Sodim V = 7 as claimed.

10. Existence of a group G with the space of axis lines containing
a given point being 3-dimensional and singular

We have seen in Sections 8 and 9 that if a group exists satisfying the hy-
potheses of the theorem and such that the space of axis lines containing a
given point is 3-dimensional and singular, then dim ¥V = 7 and one can find
a standard basis 21, 3, 22, T, ¥3, 2_3, w by Witt’s theorem such that
the system T, of axis lines occurs, @ (w) = 1 and the axis lines

(@ — 23 — w, 2 — kr_g) and (0 — 23 — w, Ts + K 'x3)
oceur.
Now in our standard basis replace —ka’_; by 2—3 and k'3 by —x5. This
does not change Ty, (i.e., (s, z) = (3, 22) etc.). So we may assume that
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we had chosen basis vectors so that we have the system 7'y and the axis lines
(@1 — o1 — w, 2 + 2-3) and (&1 — 21 — w, T2 — T3).

Call the group generated by the groups of root type 1 with these axis lines G.
We show that G is transitive on the singular points of V. Hence, each singu-
lar point is on at least 2 linearly independent axis lines of G.

We prove this in two parts: First, all singular points of V with a w compo-
nent are in the same orbit under G, and secondly, any singular point without
a w component is in an orbit with a singular point with a w component.

Recall that in Section 7 we proved that = (x_; , z_») and = (@, , 71) generate
a group isomorphic to SU (2, ¢*). In the appendix, we proved SU (2, ¢*) =
“SU (W,)” was transitive on the non-isotropic vectors of W, of a given length.
These non-isotropic vectors correspond to the non-singular vectors in
(@1, *_1, 22, T_o) = “Wy’ since B(x, ) = B'(z, ). Thus, the group gen-
erated by =l and =l, where [ n [;* = {0} is transitive on the non-singular vec-
tors of (I, lp) of a given length.

In particular, the group generated by = (x1, ) and = {(z_;, 2,) is transi-
tive on the non-singular vectors of a given length in (xy , z_1, %2, z—2). Thus
21 — Z_3 18 in the same orbit O under G as ¥, — x5 . Using 2 (z41, 2_3) and
2 (-1, 3), we obtain 3 — 2_3in O as well. We show all vectorsy = 2 a; ;
t=1,2, 38, —1, —2, —3) such that Q(y) = —1 arein O. This is equiva-
lent to showing all singular points with a w component are in the same orbit
under @, since such singular points can be expressed as (£ a; ¢; — w).

If a; a_y # 0, —1, then the group generated by

z <$1 y A2 T2 “l’ a_3 (l}_.a> and 2 <£I?_1 , Qo Lo + a3 (E3>
sends

=2y to eni eyt 622t a2zt G2+ azxs.

If aja; =—1, then a2y + a—32_3€{as 22 + asx;)* and the operation
must be in two stages. First, use the group generated by

20, 022y + a_gx_3)
and

T, myifas®0 or Z{xy,zsifas =0
(or skip this step if @_» = a_3 = 0). This sends

=2 to aammtoearatoesretasas.
Then use the group generated by

2 (@1, 02 22 + a5 X)
and
Sr1,reyifa, #0 or Z{m,zs)ifas #0.

This sends ea 21 + @121 t0o eaxs + o121 + @ a2 + asx; and fixes
a7+ asx_3. Thus,if a; a1 # 0, we get our point. By symmetry we



600 BETTY SALZBERG STARK

can do the same if a2 a_s 5 0 (starting with 2, — x_») orasz a_; > 0 (starting
with 3 — 2_3). But not all of a1 a_1, a3 a_s , and a3 a_; can be zero.

Thus we have all singular points in V' with a w component. Now suppose
x ew™", z singular. We show that the singular points on w* which are on
axis lines with points not in w™ span w*. Then for every x e w*, there is a
singular y ¢ 2", y ew™, y on an axis line | with a point not in w*. But =i
sends z tox + t,t el, ¢ ¢ (y) and we are done.

Look at the points we know are on axis lines with points not in w™*: (x; + 7_s)
and (x_s — x3). Apply pey,z_, t0 22 + 23 and get v, + x5 + 1. Apply
ps_izz and get & + x5 + @1 + 3 — 5. ApplY ps_, .0, 10 22 — @5 and get
Zg — X3+ 1. Apply psy.jand get o — x5 — @ + 3 — 2_3. These
six vectors span w™.

The groups of root type 1 whose axis lines are in Ty (denoted @Q,;: by Dick-
son) are contained in Dickson’s group G. [2]. Further, since ps_;w poyas
where Q(w) = 1 is in G» (Y1 Wea in Dickson’s notation) and sends
(@1, cx_3 + dz_s)in Toto (®1 — 23 — w, c(x_s + %) + d(xz_2 — x3)), we see
G C (@,. Since G is a proper subgroup of ©(V), and since we show in the
remainder of this paper that the singular points can be in no other configura-
tion of axis lines without generating Q(V'), we see that each singular point is
on exactly two linearly independent mutually perpendicular axis lines of G.

The only question remaining is: are there any elements in G, not in G?
Clearly there are no groups of root type 1 in Gz not in . Therefore, suppose
peZ (x,uy € (. Then p is in G, for any 7 e G». But then p" e G, for the
set of all p” such that p ¢ 2 (x, u) and 7 is fixed, is a group of root type 1 in
Gy, hence in G. But if p is any element in G, p = p; - - - p, where each p; is
an element of a group of root type 1 in G. Thus o’ € @ for any p e G and
7 €¢Gy. Hence G is normal in G;. But G, is simple. So G = G .

11. Other possibilities: If the space of axis lines containing ()
is @) ® U, U must be non-degenerate

We show in this section and the next that if G satisfies the hypothesis of
the theorem and has any axis line configuration other than (1) each singular
point on exactly one axis line or (2) the space of axis lines containing a given
point being 3-dimensional and singular, then G = Q(V).

In these last two sections, we use the lemma of Section 5 and equation (1)
of Section 2 extensively.

Let the space of axis lines containing (x1) be denoted U @ (1) where @
indicates that (x1) is linearly independent of U. In this section we show U
must be non-degenerate. First, we shall show that U must be either singular
or non-degenerate.

By Artin [1, p. 116], U = Z ® Z’ where Z is a maximal non-degenerate
subspace of U, and Z’ € Z* and Z’ is singular.

Suppose Z is non-empty, (i.e., U is not singular). Then since H is spanned
by singular vectors, there must be two linearly independent singular vectors
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z and y in U with B (z, y) # 0. Thus, since Z is a maximal non-degenerate
subspace of U, Z must have dimension at least 2. If Z has dimension exactly
2, then Z is spanned by singular vectors. (We know U = (x, y) @ (x, y)
where B (z, y) # 0, ¢ and y are singular and (x, y) is a singular space in
(z, y)*. Tt is not possible that also U = W & W' where W has dimension 2,
W contains no singular vectors and W’ < W™, W’ singular, because W @ W'
cannot be mapped to {(x, ¥y} @ (z, ¥)’ by a member of O(V).)

Since any non-degenerate space of dimension greater than 2 is spanned by
singular vectors, we see that in any case Z is spanned by singular vectors.

Let (x;) be a singular pointinZ. Let (z_2) be a singular point in Z such that
B(zy, ) = 1. Suppose {{x:, {;)} is a set of axis lines containing (z.) such
that the ¢; span a space isomorphic to U. (Since @ is transitive on singular
points in V, such a set must exist.) Choose the ({;) to be the points on
(22, t;)in (x_o)*. Suppose all the ¢; are also in (x;)". Then apply the lemma
to (@, &;) and (w1, x_2) to obtain the (@1, ;) as axis lines (unless #; € (@1)).
But the ¢; are all in (¥, , »)". Thus the ¢; are allin ((z) @ U) n (x2, 2_o)™.
But this has dimension one less than the dimension of U. Hence, some ¢; is
not in x;*.  Without loss of generality, we may name this ¢; “z_;”’ and assume
U has been chosen in z2; (i.e., translate whatever vectors had been chosen in
U by a suitable multiple of 2; , until U is in 2Z;).

Now assume Z’ is also non-empty and (z;) ¢ Z’. Use the lemma with
{1, x3) and (22, x_1) to see that (xs, x) is an axis line. Similarly, if we had
begun with z_, or any other singular vector ¢ in Z (C (z_1)"), we would have
gotten (z3, ¢t 4+ ki) to be an axis line for some k ¢ F. Thus by (1), since 23
is on an axis line with x; , we see that w; is on axis lines with every singular
point in {(x;) @ Z.

Now look at the axis lines (z_;, s;) containing (x_;). Suppose they are all
in (2,)*. Choose the s; to be in (z1)*. Use the lemma with (z_;, s;) and
(x2 , 21) to see the (2, s;) are axis lines. Thus the s; all liein (x, , z_1)* n (the
space of axis lines containing (x,)). This has dimension one less than the
dimension of U. Hence, some s; , say s, , must not be in z;*. Use the lemma
with (sp, z_1) and (x3 , z2) to see that x_ is on an axis line with az; + bz, where
aeF*and beF and spe (axs 4 bxo)*. But (v_y, x) is an axis line, so by
(1), {x_1, x3) is an axis line. Thus (x;) is on axis lines with all singular points
in {¥1) ® Z and with (z_;). But this is a non-degenerate space larger than Z,
contradicting the maximality of Z. Hence, if Z is non-empty, Z’ is empty,
(i.e. U is either singular or non-degenerate).

We now suppose U is singular, (i.e., Z is empty), and the dimension of U
is greater than 2. Since we have disposed of small singular U in previous
section, suppose (@1, x:;) (2 < 7 < j where j > 4) are linearly independent
axis lines containing (x;). Using our standard basis notation, we look at the
axis lines containing (r_»). Let the space of axis lines containing (x_,) be
denoted U,_,y @ {(x—s) and choose U_, to be in z,*. Let

Uw_sy = Ute_y 0 {m)*.
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Then ,Uzz_g) C (21, 22, x_2)" and has dimension at least j — 2. Suppose
Yi € Uz_y . Then using the lemma with (z_,, ¥:) and (21, 22), we see that
the (y;, x1) are axis lines. It is clear that y; ¢ (x1), since (x_, 21) is not an

axis line i.e.
U2w~2> C (@, 2,2, - 2;) 0 (@2)” = (&1, 25, -+ T;).

But (x;)¢ sz_2>. Thus Ugw_z) = @z, """ z;). (We recall that Uzgm)
must be at least this big.) Further if

U(’:-z) = U2$_2) @ (Q)),

(x)isin (x_g, 22, )", 3 < ¢ < 7, but notin {(z:)*. Socall (z) “(z_1)”. Doing
the same for x_; instead of z_, we see {(#_3, ;) are axis lines for 7 = 2 or
4 < ¢ < j and using the lemma with (x_s , z_1) and (2 , x_3), we see (3 , &_1)
is an axis line.

Now let Uz, 4z be in (z_4)* and look at

’
Uprray = Ulaytay 0 (22)™
U:zl+m2) has dimension j — 2 since 22 € Uz, 4+, but s ¢ szl topy.  Let
” ,
U(”l+x2> = U(:v1+a:2) n <x_3>“-.

This has dimension at least j — 3 whichis >1 sincej > 4. If ze U” (11-+22)
(z 5 0), then use the lemma with (21 + 2, 2) and (z_1, z_3) to see (2, z_3)
is an axis line.  (Since (z_s, 21 + 2.) is not an axis line, z ¢ (x_3); since z € (x1)*,
z has no x_; component—thus z ¢ (x_1, 2_3).) Hence

ze(x4,'--,x,-}= Uo.

But every vector in U, is on an axis line with x_, . Hence 2z is on axis lines
with 2_» and with 21 4+ @, , contradicting U singular.

12. If U is non-degenerate then G = Q(V)

We recall that the space of axis lines containing {(z) is U @ (x). We have
shown U must be non-degenerate. Suppose (x1, .) is an axis line. Then
{(x,) is on an axis line with some singular point (y)¢zi. Call (y) “(z_1)”.
Let Uy (where the axis lines containing (1) span U,y ® (21)) be taken in
22y . Then we may write

U(-’H) = <$2,(£__2,Z3,x__3,"' )xkyx—k7W>

using standard basis notation. We remark that &k > 2, since U,y must be
spanned by singular vectors.

Now suppose {(x:, 2z) is an axis line where z ¢ (x1, x_1), 2ea>;. Thus
2z = axy + br_y + w, where we (21, ¥_1, 22, )", a, b € F, and w may or
may not be singular. Using (1), we see ps,,1w € G Where k ¢ F*. But Pz kw
sends

(2, 22) to (x1, 22 — kw — k°Q (w)xs).
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Hence z_; — kw — k’Q (w)as € Ugpy. Therefore, w e Uy, . Thus
Uzyy 0 (21, 22~1>J' = Upy n (22, Z_g)*.

Now suppose {z_s , _1) is also an axis line. Then we can repeat the above
argument used for U, to see that
Ua_y 0 (@1, 20)" = Uy 0 {22, 22)*

and hence Uy = U_yy -
Therefore, we show that (x_,, ®_1) must be an axis line. Let (z_2, y) be
an axis line such that y e (2, z_5)* but y ¢z . Then

Yy = ar + br_y+w whereb # Oand we{x1, r 1, 22, 2_5)*.

So by (1), po_y.kps_+w € G for all k e F*.
First suppose Q (w) # 0. Then note that ps_, kcbe_,+w) sends

(@1, 2) to (x, 2 — k(bz_y + w) — K'Q w)z_s).

Using (1) and (2), we see pz_,,i(—iv—t2em)z_yp € G for all ¢ e F*, and fixes z_s
and z_; and sends w tow — tkB (w, w)z_y . Hence ps_, io_;+u—thBw.w)z_p) € G.
Choose t such that tkB (w, w) = b. Then see p,,1 ¢ G. Hence, by (1) we
see {(@_1, ¥_) is an axis line.

Now suppose Q (w) = 0. Then ps_, kez_;+w) Sends

(1, 2y to (@1, 22 — k(ba_1 + w)).
Using (1) and (2) we see ps_;,—ww € G for k € F*. But Po_y —kw SeDds
<ID_2 ’ xl) to <IE_2 ,y 01 + kw);

so by (1), {z_s, w) is an axis line, so again by (1), (x_s, x_1) is an axis line.

Let T = Upy @ (22, x—2). We show @(T) C G. Let (z, y) be a singu-
lar line in T. If @, or 2, is in {x, y), then (x, y) is an axis line for G. If
(x) is in 7 and {y) (# (z)) is in z2;, then (x,, x) and (z_s, y) are axis lines
and hence by the lemma, (x, ¥) is an axis line for G. So suppose

(2) S (22, x5)"

and (y) (# (2)) is (ax: + br_, +2) where a and b € F* and z € (25, 2_5)*, and
Q(z) = —ab. Then pyyx € G for k ¢ F*, and sends

(X, 25) to {(x,x_s — kz — k'Q (2)2n).
Choose k = —b~". Then
(@os — ky — EQR)x) = (x_a + b2 + ab ') = ).

Hence Q(T) € G. We wish to show Q(T) = G.
Since the axis lines of Q(T) containing a singular point P in T are all the
singular lines of T containing P by Tamagava [10] (.e.

P @ Up= Uy @ (22
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forany Pin T = U, ® (@2, 2_2)), we see no point P in T can be on an axis
line for G with a point outside T'.

Suppose there is a singular point {y) ¢ T*. Let {(x) be a singular point in 7.
Suppose (¢ + ¥, s) is an axis line. Suppose se{(x"n T)" (Cz*). Let
(z') be a singular point in T not inz*. Let (z’, w) (C T) be an axis line con-
taining «’, where (w) is chosen to be that point on (', w) in (z)*. (Hence
wez" n T.) Apply the lemma to (x + y, s) and (2’, w). We see w must
be on an axis line with some point on (x + y, s). But w e T, and no point
on (x + y, s) is in T, contradicting s ¢ (" n T)™ .

Now suppose s e z*, but s ¢ (#" n T)*. Hence there is a singular point (¢)
in (¢* n T) (which is spanned by singular vectors) such that s¢t*. But
(x, t) is an axis line. Use the lemma with (z, t) and (x + v, s) to see that
(z, z + y) is an axis line, which is impossible, since x ¢ T and x + y ¢ T.

Hence s ¢ 2*. But then there is a singular point (') in T n (x, s)*, which
necessarily must be on an axis line with . Apply the lemma to {z, ¢') and
(@ =+ v, s) to see that (¢, # + y) is an axis line, which is impossible since ¢’ ¢ T
andx + ye¢T.

Hence there are no singular points in 7*. So suppose y ¢ T*, Q (y) = 0.
Then we have the axis line

@ — QWaa+y,s).

Choose s in y*. If T* has only one dimension, we are done. So suppose T
has two dimensions (i.e., T* = W = (y, w), a two-dimensional space with no
singular points). If Ui,—ewye_ 4 (taken to be in (y)*) has at least four

dimensions, then U,—q@yz_,+» N Ww)* has at least three dimensions and
hence contains a singular point which is in {y, w) = T™.

So assume the dimension of U is 2 or 3. If the dimension of U is 2, then
dimT =4and V = T @ W has dimension 6 and index 2. Now let

T = <.’L‘1 y L1y X2y (C_2>.

Let W = (y, w) where Q(y) = 1 and (w) = Wny*. Let (&1 — 21 +9,5)
be an axis line. Take sin y*. Then

S = cry + co1 + axe + br_s + w where & + ab = —Q W),
soab # 0. Apply pey.k@ 42, to 8 to get
t= (c — bk)ay + (¢ — bk)_s + (@ + 2ck — k’b)xs + bax_s + w.

If ¢ # 0 choose k = ¢b™. Thent = (¢ + b )ae + br_y + w. Clearly,
te(s). Ifc = 0choosek = —b", get

o= a1+ 21+ (@ — b e + bz, + w.

So without loss of generality we may have assumed ¢ # 0. Now apply
Pz_sk(z4x_p 1O S to get

¢ = (c — ak)ay + (¢ — ak)a_, + axy + (b + 2ck — ak®)2_s + w.
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Let k = a'c,s0t = aws + (0 + o Doy + w. If (& + 24 + y) is not
on too many axis lines, then ¢’ = ds + et,d, e e F. Hence, 1 = d 4+ ¢ (coeff
of w), dc = 0 (coeff of #1). Since ¢ % 0, d = 0, and hence ¢ = 1. Hence
t = ¢ and the coefficient of x, yields a 4+ ¢ = @, contradicting ¢ 5 0 and
ab # 0.

Thus we have only one case left, dim 7" = 5. Let

T = (x1,%1,%,%s,w) wherew € (X1, Z_1, T2, L-2).

Let T* = (y, z). Let (y) be the point on T such that Q(y) = —Q w).
Let (x1 — Q(y)2_1 + v, t) be an axis line called [;. Let the axis line

T + QWra + w, x) = k.

If t ¢ 7, then by the lemma, (s, ) is an axis line where (s) is the point on Z
in ({)*. But then since s e T, t e T, causing a contradiction since ¢ is on an
axis line with a point outside T. Hence L n Iy = &i. If [, and L have no
points in common, the index of V is 4. If they have a point in common,
some point of /; is in 7', also causing a contradiction. This proves our theorem.

Appendix. H = SU(U)

Let a be a zero of X* — aX — b which is irreducible over F, and
let 8 = o — a/2. Let ¢ be the automorphism of F («) sending « to its con-
jugate and preserving F. Let B’ be a hermitian form on the 2k (resp. 2k + 1)
dimensional vector space U over F (a) such that (1) B (ax, y) = ¢(a)B'(z, y)
fora e F(a) and (2) B (e;,e_;) = 1for1l < ¢ < k (and resp B’ (e, &) = 2)
and other products of basis vectors are 0.

We show here that the group H generated by those transvections with
centers

(es), {e—s), (er+e:), (er + ey 1 <5 <k and (&2 — (1 + 2ala — 3a) Ve + )

is transitive on the isotropic points of U. This is sufficient to show
H = SU(U) by [3, pp. 43-47].

Let dim U = n. We prove that H is transitive on the isotropic points
first for n = 2 and 3, and then we use induction on n. For n = 2, ae; + be_;
is isotropic only if @ = 0 or ba™" = kB where k ¢ F. A unitary transvection
centered at (e_1) sends (e1) to {ex -+ kBe_1). Similarly a unitary transvection
centered at (e;) sends

<€_1> to (6_1 + kﬁ61> = (tﬁe_l + 61)

fort = k8% ¢ F. So all isotropic points are in the same orbit.

For n = 3 we first show that SU (W) where Wy has dimension 2 s transitive
on mon-isotropic vectors of a given length. Let ae; -+ be_; where a, b e F (a)*
be an arbitrary non-isotropic vector in Wy. Then a = kgb (k ¢ F'). Suppose
+in U(W,) fixes aey + be_y. We show 7 can have arbitrary determinant.

Suppose 7 sends e; to the isotropic vector ce; + de_y. Then since

cer + de_y = (¢ — dab™ ey + db™ (aer + bey),
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we seedet r = ¢ — dab™". Since
B’ (7 (e1), aer + be_y) = B'(er, aex + be_y),

we obtain b = o(c)b 4+ o(d)a. Since ce; + de_; is isotropic, either (1)
¢ = 0,0r (2) d = kBc where k ¢ F. In case (1),

det 7 = —da/b = —d/o(d).
In case (2),det 7 = ¢(1 — kBa/b) and b = o (c)b(1 — kBa/b) yield
det 7 = ¢/a(c).

But the determinant y of any element in the unitary group is a unit, (i.e.,
yo (y) = 1), and any unit can be written in this form. Forlety = yd + o (d).
Ify % —o(d)/d, then v 5% 0and y = v/o(v). So a proper choice of ¢and d
yields any determinant.

By Witt’s theorem [4, p. 21], there is an element ¢’ in U (W,) which sends
any non-singular vector to any other vector of the same length. If
o () =y (B (x,2) # 0) and det ¢’ = s # 1, then, by the above, there is a
7 such that 7o’ (x) = y and 70’ ¢ SU(W,).

Now any isotropic point in U (dim 3) is either of form (¢, + ) where z
is a vector of length —2 in Wy, or else is already in W,. We have seen that
all the isotropic points in W, are centers for H since the unitary transvections
centered at (e:) and {e_;) generate SU (W,). But

@ — (1 + Zala — 2a) ey + e)

is also a center for H. So we are done for U 3-dimensional.

We are now ready for the induction step. Suppose we have SU (T') plus
the unitary transvections centered at (&1 -+ ex), (&1 + aex), (ex) and {(e_x)
where the dimension of T'is 2k — 1 or 2k — 2. Let 71 be a unitary transvec-
tion with center (e_x); let 75 be a unitary transvection with center (e_1); let
73 be a unitary transvection with center (e; + aex). Then the product 73 72 71
sends e; + e, to a vector ¢ + y such that

zeler,en), Yeler,en)

and B (x,x) = b = —B'(y,y) ¥ 0. But by the argument above, SU(T) is
transitive on non-singular vectors of a given length when dim 7' > 2. So
we have all vectors ' + y’ such that 2’ e (e, e_;)" (where * is with respect
toB') y eler,e_w), B(@,2) =b= —B'(y,y). Butthen we have repre-
sentatives of all centers of form

<x + y>7 T e (61;, e—k’>L’ Y e <ek) e-k>’

2 and y non-isotropic.
We have only to obtain the centers of form

<$l) + y); T € <ek ) e—k>J.’ Y e <ek 3 6—k>)
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x and y isotropic. The trouble here is that SU (W,) is not transitive on
isotropic vectors when dim W, = 2

If the dimension of U is > 3, then SU (U) is transitive on the isotropic
vectors of U. For by Witt’s theorem the group of unitary transformations
on U, U(U) is transitive on the isotropic vectors of U. Suppose 7 ¢ U (U)
and sends the isotropic vector ¥ to z in U. Then one can find a " ¢ U (U)
fixing vectorwise a 2-dimensional non-degenerate space containing z and with
determinant = (det 7)™". Then 7'7 sends y to z and has determinant 1.
We know we have any center of form (¢ + y) ,x and y non-isotropic « € {1 , e_1),
Y € {ex, e_r). Say

x = ae_; + Bla + bles and y = be_y + O + a)e,
where a, b ¢ F () and ab™ ¢ F. If 7 sends z in U to
z — ﬁB,(el + e, Z)(61 + ek)r

then 7 sends « 4+ y to ae_; + be_ . For fixed a, be_j runs through representa-
tives of all but one of the orbits of singular vectors under SU (W,) where
Wy = {ex, e_x). This orbit is the one where ab™' ¢ F. Let 71 send 2 to

2+ g BB’ (Ber + e_1,2) (Ber + e_1).

Let 75 send 2 to z + g BB’ (Ber + e_x, 2) (Bex + e_;). Then 7,71 sends
e + e to

g Be_r + g Bk € {ae_s + ae_y).
So we are done.
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