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1. Introduction

The groups of the Lie type of Chewlley, Tits, Steinberg, Suzuki nd Ree
re generated by one-prmeter subgroups, ech isomorphic to the dditive
group of the field F in question. A standard notation for such a one-prme-
ter subgroup is , x, (t) r is root nd e F}.

We sy that H is "group of root type" in G if H is subgroup of a group G
of Lie type such that a(H) ,,. for some root r nd some utomorphism
aof G.
We will cM1 subgroup Go of G n "RT group" if Go is generated by groups

of root type in G. In this pper we will classify certain RT subgroups of
f (V), the commutator subgroup of finite orthogonl group.

Several results on RT groups hve lredy ppered. For example, Jck
McLaughlin [4], [5] and Harriet Polltsek [6] hve studied RT subgroups of
SL (V), V finite dimensional over finite field.
The recent work of 5ohn Thompson [11] on quadratic pirs is lso related

to the study of RT groups. Thompson defines quadratic pir to be finite
non-trivial group G and an F G module M such that G acts faithfully and
irreducibly on M and G (Q} where

Q {geG-{1}i/(g- 1) 0}.

Thompson first proves that if p >_ 5 and (G, M) is a quadratic pair then there
exist quadratic pairs (G, M) such that

(1) MM1 (R) (R) M,,
(2) G is a central product of the G’s
(3) for all i, G/Z (G) is simple.

Thompson’s main result is a classification of the quadratic pairs (G, M) with
p

_
5 such that G/Z (G) is simple. Specifically, he shows that G/Z (G) must

then be isomorphic to one of the following"

A (q), :A. (q),
(,) D,,(q), 2D,,(q),

F4 (q E6 (q

where q pe for some e > 0.
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B,(q), C,(q),
D4(q), G2(q),
E6(q), ET(q),
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It turns out that many groups of root type have a natural representation
in which the elements of the group are represented as linear maps with quad-
ratic minimal polynomial. For example, the groups of root type in SL (V)
mentioned above, and the groups of "root type I" (which we define below)
in 2 (V) have such a representation.

In fact, for all the quadratic pairs (G, M) for p

_
5, G is an RT group, and

this fact arises in Thompson’s proof. However, not all RT groups have
representations as quadratic pairs. For example, PSL2(F) is isomorphic
to (V) for V three dimensional over F, and can be generated by two groups
of "root type 2" (defined below) in (V). (See [8] for a proof.) However,
every group G of a quadratic pair (G, M) for p >_ 5 must contain
by Thompson’s proof [11]. Thus PSL (F) is an RT group, but has no rep-
resentation as a quadratic pair. Another example is E8 (q) since it is a group
of Lie type which does not appear on Thompson’s list.
In this paper we classify the subgroups G of 2 (V) (for V finite dimensional

over a finite field F of odd characteristic, IF! q) which are transitive on
the singular one dimensional subspaces of V and generated by groups of
"root type 1". We find

(1)
(2)
(3)

G/Z (G) A,, (q), unitary groups,
G G/Z (G) G(q), or
a (v).

We recall t(V)/Z (gt(V)) B,, (q), D,, (q) or D, (q). Since (G, V) is a
quadratic pair by the hypothesis of our theorem, G must be a central product
of groups G such that Gi/Z (G) is on Thompson’s list (.). However it is
not trivial to determine which of the groups on Thompson’s list (.) satisfy
our hypothesis. In fact, we do not use Thompson’s methods or results at all.
Instead, we rely on the geometry of V for a completely independent proof.

In a previous paper [8], the author has determined the subgroups G of
(V) which are transitive on the singular one-dimensional subspaces of V
and generated by groups of root type, but not solely by groups of root type 1.
These are:

(1) G---As,dimV 4, index 1, F
(2) G G960, the semi-direct product of an elementary abelian group of

order 16 by As, F F3 and dim V 5,
(3) G= t(V),dimV= 3or4, indexV= 1.

(We remark that if the index of V is greater than 1, (V) is generated solely
by groups of root type 1.)
Thus this paper combined with [8] yields a determination of all RT sub-

groups of t(V) which are transitive on the one-dimensional singular sub
spaces of V.
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2. Terminology and restatement of theorem

Let V be a finite dimensional vector space over finite field of characteristic
not 2. Let B be symmetric bilinear form on V. B determines a quadratic
form Q on V by B (x, x) 2Q (x). In addition, suppose there is no x 0
in V such thst B (x, y) 0 for all y in V. Then we sy B is nondegenerate
on V. In this cse, the group of linear transformations on V preserving B is
called the orthogonal group (with respect to B), nd is denoted 0 (V). The
commutator subgroup of 0 (V) is denoted ft (V).

If for all x e S # {0}, S __c V, B (x, x) 0, we say S is singular. We remart
that the condition S {0} is non standard. Our "singular vectors" and "singu-
lar subspaces" are always non-zero. If a vector u is non-zero and not singular,
it is non-singular. This is standard. Further, we use projective terminology.
Thus, a one-dimensional subspace is a point and a two dimensional subspace is a
line. Let ( } denote "subspace generated by". Thus (x} is the point
generated by the vector x.
The set of vectors x such that B (x, y) 0 for all y e Y

_
V is denoted Y’.

If X __c Y we say X is perpendicular to Y. Since B is bilinear, this is equiva-
lent to saying (X) is perpendicular to (Y). Since B is symmetric, X __c Y"
implies Y

_
X.

Now let x be singular vector (hence non-zero by definition), and let u be
in x’. Define linear transformation p, as follows" for z e x’, p. sends z
to z + B (z, u)x. This transformation preserves B on the (n 1)-dimen-
sional space x’. (Note that in cse u e (x), p, acts as the identity on x’.)
By Witt’s theorem (see, for example, Artin [1, p. 121]), every linear transfor-
mation which preserves B on a subspace of V can be extended to a member of
0 (V). Tamagawa [10] shows that the extension p of p. to a member of
0 (V) is unique. In fact, if y is a singular vector such that B (y, u) 0 and
B (x, y) 1 (when u (x), such vectors always exist) then p sends y to y
Q (u)x u. We abuse notation by allowing p. to stand for its extension, to
a member of 0 (V). px., is called a Siegel transformation.

Since, as direct sonsequence of its definition,

(i)
we see that the set

singular, u e x’, u (x>; x, u fixed, k e F}

is group isomorphic to the additive group of F. If u is singular we sy 2

is a group of root type 1. If u is non-singular we say 2: is a group of root
type 2. The groups of root type in t (V) as defined above have this form.
One can see this by using the explicit representations for the one-parameter
groups of B. and D given in [8], plus the paper of Steinberg [10] defining
D. There will be no need, however, to refer to the Chevalley structure in
the proof of our theorem. Instead, we use only the properties of Siegel
transformations.
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In order to have a group of root type 1, we must have a singular line (x, u}.
The dimension of a maximal singular subspace of V is called the index of V.
Thus we must have index at least 2, and since the index of V is at most half
the dimension (see Artin, [1, p. 143-144), the dimension of V is at least 4.
In this case (x)" is always spanned by singular vectors (again see Artin [1, p.
143-144]). Say (x} (yl, y2, y), where the yi are singular. Then if
u (x),
So

px,u Px, aiy Hl_i_k Px,aiy

by (1). Thus every Siegel transformation is a finite product of Siegel trans-
formations p. with singular y. Hence the subgroup of 0 (V) generated by
all groups of root type 1 contains all p.. Tamagwa [10] proves that the
p. generate (V) and that (V) is transitive on the singular points of V.

Let F q, dimension V and index V . We restate our

TEonE. Let G be a subgroup of (V) generated by grips of root type 1
and transitive of the singular points of V. Then either

(1) G G (q), simple groups discovered by Dickson in 1901 [2],
(2) G SU(t/2, q), groups of determinant one linear transformations

preserving a hermitian form on a vector space of dimension t/2 over a field ithq elements (see, for example, [3, p. 12]) and 4m 2, 2m, m 1 or
4m, 2m, m > 1, or

(3) G=(V).

3. Correspondence between groups of root type and
singular lines; axis lines

We first show that groups of root type 1 are in one to one correspondence
th the singular lines of V. It is tribal that group of root type 1 deter-
mines singular line. Let be a singular line. Define Zl to be
{p. (x, u)} u {1}. In order to prove that Z1 is a group of root type 1,
we need only show that if (x, u), p, po,0 for some ed x0, u0 such

Fthatl (x0 u0) andk e

To do this, we observe that for any Siegel transformation

(2) p.+ p., k e F,

and

(3) p, p,, c

If, in addition, u is sinlar, then

() p, p_,.

One need only show that both sides of (2), (3), and (4) agree on x, since
p. has a unique extension from its representation on x. For example, let
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us prove (4). If z . (x, u)’, p,. (z) p_,.x(z) z. There is a singular
Z

.
vectorzl in x" such that B(zl, -u) 1. (Takesomez’ inx’, not mu ,then

F*z l(z’ -f- tu) for some e F and k e ). Recall that when Tamagawa
proves the uniqueness of the extension of p,,t from its action on s to its
action on V, he shows that if y is a singular vector such that B (y, s) 1 and
B (y, t) 0, then p,.t sends y to y Q (t)s. In this case our "t" is singu-
lar, so Q (t) 0. Thus

p_. (z) zl x zl + B (z, u) x px, (z).

Since x" ((x, u)’, z), we are done.
Now let x axo buo u a’xo -t b’uo where a, b, a’, b’ F. If b 0, we

apply (2) to obtain Pao+bo.a’o+’, Paxo-l-buo,txo where a bab-. Since
(x, u), u (x) and 0. Hence we can apply (4) to get pa0+b.0

P-o.o+-o If b 0, one begins with this form. Now apply (2) and (3)
for the desired result.

If 21

_
G we say is an axis line of G. Since our groups G are to be tran-

sitive on singular points, and since for r e 0 (V),

(proved by showing both sides agree on r(x)), each singular point lies on
the same geometric configuration of axis lines for G. For example, suppose
(x, y) and (x, z) are axis lines of G and B (z, y) k, k e F. Then for any
r e G, (r (x), r (y)) and (r (x), r (z)) are axis lines of G and B (r (z), r (y)) k.
In particular, we note that (5) implies that any element r of a group G sends
axis lines of G to axis lines of G.

4. Standard basis notation; The group G generated by
21 and Z/0 where 1 lo" {0}

We use a standard basis notation"

V (x, _) (x, x_) (x, x_) $ W

where the x e W, W containr no singular vectors, B(x, x_) 1, and all
other products of the x are 0. W must have dimension 0, 1 or 2. Artin
[1, p. 143-144] proves that V can always be represented in this way.

Witt’s theorem implies that if U, U are non-zero vectors in V with
the same multiplication table (B (U, U.)) as some subset of a standard
basis, the UI,..., Ut can be extended to a standard basis. We use the
notation {x, x_, x-/ to denote set of vectors having the same mul-
tiplication table as the corresponding vectors of a standard basis.
We begin by investigating the group G generated by Zl and El0 where

lnl0" {0}.
The freedom allowed us by Witt’s theorem for using the standard basis

notation enables us to represent by (x, x) and l0 by (x_, x_). Then
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sends
Xl

Therefore 2l and 210 generate a group G whose axis lines include

for k e F.

and

Further, the sets of singular points

02 (x_.}, (xl -t- kx-2} k e F}

are fixed by 2l and Z/0, hence by G. We show that the axis lines above are
the only ones for G. Let U (1, 10). G fixes U" vectorwise since its genera-
tors fix U" vectorwise. Suppose there is an axis line of G containing

Uvector y which does not lie in U, i.e. y w -t- v where w e U, v e and
v 0. Since U is non-degenerate [1], there is an x in U such that B(x, v) O.
Choose (z) to be the point on in (x). (We recall that x has dimension
n 1, hence dim(xn W) dimWif W x" or (dimW) 1other-
wise. In particular x n (a line l) has dimension 1 or 2, i.e. for any point
there is always a (non-zero) point (y) on a given line such that y e

Then p, does not fix x, contradicting v 0. Thus all axis lines of G
must lie in U. The only other singular lines in U are (x_l, x.) and
(xl kx2, x_2 -t" ]cx_l) ]c e F. But no group of root type 1 with these axis
lines fixes 01 and 0.

Since the axis lines of G do not intersect, there are (q -t- 1)2 points of U on
these axis lines. But this is the number of singular points in U. So each
singular point of U is on one axis line of G. If we consider V U we have
exhibited a subgroup of t (V) generated by two groups of root type 1, where
each singular point is on exactly one axis line of G, but G is not transitive on
the singular points of V.

In fact, as we show in section 7, G is isomorphic to SU (2, q), the deter-
minate one unitary group in 2 dimensions over a field of q2 elements.

5. The lemma on the group generated by Zl and 21
where l n l is a point

The following lemma is a very important tool in the remainder of this paper.

LEMMA. If 11 and l are axis lines for a group Go such that 11 n l. {0} and
the dimension of l n l" is one, i.e., l n l." P, a singular point, then P lies on
two independent axis lines of Go, namely ll and (P, R), where R is the point on

Proof. Using standard basis notation, let 11 (Xl, X.}, and let P
Thus Xl t l’, but x2 e 12". Let (y} be the point on l. in Xl Since all of/2 is
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perpendicular to x2, y e 11". Thus (y) R, and we may name y "x3". If
(x} is a point on 12 different from (x3}, then x e (x2, x}’- but x (xl}. Hence
we may name (x) "(x_}". But px3,_l sends (x2, x} to (x, Xl -- x}. We
note that by (1), 0,-1 0,(1+,) p,,,/ e F. Thus (x., x} (P,
is an axis line of Go as claimed.

Remark. In general, (1) of Section 2 implies that if (x, y} and (x, z) are
axis lines for G, so is (x, y -- kz} for any/c e F. In particular, if (x, y) and
(x, y -- z} are axis lines, so is (x, y + z y) (x, z}.

6. Elimination of certain possibilities for dimension and index
of V under the assumption of one axis line

per singular point

In 6 nd 7 we ssume G stisfies the hypothesis of the theorem nd in
addition each singular point is on exactly one axis line. The lemma of 5 im-
plies that under this assumption, if l and 12 are axis lines of G, l a l l or
(0}. In particular, if l is an axis line of G, and P is a point in li then the
axis line of G containing P must lie in li (Otherwise a l P.) Further,
if R is a point not in li and Q is the point on l in R’, then if the axis line
containing R is (R, T}, T Q’-. (Otherwise l. a Q) This information
can be extensively exploited.
Suppose lo (x, x.} is an axis line for G. Since B is non-degenerate, there

is a point (x_}, x_ x, x_ e x. Let (x_, y} be the axis line containing
(x_}, and choose (y} to be the point on in x. By the above argument, y
must not lie in x Hence we may name y " ".b

In 4, we saw that the group H generated by 2l and 210 is not transitive on
the singular points of U (l, 10}, but that every singular point of U is on an
axis line of H. So if H is a subgroup of H0, a group generated by groups of
root type 1 in 4-dimensional space (index two), then either H H0 and H0
is not transitive on singular points, or H is a proper subgroup of H0 and there
are axis lines of Ho which are not axis lines of H. Thus H0 would have singular
points on more than one axis line. Hence for any group satisfying the
hypothesis of this section, the dimension of V is greater than 4.
Now we proceed by induction. Suppose we have a system S of axis lines

Let U (S}. Let (y} be a singular point in U’. Then the axis line con-
ruining (y} is perpendicular o each line in S, so U. Using Witt’s
theorem, we nme "(x.+, x+)". Then by Witt’s heorem, since B is
non-degenerate, there is a point we may cull (x_(:+.)} which is perpendicular
to U nd to (x+) but not to (x+}. Then if l0 (x_(+), y} is the axis
line of G containing x_(.+) where (y} is chosen to be in x+, we see
must be in U and in x_(+) and (y} must not be in x+ Hence we may
name (y} "(x_(+))". Thus we obtain a system S+. Since by Witt’s
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theorem, every singular space is contained in a maximal singular space of
dimension the index of V, we see that the index of V cannot be odd.
Now suppose we have even index and have system Sk of axis lines as above.

Suppose the dimension of V is 4] + 1 (i.e., the dimension of the W of standard
basis notation is one) Let W (z} where Q(z) g e Then

is a singular point perpendicular to every axis line in S except (x, x) and
(x_, x_:). Hence the axis line containing (y) must lie in (x, x, x_,
x_, z). Let (x) be the point on in z. Then (x) is in (x, x, x_, x_).
But by 4, we know every singular point in this space is already on an axis
line in the group generated by Z(x, x) and Z(x_, x_:). Hence the dimen-
sion of V cannot be 4 W 1.

7. The existence of a group with each singular point
on one axis line

The only remaining possibilities are dim V 4, index 2, k > 1; or
dim V 4k + 2, index 2k, k 1. We show that in these cases a group G
satisfying the hypothesis of the theorem and with each singular point on one
axis line exists.
We have a system S of axis lines as above. Suppose dim V 8. Let

(x + x y} be an axis line. Let (y} be the point on (x + x,y}inx_
Then since x: + x is in

so is y, i.e. y e (x, x, xa, x, W} where W has dimension 0 or 2 and contains
no singular vectors. Since y must be singular,

y

(XlSince y e x_:, y e x x). Since

(x + x, y) (x_i, x-} and x_le (x + x),
x_ t y, i.e. y has an x component. Similarly, y has an xa component. Hence,

F*(y} (xl + axa + bx} where a e and b e F.
Rewrite ax + bx4 as "x". Then (x, x} (x’, x} nd if

--1X’- --a-ibx_a + x_ (a 0) and x_a a x_a,

then (x_a, x_} (x’_a, x’_} and the relationships among xa, x, x_ and x_
are exactly those among x, x, x_a and x’_. So without loss of generality
we may assume (x + x4, x + x} is an axis line for G. But we cannot juggle
things this way twice.
We my suppose (x + x, xi + ax + bx} is an axis line for G. (This

time b 0.) The product p_._
sendsxato (1 tl)xaand xto (1 tk)x. (Assume1 tk 0.) Let
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1 t/ r and apply r to (x2 + xd, xl x3) to obtain

(x + rx, x + rx) l.

Similarly if 1 t/ j, r sends

(x. -t- x3, x -t- ax + bxd) to (x. -t-jxa, xl -t- ajxa + bjx) l.

On l there is a point
(x. -t- mx -1- rx -t- mrxa}.

On l there is a point
(x. + mx -t-jxa -t- majxa -t- mbjx).

Let mbj r and j -t- maj mr. Eliminating m in these two equations we
obtain b -t- (r/j)a (r/j). Thus if b + Xa X has a solution in F,
then these two distinct axis lines, l and l., contain a common point. Hence,
X aX b is irreducible in F.
Now suppose dim V _> 12. As above, we get axis lines

(x. -t- x, x + x} and

whereX- a’X- b 0 is irreducible in F. We showa’ aandb b.
First, note p_,_ sends

(x + x, x + x) to (x + x_ + x, x.
and sends

(Xl -t" axa - bxd, x -t- x} to (x

Then the product p_,_ p_,_ p+_+,-_+x sends

(X2 "- X6, XI "- X5)
to

(x_ x + x_ + x + x_, --x_ x x_ + x x_}

and Px+x_+axa+bxt,x2--x_/xa sends

(x + xa x -t-" a’x -at. b’x}
to

(X--1 X3 "Jr- X5, X--2 ax3 bx4 -Jr- a’x + b’x} l.

Since (x_ x -t- xa} is in , the second vector of 11 must also be in . So
a a’ andb b’.
Suppose dimV 4n--2. Hence dimW 2andW (w,w}andwe

may set Q (w) 1, Q (w:) g where -g is a non-square and B (w, w) 0
[1]. The singular point (x2 x_. - Wl} lies on an axis line with a point
(y}. Say (y} is the point on in wi. Then

(y} (ex -nt- ex_ -t- cxl -t- dX_l " V02}

where c d 0 since c -t- c d -g, a non-square. Let y be that member of
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(y} whose xl coefficient is 1, i.e.
--1 --1 --1y ec x. -t- ec-x-2 xl dc x_ c w2.

-1 andQ(w) c-g. Letc- g’.Let e ec-1, d’ dc-1, w c w, g
ThenifdimV 10, e’ -a/2andd’ b. (Hence-g’ a/4+b.)

Proof. The product p_,_,_ p__+.+,_+,_+,+, sends

to

dx2 d x_ d’w + d’x_}x + + + x
Further p_,,_ sends

(x + x, x + ax +
to

(x + d’x_ + x, x d’x_ + ax + bx} h.

But ( + d’x_ + xa) is in l, so the second vector of l must also be in l.
This yields the desired equations.
Suppose now that eitherm V 8, defining a and b, or if m V 6 and
( x_ + w, x + d’x_ + e x + e’x_ + w} is an axis le, define a
to be -2e and b to be d’. Then let a be a root of X aX b. We emd
V onto a vector space U of dimension t/2 (where dim V t) over F (a) by
the follong equations"

(a- a/2)e_ gx_(_) where -g a/4 + b (a a/2)

e_i x_:i + (a/2)x_(_)

eo w, (a- a/2)eo w when dimV=4k+2.

Then each of the follong lines in V is a "point" in U (i.e. a one-dimensional
subspace in the vector space U over F (a))"

(x, x:), (x_, x),
(x_, x_), ..., (x_(_),
(x + x, x + x), (x + x_, x +
(x + ax + bx, x + x), ..., (x + ax_ + bx, x + x:_),
(x: x_ + w, x + bx_ (a/2)x_ (a/2)x + w}.

Call this system of lines "L".
For the remainder of this section some familiarity with unitary groups is

needed and we refer the reader to Dieudonn [3].
Let B’ be a map from U X U to F (a) with the following properties"

(i) B’ (x, + x, y) B’ (x, y) + B’ (x, y),
(ii) B’ (x, y + y:) B’ (x, y) + B’ (x, y),
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(iii) B’ (x, ay) aB’ (x, y) for a e F (a),
(iv) B’ (ax, y) a(a)B’ (x, y) for a e F(a) and the automorphism of

F (a) fixing F and taking a to its conjugate.

It follows that B’ (x, y) z(B’ (y, x)). B’ is called a hermitian form. If,
in addition, there is no x 0 in U such that B’ (x, y) 0 for all y in U, say
B’ is non-degenerate.

Let B’ be a hermitian form on U such that B’ (ei, e_i) 1 for 1 __< i _< k
and B’ (e0, e0) 2 and let all other products of these basis vectors be zero.
Then B’ is non-degenerate. We call the group U (U) of linear transforma-
tions on U fixing B’ a unitary group. The subgroup of U (U) consisting of
determinant one transformations is denoted SU (U).
We claim B’ (x, y) B (x, y) -/-IB (x, y) where we abuse notation by

allowing the same symbols for corresponding vectors in U and in V. We
define a a/2. We repeat some relations defined earlier. Recall a is a
zero ofX aX b.

ei x2i, a + a/2,

1ae x2i-1, --g b -t a2/4,
--1-- e_ x-(i-1), a aa + b,

a-le_i X_2, z(a) -- + a/2,

eo w, () -,
eo w, () -b.

Let x be n rbitrry vector in V. Then

x (io._ek<i<_kaixi) - aowl + aow

where the ai, ao, ao e F. Thus in U,

x .,<_<_ l(a + aa_)e + (a-la_i- a_(i_))e_} + (ao + ao)eo.

Let

y {(b + ab_)e+ (a b_- b_(_l))e_} + (b’0 + bo)eo"
Then

B’(x, y) (a + (a)a_) (a-b_ -b_(_))- ((a)a_ a_(_)) (bi + ab_)} + 2(a0- a)(b + b0)
{a b_(1 + a-) + ai_ b_(_) (1 a-)

b --1 --1

_
b_ a b_(i-1) + a_i b (1 a-)

+ a_(_) b_l(1 + a-1) + -la_(_) b + ba_; b_}
+ 2(ao bo + ga b) + 2-(ga bo gao b)
B(x, y) + -1( [a_(_)(ab_ + b)
+ a_(-ab + bb_) + a(ab_ b_(_))
+ a_(-ab_(_) bb_) + 2g (a bo ao bo).
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We remark that in case x y, (i.e., ai bi (i 0), ao bo, ao bo), the
above equation implies B’ (x, x) B (x, x).

fly Zl<_i<_lo l(b -+- ab_)c + (ab_: b_ei_l)e_} + (-gb + bo)co

b_e- ( 1 -1+ ((b + a) - b’a) b_(_))e_} + (--g0 + bo)eo
{(+b + ab_)x_ + (bb,_, ab)x

+ (ab_, b_ (_))x_: + (_1ab_(_) bb_ x_(_)
bg ow+bow.

B(x, y) 1i {a_(2i_l)(b2i + ab2i_) + a_2i(bb2i_i ab2i)
+ a:,(ab_- b_(ei_i)) + aei_(-ab_(ei_i) bb_)
+ o b’o (-) + ea bo.

We are done.
The lines in Q are points in U. Thus if e L, (x, fix} in V and a non-

F*identity element in Z1 can be written p,,
sends z to z + kB(z, x)x. In this case B’(z, x) B(z, fix) and since
B(z, x) -B(z, x) -t where eF, we see B’(z, x) -B’(x, z).
Thus when B (z, x) 0, p, sends z to z B’ (x, z)x. If B (z, x) 0,
p,a p,_ sends z to z kB (x, z)x. In this case B (x, z) B’ (x, z) F.
Since the vectors in x nd in x in V span V (over F) and since p, is
a linear transformation in V, p, sends any z in V to z kB (x, z)x.

If transformation r on U sends z to z kB’ (x, z)x where (x} is isotropic
(i.e., B’ (x, x) 0 and x 0) and () -/0, we sy is unitary trans-
vection with center (x}. Hence the Siegel transformations with axis lines in
L act as unitary trnsvections on U. We remark that (k) -k if nd only
if k k, k e F. The set of all unitary tmnsvections on U generates SU (U)
[3, pp. 43-47]. If r e J, a subgroup of U (U), we will say (x} is a center for
J. Since r r for e U(U) is unitary transvection with center
((x) }, elements of group J send centers to centers. Hence a group which
contains all the unitary transvections with a given center and which is also
transitive on isotropic points will be SU (U).
The groups of root type 1 with axis lines in L correspond to the groups of

all unitary transvections with centers

and
(e (1 + 1/2a (c 1/2a)-l) 6--1 + 00).

We wish to show that the group H generated by the groups of root type 1
with axis lines in L, when considered as a group of unitary transformations
acting on U is SU (U). Therefore, we have only to show that H is transitive
on the isotropic points of U. This is done in the Appendix.

Since B (x, x) B (x, x), the singular vectors of V correspond to the iso-
tropic vectors of U. Then since SU(U) is transitive on the isotropic vec-
tors of U, for dim U _> 3, (see the appendix), we see that H is transitive on
the singular vectors and hence the singular points of V.
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We remark that we have already proved that any group G satisfying the
hypothesis of this section must contain H. But since H is transitive on the
singular points of V, each singular point is on at least one axis line of H.
Thus G can be no larger than H. We have only to show that each singular
point is on no more than one axis line of H. Suppose each singular point
is on more than one axis line. (Recall H is transitive on singular points,
hence all singular points have the same incidence structure of axis lines
containing them.) Then oxl, e H where y (xl, x2). Then by (1) we can
write y with no x. component. But then Pxl. fixes x_ but not x_l. So
is not linear on U. So ol,y cannot be in H. So each singular point is on ex-
actly one axis line in H.
Thus (for dimV >_ 6; 4m ’t- 2, 2m or 4m 2m)

H SU (t/2, q2) is a subgroup of ft (V) transitive on the singular points of
V and generated by groups of root type 1 in V such that each singular point
of V is on exactly one axis line of H.

8. The system To
In Sections 8, 9 and 10 we assume that our group G satisfies the hypothesis

of the theorem and in addition the space of axis lines containing a given singu-
lar point is spanned by two linearly independent axis lines perpendicular to
other. For example, the space of axis lines containing (xl} might be spanned
by (xl, x} and (x, xs}, but not by (x, x.} and (x, x_.}.
We begin by choosing to call our first axis line "(x_, xs}". This is done

so that our notation eventually conforms with Dickson’s [2]. We shall show
that with this assumption, there exists standard basis vectors xl, x., x_.,
such that (x_, x2}, (x., x_3} (x_s, x}, (x__, x_.} and (x_, xs} are also axis
lines for G. We call the system of six axis lines thus obtained "To".

First we note that there must be a singular point P in x_ which is not in
x. We may call P "(x_s)". We call the space spanned by the axis lines
containing x_ "Z" Then x-s n Z must have dimension 2 and include
Say x+/-s n Z (x_l, y}. Thus, since every two-dimensional subspace of Z
containing (x_l} must be an axis line for G by (1), (X_l, y} is an axis line. By
the definition of y, y e (x_, xs,

Let the space of axis lines containing (x_s} be Z’. Then {x3}" n Z’ has two
dimensions and we define

(x) n z’ (z,

Since (X_l) a"
fl (Z, 0 has dimension 1 or 2, we may assume without loss of

generality that (z} e x+/- (i.e. at least one point on (z, w} must be in (x_}).
Then P-l, sends (z, x_s} to (z, x_s -t- X_l}. By (1), (x_, z} is an axis line.
Thus z ax_ -4- by -nt- cxs for some a, b, c e F. But z e (x_s} since (z,
is an axis line. Hence c 0 and z e (x_l, y}.

If w is also in (x_}, then w e (x_l, y} by the same reasoning. But this
would imply (z, w} (x_, y}. Then the space of axis lines containing (x_a} is
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@-3, x_l, y), which implies that (x_a, x_l) is an axis line, contradicting the
assumption that the space of axis lines containing (x_l} be singular. Hence
w (x_), but w e (xa, x_a). Thus we may call (w) "(x}". This yields the
axis line (x_a, xl}. Let y’ be the point on (x_l, y) in xi. Then

y e (xa, x_, x, x_a).
"/x \’’ This yields the axis line (x_l, x}. RecallHence we may name (y’} \ /

z e (x_, y} (x_, x} and z e w" x. Thus (z} (x} and this yields the
line
Now suppose (x, z} is n axis line where z’ (xi, x_a}. Then z can be

chosen in

Thus p_, sends @1 ,z’} to (x xa ,z’}. So (xa ,z’} is n xis line. If z’ e x,
then p_, sends @1, z’} to (xl x:, z’}. But then (x., z’} is an axis line
and z is on too many linearly independent axis lines. Thus z’ x. Hence
we may name (z’} "(x_}". Thus we obtain the axis, lines @1, x_} and (x_:,
xa}. This completes our system T0.

9. Elimination of some possibilities under the assumption that the
space of axis lines containing a given point is

-dimensional and singular
Under the assumptions of Section 8 we shall eliminate all possibilities ex-

cept dim V 7. We recall we have the following system To of axis lines"
(X_l, xa), (x_i, x2}, (x_a, Xl}, (x_a, x}, (xi, x_) and (xa, x_2}.
Let Uo (x, x2, x, x_a, x_, x_i} (To}. Suppose x U and is

singular. Suppose (x, y} is an axis line. Suppose y U. Without loss of
generality, say y has an x_a component. Then P,,-i sends (x, y} to (x, y + t)
where e (x_, xa}, and o,_ sends (x, y} to (x, y + s} where s e (xa, x_:)
(s, (xa}). Since y has an x_a component y (s, t). Thus x is on too many
linearly independent axis lines. Hence y e U.
We thus build a system T1 isomorphic to 7’0 and in T. We can keep build-

ing T.’s until we run out of singular points in T. j < i. We see the index of
V must be a multiple of 3.
Look at the axis line (xi + xt, y) where Xl e (To} and Xl e (T}. First,

y e T for all i > 1. The perpendicular of all the 7’ is our standard basis
space W of dimension 0, 1 or 2 containing no singular vectors. So y must have
a component in (To, T1}. Say y has an x component. Then p_, sends
y to y + where e (x_, xa}. Thus, by (1), (x + x, t) is also an axis line.

t} sot isont} to (Xl + Xl xa,Further px,_,x, (from 7’1) sends (x -t- Xl,

too many axis lines. Identical proofs work for any other components except
xlandxl. Thus, y e(x,Xl,W}. But y is singular, soye(x,x). Take
the point on @1 - x’, y} in X+/-l. It must be (xt). But then (x;} is on too
many axis lines. Therefore, the index of V is 3.
Thus the dimension of V is 6, 7, or 8. Suppose the dimension of V is 6.
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Then @-1 + x2, x_l} is an axis line and (x_l -- x2, y} is an axis line where
y (x_, x} but y (x_, x2}’. Hence

y ax_ + bx+ + cx3 -- dx_3, a, b, c, d F.

Since y is singular, cd 0. Suppose d 0 and assume (y} is the point on

@-1 -- x, y} in xi. Then y bx2 + cxa where c 0, because c 0 implies
y e (x_l, x2}. Since {x_, x2> and (x_l, xa} are axis lines, (1) implies (x_,
bx2 -t" cxa} is. an axis lines. But then again by (1), (x2, bx + cxa} is an axis
line, contradicting the hypothesis that the space of axis lines containing
be singular. If c 0, assume y is the point on (x_ -- x2, y} in x_: for
similar contradiction. Thus dim V is 7 or 8.
We now show that each point of form (x Q(w)x_ -- w} with w e W U

F*.is on an axis linewith (--ax_. -- bx2) where a, b But (-ax_3 + bx2 ,x_3}
is an axis line in To. Hence (-ax_a + bx} cannot be on axis lines with two
distinct points of form (x Q (w)x_ -t w}. Hence the number of ratios
a/b in F* determines the number of vectors w e W. Thus dim V 7. Now
suppose (y> is the point on the axis line (x Q (w)x_ -+- w, y} in w.

Let y a. x -t- a_x x_ + a x. -t- a_ x_ + a x -- a_3 x_ -t- w’, where
w’ e W and w’ e Then p._ fixes (x Q (w)x_ + w) and translates
y by a_ kx_ + lca x. By (1), (x Q (w) x_ -- w} must then be on an
axis line with (-a_ x_ -t- a x.}. Clearly either a_2 and a are both zero or
neither is zero, because (x_} and (x} are already on two axis lines in To.
If they are both zero, then we show a_ and a are both non zero. For sup-
pose a, a_, aa and a_ are zero. Then y a xl -- a_ x_l - w’. Then
aa_ -Q(w’) and a_ aQ(w) 0, so aa_l aQ(w). Hence
Q (w’) a Q (w). But if Q (w) is a square then Q (w’) cannot be and

vice-versa, or W would contain singular vectors. So suppose a._ and a are
not both zero. Then using p_. we see that (x Q (w)x_ -- w} is on an
axis line with (-a x3 -t- a_ x_:). (Again we cannot have just one of a_a and
a2 be zero.) Thus in all cases (x Q(w)x_ + w} is on axis lines with

F*.(--ax_ -t- bx2} and (bx + ax_} where a and b e So dim V 7 as claimed.

10. Existence of a group G with the space of axis lines containing
a given point being 3-dimensional and singular

We hve seen in Sections 8 and 9 that if a group exists satisfying the hy-
potheses of the theorem and such that the space of xis lines containing
given point is 3-dimensional and singular, then dim V 7 and one cn find
a standard basis x, x_, x, x_, x, x_, w by Witt’s theorem such that
the system To of xis lines occurs, Q (w) 1 and the xis lines

(x-- x_l-- w,x-- ]x_} nd (xl- x_- w,x_’-t- k-x
occur.

/c x3by-x. ThisNow in our standard basis replace kx_a by x-a and --1

does not change To, (i.e., (x, x} (x, x} etc.). So we may assume that
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we had chosen basis vectors so that we have the system To and the axis lines

(xl- x_l- w, x2 + x_s) and (xl- x_i- w,x_2- x.).

Call the group generated by the groups of root type 1 with these axis lines G.
We show that G is transitive on the singular points of V. Hence, each singu-
lar point is on at least 2 linearly independent axis lines of G.
We prove this in two parts" First, all singular points of V with a w compo-

nent are in the same orbit under’ G, and secondly, any singular point without
a w component is in an orbit with a singular point with a w component.

Recall that in Section 7 we proved that Z (x_, x_2) and 2; (x., x) generate
a group isomorphic to SU (2, q). In the appendix, we proved SU (2, q)
"SU (Wo)" was transitive on the non-isotropic vectors of W0 of a given length.
These non-isotropic vectors correspond to the non-singular vectors in
(xl, x_, x, x_2) "Wo" since B (x, x) B (x, x). Thus, the group gen-
erated by 2;1 and 2;10 where n l0 /0} is transitive on the non-singular vec-
tors of (1, 10) of a given length.

In particular, the group generated by 2; (xl, x_2) and 2; (x_, x2) is transi-
tive on the non-singular vectors of a given length in (xl, x_, x., x_2). Thus
x x_ is in the same orbit O under G as x x_2. Using 2; (x+, x_s) and
2; (x_l, xa), we obtain xs x_a in O as well. We show all vectors y
(i 1, 2, 3, -1, -2, -3) such that Q (y) -1 are in O. This is equiva-
lent to showing all singular points with a w component are in the same orbit
under G, since such singular points can be expressed as (2 ai xi w).

If a a_ 0, -1, then the group generated by

2; (x, a_ x_ -4- a_s x_s} and
sends

xl x_ to ax-4- a_lx_-4- a_2x_:

If al a_l -1, then a_2 x_. A- a-s x_s e (a x A- as x}" and the operation
must be in two stages. First, use the group generated by

and
2;(x_,x2>ifa_0 or 2:(x_,xs}ifa_a0

(or skip this step if a_ a_a 0). This sends

x- x_ to ax+a_lx_-4-a_2x_2-t-a_ax_a.
Then use the group generated by

and
2;(x,x_}ifa 0 or 2:(x,x_}ifaa0.

This sends alxl -[- a_x_ to alxl -4- a_x_l -t- a:x2 + aaxs and fixes
a_: x_2 -t- a_s x_s. Thus, if al a_l rs 0, we get our point. By symmetry we
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can do the same if a2 a_. 0 (starting with x2 x_.) or a3 a_3 0 (starting
with x3 x_). But not all of al a_l, a a_, and a3 a_ can be zero.
Thus we have all singular points in V with a w component. Now suppose

x e w x singular. We show that the singular points on w which are on
axis lines with points not in w span w’. Then for every x e w, there is
singular y x, y e w" y on an axis line with a point not in w But
sends x to x -t- t, e l, (y} and we are done.
Look at the points we know are on axis lines with points not in w" (x -- x_}and (x_ x}. Apply PI,- to x. + x_ and get x -- x_3 -- x. Apply

p_l, and get x. -t- x_a - Xl f- X--1 X3. Apply pX_I,X to X--2 X and get
x_ xa x_. Apply PI,- and get x_. xa Xl - x_ x_3. These
six vectors span w’.
The groups of root type 1 whose axis lines are in To (denoted Q by Dick-

son) are contained in Dickson’s group G2 [2]. Further, since p_,
where Q(w) 1 is in G (Y011W in Dickson’s notation) and sends
(Xl cx_ + dx_) in To to (Xl X_l w, c(x_ + x) + d(x_2 x)), we see
G G.. Since G is a proper subgroup of 2 (V), and since we show in the
remainder of this paper that the singular points can be in no other configura-
tion of axis lines without generating (V), we see that each singular point is
on exactly two linearly independent mutually perpendicular axis lines of G.
The only question remaining is" are there any elements in G not in G?

Clearly there are no groups of root type 1 in G not in G. Therefore, suppose
pE (x,u) G. Then p is in G2 for any TeG.. But thenpG, forthe
set of all p* such that p e 22 (x, u) and r is fixed, is a group of root type 1 in
G, hence in G. But if p is any element in G, p pl p where each p is
an element of a group of root type 1 in G. Thus peG for any peg and
reG:. Hence G is normal in G But G. is simple. SoG G.

1. Other possibilities: If the space of axis lines containing (x)
is (x) (R) U, U must be non-degenerate

Ve show in this section and the next that if G satisfies the hypothesis of
the theorem and has any axis line configuration other than (1) each singular
point on exactly one axis line or (2) the space of axis lines containing a given
point being 3-dimensional and singular, then G t (V).

In these last two sections, we use the lemma of Section 5 and equation (1)
of Section 2 extensively.

Let the space of axis lines containing (xl) be denoted U (R) (x) where
indicates that (x} is linearly independent of U. In this section we show U
must be non-degenerate. First, we shall show that U must be either singular
or non-degenerate.
By Artin [1, p. 116], U Z (R) Z’ where Z is a maximal non-degenerate

subspace of U, and Z’ g Z" and Z is singular.
Suppose Z is non-empty, (i.e., U is not singular). Then since H is spanned

by singular vectors, there must be two linearly independent singular vectors
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x and y in U with B (x, y) O. Thus, since Z is a maximal non-degenerate
subspace of U, Z must have dimension at least 2. If Z has dimension exactly
2, then Z is spanned by singular vectors. (We know U (x, y} (9 (x, y}’
where B (x, y) 0, x and y are singular and (x, y}’ is a singular space in
(x, y)’. It is not possible that also U W (R) W’ where W has dimension 2,
W contains no singular vectors and W’

_
W’, W’ singular, because W (R) W’

cannot be mapped to (x, y} @ (x, y}’ by a member of 0 (V).)
Since any non-degenerate space of dimension greater than 2 is spanned by

singular vectors, we see that in any case Z is spanned by singular vectors.
Let (x2} be a singular pointinZ. Let (x_2} be a singular point inZ such that

B (x, x_) 1. Suppose (x, t}} is a set of axis lines containing (x} such
that the t span a space isomorphic to U. (Since G is transitive on singular
points in V, such a set must exist.) Choose the (t} to be the points on
(x., t) in (x_.). Suppose all the t are also in (x)’. Then apply the lemma
to (x, t) and (xi, x_.) to obtain the (xi, t) as axis lines (unless t e (xi)).
But the t are all in (x, x_.)’. Thus the t are all in ((xi) @ U) n (x, x_.).
But this has dimension one less than the dimension of U. Hence, some t is
not in x Without loss of generality, we may name this t ’x_" and assume
U has been chosen in x+/- (i.e., translate whatever vectors had been chosen in
U by a suitable multiple of x, until U is in x_)
Now assume Z’ is also non-empty and (x} e Z’. Use the lemm with

(x, x) and (x., x_) to see that (x, x) is an axis line. Similarly, if we had
begun with x_ or any other singular vector in Z ( (x_}), we would have
gotten (xa, -t- kx} to be an axis line for some/c e F. Thus by (1), since xa
is on an axis line with x, we see that xa is on axis lines with every singular
point in (x} @ Z.
Now look at the axis lines (x_, s} containing (x_}. Suppose they are all

in (x2}’. Choose the s to be in (x}’. Use the lemma with (x_, s} and
(x., x} to see the (x, s} are axis lines. Thus the s all lie in (x x_}" (the
space of axis lines containing (x.}). This has dimension one less than the
dimension of U. Hence, some s, say So, must not be in x’. Use the lemma
with (So, x_} and x, x.} to see that x_ is on an uxis line with axa -t- bx where

F*a and b e F and So (ax3 + bx)’. But (x_l, x.) is an axis line, so by
(1), (x_l, x3} is an axis line. Thus (x.} is on axis lines with all singular points
in (xl} @ Z and with (x_l}. But this is a non-degenerate space larger than Z,
contradicting the maximality of Z. Hence, if Z is non-empty, Z’ is empty,
(i.e. U is either singular or non-degenerate).
We now suppose U is singular, (i.e., Z is empty), and the dimension of U

is greater than 2. Since we have disposed of small singular U in previous
section, suppose (x, x} (2 _< i _< j where j >_ 4) are linearly independent
axis lines containing (xt). Using our standard basis notation, we look at the
axis lines containing (x_2}. Let the space of axis lines containing (x_} be
denoted U(_2) (R) (x_} and choose U(x_) to be in x.’. Let

U<_o U(_)n (x)’.
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Then U(_2) (xl, x2, x_2} and has dimension at least j 2. Suppose
yi e U(_2). Then using the lemma with (x_., yi} and (xl, x}, we see that
the (y, xl) are axis lines. It is clear that yi (xl}, since (x_2, x) is not an
axis line i.e.

U(_)

_
(x, x, x ,... x) (x_) (x,, x ,... x).

But (x) U(_). Thus U(_) (x, x). (We recall that
must be at least this big.) Further if

U(_) U(_) (x),

(x) is in (x_, x, x), 3 i j, but not in (x). So call (x) "(x_)". Doing
the same for x_a instead of x_ we see (x_a, x) are axis lines for i 2 or
4 i j and using the lemm with (x_, x_) and (x, x_a), we see (x_, x_)
is an axis line.
Now let U(i+) be in (x_) nd look at

U

U(i+x) has dimension j 2 since x e U(+) but x e U(xi+). Let

(+) (+2) (x-3}.
U"This has dimension at least j 3 which is 1 since j 4. If z e

(z 0), then use the lemm with (x + x2, z) and (x_, x_3) to see (z, x_3)
is an axis line. (Since (x_3, x + x) is not an axis line, z e (x_); since z e

z has no x_i component--thus z (x_, x_3).) Hence

z (x, x.) U0.

But every vector in U0 is on an axis line with x_. Hence z is on axis lines
with x_ and with x - x, contradicting U singular.

12. If U is non-degenerate then G 2(V)
We recall that the space of axis lines containing (x) is U (R) (x). We have

shown U must be non-degenerate. Suppose (x, x) is an axis line. Then
(x.) is on an axis line with some singular point (y) xi. Call (y) "(x_)".
Let U(xl) (where the axis lines containing (x) span U(xl) (R) (xl)) be taken in
x+/-. Then we may write

U( (x, x_, x, x_, x, x_, W)

using standard basis notation. We remark that k >_ 2, since U<I> must be
spanned by singular vectors.
Now suppose (x, z} is an axis line where z (x, x_), z e x-2. Thus

z ax -t- bx_ -t- w, where w e (x, x_l, x2, x_}, a, b e F, and w may or
F*may not be singular. Using (1) we see p.,kw e G where k e But

sends
(x, x_ to <x x_ kw ]Q (w x).



SOE SC3GIOCPS OF 2(V) 603

Hence x_.

U<> a (Xl, x_>
Therefore, w U(xl)

U(> n (x, x_>’.
Thus

Now suppose (x_2, x_l} is also an axis line. Then we can repeat the above
argument used for U<x2> to see that

and hence U(x2> U<_).
Therefore, we show that (x_2, x_l) must be an axis line. Let (x_, y) be

an axis line such that y e (x2, x_2>" but y x. Then

y axl-4-bx_l+w whereb 0andwe(xl,x_l,x2,x_2>.
So by (1), Px_.,k(b_+) e G for all k e F*.

First suppose Q (w) 0. Then note that p_._+) sends

(X-l, X2> to (X-l, X2 ](bX_l -- "to) k2Q(w)x_).
Using (1) and (2), we see p_,t(-k,-,.(,)_) G for all e F*, and fixes x_.

and x_ and sends w to w tkB (w, w)x_l. Hence p_2,(b_+-t,(,)_) e G.
Choose such that tkB (w, w) b. Then see P2, e G. Hence, by (1) we
see (x_, x_2) is an axis line.
Now suppose Q (w) 0. Then p_.(_+) sends

(x_l,x2) to (x_l x2 k (bx_ + w) >.
F*.Using (1) and (2) we see px_,_k. e G for 1 e But p_,_ sends

(x_, x> to (x_, x + ]cw>,

so by (1), (x_, w) is an axis line, so again by (1), (x_2, x_l> is an axis line.
LefT U()(R) (x2,x_). We show(T) G. Let <x, y> be a singu-

lar line in T. If x: or x_ is in <x, y), then <x, y> is an axis line for G. If
(x) is in x and (y) ( (x)) is in x+/-, then <x., x) and <x_, y) are axis lines
and hence by the lemma, <x, y> is an axis line for G. So suppose

(x)

_
<x, x_:>

and (y) ( (x)) is (ax2 + bx_2.3t-z) where a and b e F* and z e (x2, x_2)’, and
Q (z) -ab. Then p, e G for k e F*, and sends

(x, x_> to (x, x_2 kz k:Q (z)x2).
Choose k -b-. Then

--1(x_ lc kQ(z)x} (x_. -t- b-z -4- ab x2} (y}.

Hence t2 (T)

___
G. We wish to show t2 (T) G.

Since the axis lines of 2(T) containing a singular point P in T are all the
singular lines of T containing P by Tamagava [10] (i.e.

P @ Ue U<> @
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for any P in T U<) @ (x2, x_2)), we see no point P in T can be on an axis
line for G with a point outside T.
Suppose there is a singular point (y) e T’. Let (x) be a singular point in T.

Suppose (x - y, s) is an axis line. Suppose s e (xn T) (_x’). Let
(x’) be a singular point in T not in x. Let (x’, w) ( T) be an axis line con-
taining x’, where (w) is chosen to be that point on (x’, w) in (x)’. (Hence
w e x" n T.) Apply the lemma to (x -t- y, s) and (x’, w). We see w must
be on an axis line with some point on (x y, s). But w e T, and no point
on (x -t- y, s) is in T, contradicting s e (x n T).
Now suppose s e x’, but s (x" n T). Hence there is a singular point

in (x n T) (which is spanned by singular vectors) such that s . But
(x, t) is an axis line. Use the lemma with (x, t) and (x W y, s) to see that
(x, x -t- y) is an axis line, which is impossible, since x e T and x y T.
Hence s x. But then there is a singular point (t’) in T n (x, s)’, which

necessarily must be on an axis line with x. Apply the lemma to (x, t’) and
(x -t- y, s) to see that (t’, x -t- y) is an axis line, which is impossible since t’ e T
andx-ycT.
Hence there are no singular points in T’-. So suppose y e T’, Q (y) 0.

Then we have the axis line
(xl Q (y)x_ + y,

Choose s in y. If T has only one dimension, we are done. So suppose T
has two dimensions (i.e., T W (y, w), a two-dimensional space with no
singular points). If U<1-()-I+> (taken to be in <y)) has at least four
dimensions, then U<I_()_+> n (w>" has at least three dimensions and
hence contains a singular point which is in <y, w) T.
So assume the dimension of U is 2 or 3. If the dimension of U is 2, then

dim T 4 and V T @ W has dimension 6 and index 2. Now let

T (x, x_, x2, x_).

LetW (y,w) whereQ(y) land(w) WhyS. Let (x- x_+y,
be an axis line. Take s in y. Then

s cxl + cx_ - ax + bx_ -- w where c + ab -Q(w),

so ab O. Apply p.k(+_l) to s to get

(c b)x + (c b)_ / (a + 2c b)x / bx_ / w.

If c 0choose/c cb-. Thent (a - b-)x - bx_2 + w. Clearly,
t(s). Ifc 0choose/ -b-,get

to x + x_ + (a b-)x + bx_ + w.

So without loss of generality we may have assumed c 0. Now apply
px_2,k(xi+x_) tO 8 tO get

t’ (c-- aI)x + (c al)x_t- ax. + (b + 2ck-- ak)x_ -w.
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--1Letlc a-lc, so t’ ax. - (b ca )x_2 - w. If (xl-t- x_l-[- y) isnot
on too many axis lines, then ds - et, d, e F. Hence, 1 d -t- e (coeff
ofw),dc 0 (coeffofxl). Since c 0, d 0, andhencee 1. Hence

and the coefficient of x2 yields a cb- a, contradicting c 0 and
ab 0.
Thus we have only one case left, dim T 5. Let

T (x, x_, x., x_, w} where w e (x, x_, x, x_}.

Let T (y, z}. Let (y} be the point on T such that Q(y) -Q(w).
Let (xl Q (y)x_l - y, t} be an axis line called l. Let the axis line

(x -t- Q(y)x_ + w, x2} l..

If l, then by the lemma, (s, t} is an axis line where (s} is the point on l
in (t}’. But then since s e T, e T, causing a contradiction since is on an
axis line with a point outside T. Hence 11 a l l. If l and l have no
points in common, the index of V is 4. If they have a point in common,
some point of l is in T, also causing a contradiction. This proves our theorem.

Appendix. H SU(U)
Let a be a zero of X aX b which is irreducible over F, and

let a a/2. Let be the automorphism of F (a) sending a to its con-
iugate and preserving F. Let B be a hermitian form on the 2/c (resp. 2/ + 1)
dimensional vector space U over F (a) such that (1) B (ax, y) r(a)B’(x, y)
for a e F (a) and (2) B’ (e, e_.) 1 ior 1

_
i _< /c (and resp B’ (eo, eo) 2)

and other products of basis vectors are 0.
We show here that the group H generated by those transvections with

centers

and

is transitive on the isotropic points of U. This is sufficient to show
H SU (U) by [3, pp. 43-47].

Let dim U n. We prove that H is transitive on the isotropic points
first for n 2 and 3, and then we use induction on n. For n 2, ae -t- be_
is isotropic only if a 0 or ba- kf where k e F. A unitary transvection
centered at (e_} sends (e} to (e -t-/e_}. Similarly a unitary transvection
centered at (el} sends

for k-- e F. So all isotropic points are in the same orbit.
For n 3 we first show that SU (Wo) where Wo has dimension 2 is transitive

on non-isotropic vectors of a given length. Let ae + be_ where a, b e F (a)*
be an arbitrary non-isotropic vector in W0. Then a /cb (k e F). Suppose
r in U (W0) fixes ae zr- be_. We show r can have arbitrary determinant.
Suppose r sends e to the isotropic vector co - de_. Then since

cel - de_ (c dab-)o - db- (ae + be_),
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we see det r c dab-1. Since

B’ (r(el), ae -t- be_) B’ (e, ae -]- be_),

we obtain b z(c)b -t- ((d)a. Since ce de_ is isotropic, either (1)
c 0, or (2) d /cfc where /c eF. In case (1),

detr -da/b -d/z(d).

In case (2), det r c (1 ta/b) and b (c) b (1 ka/b) yield

det r c/( (c).

But the determinant y of any element in the unitary group is a unit, (i.e.,
yz (y) 1), and any unit can be written in this form. For let , yd (d).
If y -((d)/d, then / 0 and y ,/a(,). So a proper choice of c and d
yields any determinant.
By Witt’s theorem [4, p. 21], there is an element z’ in U (W0) which sends

any non-singular vector to any other vector of the same length. If

’ (x) y (B’ (x, x) 0) and det ’ s 1, then, by the above, there is
r such that r’ (x) y and r’ e SU(Wo).
Now any isotropic point in U (dim 3) is either of form (e0 -t- x} where x

is a vector of length -2 in W0, or else is already in Wo. We have seen that
all the isotropic points in W0 are centers for H since the unitary transvections
centered at (e} and (e_) generate SU (Wo). But

(el- (1 -t-1/2a(a 1/2a)-i)e_l --is also a center for H. So we are done for U 3-dimensional.
We are now ready for the induction step. Suppose we have SU (T) plus

the unitary transvections centered at (el + e), (el -t- ae}, (ek} and
where the dimension of T is 2It 1 or 2k 2. Let r be a unitary transvec-
tion with center (e_k}; let r2 be a unitary transvection with center (e_l}; let
r3 be a unitary transvection with center (e - aek}. Then the product r3

sends e -t- ek to a vector x -t- y such that

x e(e,e_}, y e(ek,

and B’ (x, x) b -B’ (y, y) 0. But by the argument above, SU(T) is
transitive on non-singular vectors of a given length when dim T >_ 2. So
we have all vectors x’ -+- y’ such that x’ e (ek, e_} (where is with respect
to B’) y’ e (ek, e_k}, B’ (x’, x’) b -B’ (y’, y’). But then we have repre-
sentatives of all centers of form

(x + y}, x e (ek, e_k}, y e (ek,

x and y non-isotropic.
We have only to obtain the centers of form

(x + y), xe (ek, e_k), y e (ek, e_,),
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x and y isotropie. The trouble here is that SU (Wo) is not transitive on
isotropic vectors when dim W0 2.

If the dimension of U is >_ 3, then SU(U) is transitive on the isotropic
vectors of U. For by Witt’s theorem the group of unitary transformations
on U, U (U) is transitive on the isotropic vectors of U. Suppose e U (U)
and sends the isotropic vector y to z in U. Then one can find a r’ e U (U)
fixing vectorwise a 2-dimensional non-degenerate space containing z and with
determinant (det r)-l. Then rrT sends y to z and has determinant 1.
We know we have any center of form (x q- y} ,x and y non-isotropic x
y e (ek, e_k}. Say

x ae_ -- (a -- b)o and y be_l -- (b + a)e

wherea, b eF(a)*andab-ICF. Ifrsendszin Uto

Z B’(el - ek, z)(el -then r sends x -- y to ae_ -- be_k. For fixed a, be_k runs through representa-
tives of all but one of the orbits of singular vectors under SU(Wo) where
W0 (e, e_k}. This orbit is the one where ab- F. Let r send z to

z "k g-flB’ (3e "k e_, z)(3e -+ e_).

Let r send z to z
el - ek to

g-e_ - g-e_k e (ae_i - ae_}.
So we are done.

Then r rl sends
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