COMPARISON THEOREMS FOR ELLIPTIC AND PARABOLIC
INEQUALITIES

BY
E. 8. Noussair axp C. A. SwansoN

A recent comparison theorem of Kurt Kreith [2] will be extended to quasi-
linear elliptic and parabolic differential inequalities of second order. Ac-
cordingly, Kreith’s theorem is generalized in three directions at once. Our
proof is extremely easy, reducing the proposition to the Hopf maximum prin-
ciple (in the elliptic case [3, p. 67]) or the Friedman theorem (in the parabolic
case [3, p. 174]). Our hypotheses are explicit, unlike Kreith’s indirect hy-
potheses that ‘“the boundary problems are sufficiently regular so that certain
resolvents can be represented as integral operators.”

Let L be the elliptic differential operator defined by

Lz, w) = 2 %ic1Diaij@)D;ul + 2 =1 bi(@)Diu,
z= (@1, " ,%), Di=8/0z:;, 1=1,---,n

for 2 in a bounded domain G € R". It is assumed that the coefficients a;
and b; are real-valued continuous functions on G, and that the matrix (a:;)
is symmetric and uniformly positive definite in G (uniform ellipticity con-
dition).

Let I be a real interval containing zero and let H be a domain in R". The
differential inequalities to be compared are

1) Lz, u) > ¢, u, Vu)u, Lz, 0) < c*(,v, W

where Vu = (Dyu, -+, D,u) and ¢ and ¢* are continuous functions in
G X I X H. The respective solutions u and v are to satisfy the following
homogeneous boundary conditions on 4G:

(2) v-Vu 4+ o(@)u = 0, v-Vo + 7(x)v = 0,

where » denotes the external unit normal to 8@, and the directional derivatives
are regarded as limits from within G. The functions ¢ and = are supposed
to be piecewise continuous on dG with values in (— e, +«]. As usual,
the notation ¢ (z°) = -+ denotes the boundary condition % (z’) = 0.

TuEoREM 1. Let G be a bounded domain in R™ whose boundary has con-
tinuous curvature at every point. Let w and v satisfy the uniformly elliptic
inequalities (1) in G and the boundary conditions (2) on 8G, and suppose that
u(zx) 1s posttive throughout G. If

() @ o@), k) < clz,uk), Vul)), s € G,

() —wo <7@) <o) < +w,2zc€ G,
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then v(x) cannot be positive throughout G unless v(x) s a constant multiple of

u(x).
Proof. If v(z) > 0 throughout G, it follows from (1) that
oL (x, u) — uL(x, v) > [c(, u, Vu) — c*(z, v, Vv)]uv,
and hence that the function w = u/v satisfies the differential inequality

(3) Zi.iDG(aij sz,-'w) -+ Z; bs v’D;w
+ [c*@, v, W) — ez, u, Vu)l'w > O.

On account of hypothesis (i), the Hopf maximum principle [3, p. 67] shows
that w is either identically constant in G or »-Vw (z’) > 0 at any maximum
point z° of w on 8G. However, (2) and hypothesis (i) imply the inequality

vVw = [r(x) — o(@)lw <0 on &G,

providing a contradiction unless u/ is constant throughout G.
An inequality similar to (3) has been used by Protter and Weinberger {4]
to establish lower bounds for eigenvalues.

CoROLLARY. Let G be as in Theorem 1. Suppose that u 18 a positive solu-
tion of the first inequality (1) in G and that v satisfies the uniformly elliptic linear
differential equation L (z, v) = ¢*(x)vin G. If

i) c*@) <clz, u@), Vu®@), z € G,
(ii) w and v satisfy the boundary conditions (2), where 7(x) < « and

—0 <7@) <ox) £ +x, z€ 4G,
then either v(x) changes sign in G or v(x) s a constant multiple of u(z) in G.

Proof. If v(x) > 0 in G, also v(x) cannot have a zero 2’ € 8@, for if
v(@") = 0, then (»-V»)(z") < 0 [6, Lemma on p. 246], contradicting the
second boundary condition (2). Theorem 1 shows, therefore, that v(z)
cannot be positive throughout G unless v(z) is a constant multiple of u ().
In the present linear case, v (z) cannot be negative throughout @ either since
—v(zx) satisfies the same differential equation as v(x). Since v(z) cannot
have a zero minimum (or maximum) in G by the lemma quoted above [6, p.
246], it must either change sign in G or be a constant multiple of u(z).

Remark. TUnder the additional hypothesis that u (as well as v) satisfies a
uniformly elliptic linear differential equation, Kreith {2] obtains the strong
conclusion of the Corollary without the assumption 7(z) < «. However,
the proof of Theorem 1 of [2] is not clear since the hypotheses of Theorem 2.6
of his reference 4 are not fulfilled.

Theorem 1 can easily be extended to uniformly parabolic operators of the
form

Lz w) = 22721 Diai;@)D;ul + 235t bi@)Diu — Dau
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where now the (n — 1)-square matrix (@:;) is symmetric and uniformly
positive definite in G (uniform parabolicity condition).

For y € G, the notation G, will be used to denote the set of all points z € G
such that z can be connected to y by a path consisting only of line segments
contained in hyperplanes z, = constant and segments parallel to the positive
Z,-axis.

TueorREM 2. If the hypotheses of Theorem 1 hold with “elliptic” replaced
by “parabolic”, and if u (2®) = 0 at every point 2° € 3G at which » (2°) s parallel
to the xn-axss, then v (x) cannot be positive throughout G unless v (x) s a constant
multiple of u(x) in some subdomain G, of G.

Proof. The Friedman maximum principle [3, p. 174] for parabolic differ-
ential inequalities is now used instead of the Hopf maximum principle. If
v(x) > 0 throughout G, then w = wu/v satisfies the uniformly parabolic in-
equality (the analogue of (3))

(1/‘1)2) Z:;—l] D; (a,~,~ 1)2Dj w) + Z:‘:ll biD;w ~ D, w

+ [c*(x, v, W) — c(x, u, Vu)lw > O.
Hence either (i) w attains its maximum in a subdomain of type G, of G, or
(ii) w attains its maximum M at a boundary point 2° and w(z) < M for
all z € G. Now, »(z°) cannot be parallel to the z, axis, or else w(z’) =
(@) /v(@") = 0 by hypothesis, and the maximum of w would not be at z°.
The Friedman maximum principle then shows in alternative (ii) that
y-Vw (z”) > 0, giving a contradiction as in the proof of Theorem 1.

It is also possible to extend Theorem 2 to more general parabolic operators
of the form

Lz, u) = 2 Pi=1Di(@ijDju) + D2 i=1b:Diu + cu
when the matrix (a:;),7, § = 1, -+, n, is only positive semidefinite in G,
and the coefficients a.;, b;, and ¢ are allowed to be functions of z, , and Vu.

For example, Fichera’s maximum principle {1] could be applied to produce
an analogue of Theorem 2.

We remark that a comparison theorem for two inequalities
L(,u) 20, L*,0) <0
in which all the coefficients can differ (not just ¢ and ¢*) has been obtained
by the second author [5, p. 199]. However, this theorem does not contain

Theorem 1 above since hypothesis (i) of Theorem 1 does not imply the
hypothesis

L@ = @) - g@hi@ do 2 0

in [5] (specialized to (1)). Here g(z) is a positive continuous function such
that det Q@ (z) > 0 in G, where

_( a@ —b"@) - =
Q(.’E) - (—b(m) g(x) )) a = (at’j)’ b= (bt)
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Actually, the comparison theorem in [5] is false under the weaker hypothe-
sis

@) [ @ - ¢ @n@ i 2 0.

Likewise Theorem 1 above is false (for domains G with piecewise C* bound-
aries) when the pointwise inequality in assumption (i) is replaced by the
integral inequality (4).

A counterexample is provided in the case that » = 1, G is the interval
(0, v) and the inequalities (1) are the linear ordinary differential equations

(5) W -2 +2u=0 o -2+ @+2—kv=0
where k = v — 1. Equations (5) have the solutions
u(x) = € sin z, v(z) = €f(x),
for any solution f of
(6) 4+ @+2-mf=0.

We note that u () is positive throughout (0, 7), #(0) = u(x) = 0, and (4)
is satisfied since

62:::

f (x — k)e* sin’ zdx = [16(490—2—2xsin2x-—2xc052a:+sin2x)

—8— (2 — sin 22 — cos 2x):L

=%( —1—k)+k—i—1>0

However, we assert that (6) has a positive solution on [0, 7] given by
f@) =g@) = 206) + @),
wherez =2 +2—m2 — 7 <2< 2 and
(= Lyngtn

(7) n@) =1+ Z:=1 2:3--- (3n — 1)(3n)
( — l)nz8n+1
®) ) =2+ 2 5T Gy B D

It is easily proved that g;(z) is decreasing in (— «, 2] and hence g;(2) >
9:1(2) > —0.02 in this interval. Since

g(2) >2—2Y12>2/3 on 1<2< 2,

it follows that g(2) = 2¢1(2) + g2(2) > 0 on 1 < z < 2. The alternating
geries (7) and (8) show that g(2) > 0in 0 < 2z < 1. Since all terms in
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(7) or in (8) have the same signs for z < 0, it follows that
nz) > n0) =1, k) >a@2-7) >-138

on2 — 7w <z <0. Then ¢g(z) > 0 on this interval also, and hence g(z) > 0
on the whole interval [2 — w, 2]. This proves that the second equation (5)
has a positive solution v(z) = ’g(x + 2 — r) on0 <z < =
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