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A recent comparison theorem of Kurt Kreith [2] will be extended to quasi-
linear elliptic and parabolic differential inequalities of second order. Ac-
cordingly, Kreith’s theorem is eneralized in three directions at once. Our
proof is extremely easy, reducin the proposition to the Hopf maximum prin-
ciple (in the elliptic case [3, p. 67]) or the Friedman theorem (in the parabolic
case [3, p. 174]). Our hypotheses are c, unlike Kreith’s indirect hy-
potheses that "the boundary problems are sufficiently regular so that certain
resolvents can be represented as integral operators."

Let L be the elliptic differential operator defined by

L(x, u) ,,= D[a(x)Dul -4- , b,(x)D,u,
x (x,...,x,,), D O/Ox, i 1,..., n

for x in bounded domain G R. It is ssumed that the coefficients a
nd b re real-vlued continuous functions on G, nd that the mtrix (a)
is symmetric nd uniformly positive definite in G (uniform ellipticity con-
dition).

Let I be rel interval containing zero nd let H be a domain in R. The
differential inequalities to be compared re

(1) L (x, u) >_ c (x, u, Vu)u, L (x, v) <_ c* (x, v, Vv)v

where Vu (D u,... D u) nd c nd c* re continuous functions in
G )< I X H. The respective solutions u nd v re to stisfy the following
homogeneous boundary conditions on OG"

(2) .Vu + (x)u 0, .Vv + r(x)v 0,

where denotes the external unit normal to OG, and the directional derivatives
are regarded as limits from within G. The functions a and are supposed
to be piecewise continuous on OG with values in (-, -4- ]. As usual,
the notation a(x) -4- denotes the boundary condition u(x) O.

TEOREM 1. Let G be a bounded domain in R" whose boundary has con-
tinuous curvature at every point. Let u and v satisfy the uniformly elliptic
inequalities (1) in G and the boundary conditions (2) on OG, and suppose that
u (x) is positive throughout G. If

(i) c* (x, v (x), vv (x)) < c (, u (x), Vu ()), ,
(ii) - < r(x) <_ a(x) < +,x OG,
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then v (x) cannot be positive throughout unless v (x) is a constant multiple of
u().

Proof. If (x) > 0 throughout G, it follows from (1) that

vL(x, u) uL(x, v) >_ [c(x, u, Vu) c* (x, v, Vv)luv,

and hence that the function w u/v satisfies the differential inequality

(3) _,,,D,(a,vDw) -4" .,b,vDw
+ [c*(x, v, vv) c(x, u, Vu)lv% >_ o.

On account of hypothesis (i), the Hopf maximum principle [3, p. 67] shows
that w is either identically constan in or . Vw (x) :> 0 at any maximum
poin x of w on OG. However, (2) and hypothesis (ii) imply the inequality

. Vw [ (x) (x)lw < 0 on OG,
providing a contradiction unless u/v is constant throughout .
An inequality similar to (3) has been used by Protter and Weinberger [4]

to establish lower bounds for eigenvalues.

COROLLARY. Let G be as in Theorem 1. Suppose that u is a positive solu-
tion of the first inequality (1) in G and that v satisfies the uniformly elliptic linear
differential equation L (x, v) c* (x)v in G. If

(i) c* () < c (x, u (), Vu (x)), x G,
(ii) u and v satisfy the boundary conditions (2), where r(x) < and- <r(x) <(x)_<+, xe0G,

then either v (x) changes sign in G or v (x) is a constant multiple of u (x) in G.

Proof. If v(x) > 0 in G, also v(x) cannot have a zero x OG, for if
v(x) 0, then (.Vv)(x) < 0 [6, Lemma on p. 246], contradicting the
second boundary condition (2). Theorem 1 shows, therefore, that v(x)
cannot be positive throughout G unless v (x) is a constant multiple of u (x).
In the present linear case, v (x) cannot be negative throughout G either since

v (x) satisfies the same differential equation as v (x). Since v (x) cannot
have a zero minimum (or maximum) in G by the lemma quoted above [6, p.
246], it must either change sign in G or be a constant multiple of u (x).

Remark. Under the additional hypothesis that u (as well as v) satisfies a
uniformly elliptic linear differential equation, Kreith [2] obtains the strong
conclusion of the Corollary without .the assumption r (x) < . However,
the proof of Theorem 1 of [2] is not clear since the hypotheses of Theorem 2.6
of his reference 4 are not fulfilled.
Theorem 1 can easily be extended to uniformly parabolic operators of the

form

n (x, u) -’.i--1D[a(x)Du] + ,.1 b(x)D u D,, u
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where now the (n 1)-square matrix (a) is symmetric and uniformly
positive definite in G (uniform parabolicity condition).
For y G, the notation G will be used to denote the set of all points z G

such that z can be connected to y by a path consisting only of line segments
contained in hyperplanes x constant and segments parallel to the positive
x-axis.
TEort 2. If the hypotheses of Theorem 1 hold with "elliptic" replaced

by "parabolic", and if u (x) 0 at every point x OG at which , (x) is parallel
to the x,,-axis, then v (x) cannot be positive throughout unless v (x) is a constant
multiple of u (x in some subdomain G, of G.

Proof. The Friedman mximum principle [3, p. 174] for parabolic differ-
entil inequalities is now used instead of the ttopf maximum principle. If
v(x) > 0 throughout (, then w u/v stisfies the uniformly prbolic in-
equality (the nlogue of (3))
(1/v) .,"-’,.-1 D, (aj vD w) -t- _.,’ b, D, w D,, w

+ [c* (x, v, vv) c(x, u, vu)lw > 0.

Hence either (i) w attains its maximum in a subdomain of type G of G, or
(ii) w attains its maximum M at a boundary point x and w (x) < M for
all x G. Now, (x) cannot be parallel to the x axis, or else w(x)
u(x)/v(x) 0 by hypothesis, and the maximum of w would not be at x.
The Friedman maximum principle then shows in alternative (ii) that
,. Vw (x) > 0, giving a contradiction as in the proof of Theorem 1.

It is also possible, to extend Theorem 2 to more general parabolic operators
of the form

L (x, u) ffil D,(a.D u) -4- ’-- b,D u "4- cu
when the matrix (a), i, j 1, n, is only positive semidefinite in G,
and the coefficients a, b, and c are allowed to be functions of x, u, and Vu.
For example, Fichera’s maximum principle [1] could be applied to produce
an analogue of Theorem 2.
We remark that a comparison theorem for two inequalities

L(x, u) >_ O, L*(x, v) <_ 0

in which all the coefficients can differ (not just c and c*) has been obtained
by the second author [5, p. 199]. However, this theorem does not contain
Theorem 1 above since hypothesis (i) of Theorem 1 does not imply the
hypothesis

[c(x)
c* (x) q(x)lu’(x) dx 0

in [5] (specialized to (1)). Here g (x) is a positive continuous function such
that det Q (x) > 0 in G, where

Q(x) ( a(x) -b (x)) (a,) b (b,)-b(x) g(x)
a
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kctually, the comparison theorem in [5] is false under the weaker hypothe-
sis

() / [c() c* (x)lu() dx > 0.

Likewise Theorem 1 above is false (for domains G with piecewise C bound-
aries) when the pointwise inequality in assumption (i) is replaced by the
integral inequality (4).
A counterexample is provided in the case that n 1, G is the interval

(0, ) and the inequalities (1) are the linear ordinary differential equations

(5) u 2u’+2u 0, v 2v’+ (x+2-- k)v 0

where k r 1. Equations (5) have the solutions

u (x) e sin x, v (x

for any solution f of

(6) f" + ( + 2- )f o.
We note that u(x) is positive throughout (0, ), u(0) u(r) 0, and (4)
is satisfied since

)(x k)e" sin x dx L\4x 2- 2x sin 2z- 2z cos 2x + sin 2x

ke8 (2-- sin2x- cos

e" k + 1
--(--1--/) + 8

>0.

However, we assert that (6) has a positive solution on [0, r] given by

$(x) g (z) 2g, (z) A- g (z),

wherez x-4-2-- r, 2-- r g z_< 2, and

( l)-z-
(7) g,(z) 1 -t- 7--, 2.3... (3n- 1)(3n)

(- 1)-z,,+
(8) g(z) z -4- 7=, 3.4... (3n)(3n -t- 1)

It is easily proved that g(z) is decreasing in (-o, 2] and hence g(z) >
g (2) > -0.02 in this interval. Since

g,.(z) >z- z/12 > 2/3 on. l<z g 2,

it follows tha g(z) 2g (z) + g (z) > 0 on 1 <_ z _< 2. The alternating
series (7) and (8) show that g(z) > 0 in 0 gz < 1. Since all terms in
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(7) or in (8) have the same signs for z < 0, it follows that

g, (z) > g (O) 1, g (z) > g,(2- .) > -1.38

on 2 r <_ z <_ 0. Then g(z) > 0 on this interval also, and hence g(z) > 0
on the whole interval [2 r, 2]. This proves that the second equation (5)
has a positive solution v(x) e*g(x -b 2- ) on 0 _< x _< .
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