FINITE GROUPS WITH LARGE SUBGROUPS

BY
Hrrmur BENDER!

1. Introduction

Considerations concerning the distribution of involutions in the cosets of a
given subgroup are often useful in the study of groups of even order. The
reason seems to be that if the index | G:H | of a subgroup H of a (finite)
group @ is small compared to the number of involutions in &, not very many
involutions can enjoy the privilege to sit in a coset of H without sharing it with
any other involution. Those cosets however, which contain more than one
involution are controlled by the normalizers of non-identity subgroups of
H, because of the following observation:

Let 4 ¢ G be an involution. Then an element & ¢ H is inverted by u (i.e.
B* = h™")if and only if & = pu with an involution v e Hu.

In Section 2 we try to bring the above remarks in a more precise form, and
the relations derived there will be illustrated at two examples in Sections 3
and 4.

2. An inequality

Let G be a group with a subgroup H such that | J | > | G:H | where J de-
notes the set of involutions in G. Furthermore, define

Jn=setofueJ — H suchthat| HunJ | = n,

b, = number of cosets Hy %« H suchthat | Hgn J | = n,
¢ = number of u € J1 such that Cx(u) = 1,
f=\|J|/G:H|—-1>0.

Note that | J. | = nb, , and that J, consists of those involutions outside H
which invert exactly n elements of H. Clearly, H acts fixed-point-freely on
the set of u ¢ J; satisfying Cx () = 1. Then the two equalities in the follow-
ing lemma are obvious.

Lemma. (1) |J|=|JnH|+ b+ 2by+ 3bs+ «--.
(2) by = ¢+ m| H | for some integer m = 0.
B) i<f (|JnH|+by+2b;+3by+ -+-)—1—by—bg—by— ---

It remains to prove the inequality. Clearly, |G:H | =1 + Z;Zo b;.
Hence

|J|"‘IG:‘HI=IJnHl—l—bo+b2+2bs+3b4+"'.
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Since | J | — |G:H | = f| G : H |, it follows that
b= |G:H| —1—by— D isabi
=f (JnH|—=1—by+ bp+ 2bs+3bs + -++) —1—by— D isebi.
As by > 0, the inequality follows from this.

Remark. From some knowledge of normalizers of non-identity subgroups
of H one can obtain a lower bound, say b, of by. Replacing b, in the above
expression for b; by b, may then yield a more useful inequality.

3. The groups L,(7) and L,(9)

To begin with an easy example for the application of the lemma, consider a
group G of even order such that the centralizer of every involution is dihedral
of order 8. We will see that G looks like L, (7) or L (9).

Fix an elementary abelian subgroup V of order 4. Since V is contained in
two distinet Sylow 2-subgroups (of order 8), N¢(V)/V must be dihedral of
order 6.

Fix a subgroup X of order 3in N¢(V'). We refer to part (i) of the lemma as
Lemma, (i).

Case 1. Co(X) & No(V). Let A = Co¢(X) and H = Ng(X). Then
H = A(t) where ¢ is an involution of N x4y (X).

Since the centralizer of any involution is a 2-group, A has odd order, and
C.(t) = 1. The latter implies z* = 2 for all x ¢ A. Hence 4 is abelian.
Likewise, C¢ () is abelian and hence equal to A, for all elements = 1 of 4.

It follows that H° n A # 1 implies g e N¢(4). Since every involution of
N¢(A) inverts A, H must contain all involutions of N4 (4).

This implies | H n H* | < 2 for all involutions u outside H.

Hence b, = 0forn > 3.

There are a = | A | involutions in H, and each commutes with 4 involutions
outside H. Hence 2b, = | J2 | = 4a and thus b, = 2a.

The number of involutions (they are all conjugate) equals the index of the
centralizer of an involution. Hencef = |J|/|G:H| — 1 =2a/8 — 1 =
(a —4)/4.

Clearly, @ > 9 and ¢ divides by . Then Lemma 3 gives

0<th < 44(a+2a)—1—2a=12+4-12/(a—4)—1-—2a

a-—
<124+10 -1 — 20 = 21 — 2a.
It follows that o = 9and b; = 0. Now Lemma 1 yields
|G|/8 =|J|=|JnH|+2b;=a+ 4a = 5-9.

Hence | G| = 9-8-5; and since | A | = 9 divides |G:Ng(4) | — 1, it follows
that | Ne(4) | = 9-4.

Case 2. Ce(X) € Ng(V). Then Ne(X) & Nag(V). Let H = Ng(V).
Let ¢ be an involution outside H. Since ¢ normalizes H n H', and since H con-
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tains the normalizer of every subgroup of order 3 and every subgroup # 1
contained in V, H n H' must be elementary abelian. Hence ¢ inverts not
more than two elements of H.

H has 6 involutions outside V, and each commutes with 2 involutions out-
side H. Hence2b; = | J5| = 6-2and thusb, = 6. Furthermore, | JnH | =
9and b, = Oforn > 3. Since|H| =3-8, wehavef=|J|/|G:H|—-1=
3—1=2

Now Lemma 3 yields b, < $3(9 +6) —1 — 6 < 1. Henceb, = 0. Then
Lemma 1 gives

|G|/8 =|J|=|JnH|+ 2h=9+12 = 21.
Hence |G| = 7-3-8.
4. Janko's first simple group

Janko has studied a group @ of even order satisfying the conditions (i) and
(ii) below, and has shown that up to isomorphism there exists exactly one such
group G.
(i) Involutions of G are conjugate

(ii) Ifte@isaninvolution,then C¢(t) = (t) ® L where L is isomorphic to
the simple group A4; of order 60.

With help of our lemma we will determine the order of G. Another character-
free proof of this result is contained in an unpublished paper of Thompson.

Fix a Sylow 2-subgroup Q of G and an involution z ¢ Q. Since Q has order
8, and involutions of @ are already conjugate in N¢(Q), N¢(Q)/Q must be a
non-abelian group of order 3:7. We also need

4.1. Let U be a subgroup in Co(2) of prime order p 5= 2. Then Co(U) =
A (z) where A has order p or 15.  In particular, U is a Sylow p-subgroup of G.

Proof. The proof of Janko’s Lemma 3.1 shows that otherwise Ce(U) =
A (2) with A elementary abelian of order 3°,and N¢(4) = AVX with V a four-
group normalized by the subgroup X of order 3.

Since Ce (V) is a Sylow 2-subgroup of G, X centralizes some involution and
hence is conjugate to U. Hence Y = C,(X)X C B for some conjugate B of
A. ThenZ = Nygy(Y) & Ne(B) because B = Co(Y).

Clearly, C4 (V) = limplies | C4,(X) | = 8. It follows that Z isnon-abelian
of order 3, and that A is the only abelian subgroup of order 3* in N¢(4 ) and
hence even in a Sylow 3-subgroup of G. However, N¢(Z) has a normal
Sylow 3-subgroup containing both A and B, a contradiction.

In the following, let d = 3 if the subgroup 4 in (4.1) (always) has order 15;
in the other case, let d = 1.

Then (4.1) has the following consequence:

4.2. A subgroup of order 3 is inverted by 6d involutions and ceniralized by
2d-1 involutions.
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A subgroup of order 5 centralizes d tnvolutions.

Next we prove:

4.3. Let S be a subgroup of order 7in Ng(Q). If No(8) has even order, then
Ce(S) = 8.

Proof. Suppose false. Let A = Ce(S). By (4.1),a = | A | is not di-
visible by a prime < 5. Hence a > 49, and C,(t) = 1 for any involution ¢ of
Ng(8). Then tinverts A, and A is abelian. Likewise, C¢(z) is abelian, for
every element ¢ > 1 of A. Hence Ce(x) = A for all those elements. Clearly,
Nwgo (S) has a subgroup of order 3.

We apply the lemma to H = Ng(A) = ACx(t). Since Cy(t) contains a
non-identity 3-element and is fixed-point-free on A, Cx(¢) is cyclic of order 6.

If u is an involution outside H, then A n A* = 1, and hence H n H" is con-
jugate to a subgroup of Cx(¢).

H has a subgroups of order 6, and each is inverted by 6 involutions. Hence
| Jo | = 6a.

H has a involutions, and each is inverted (i.e. centralized) by 30 involu-
tions outside H. Hence | Jo| + | Js | = 30a.

Likewise, since any subgroup of order 3 is inverted by 6d involutions (4.2),
| Js| 4+ | Js | = 6da. Let x be an element of order 3in H, say z e N¢(Q). By
(4.2), x is centralized by 2d-2 involutions outside H ; and since no such involu-
tion inverts a non-identity element of H, we get ¢ = 2(d — 1)a. Since z
centralizes an involution of @, we cannot haved = 1. Thusd = 3.

It follows that by = a, bs = 4a, b, = 12a, and ¢ = 4a.

Now Lemma 3 yields (note that | H | > 6-49 > 120 = | Ce(2) |)

40 =c<b <f a4+ 12a + 2-4a + 5a) — 12a — 4a — a.
Hence 21f < 26. On the other hand,
f=|J|/|G:H|—1=6a/120 — 1> 49/20 — 1 = 29/20.

Thus 29 < 29-21/20 < 21f < 26, a contradiction.

Next let H = Ng(Q). Note that | H| = 168 > | Ce(z) | = 120, so that
we are in a position to apply the lemma. In fact,f = |J|/|G:H| -1 =
F—1=4

Let u be an involution outside H. Since @ is the centralizer of any four-
group in H, H n H" has no subgroup of order 4. Hence the elements of H in-
verted by u form a subgroup of order 1, 2, 3, 6, or 7. This makes it easy to
compute the numbers b, , 7 > 2, and c.

H has 8 subgroups of order 7, and each is inverted by 7e involutions, with
e =0or1;see (4.3). Hence|J;| = 8-7e.

H has 4-7 subgroups of order 6, and each is inverted by 6 involutions.
Hence | J¢| = 4:7-6.

H also has 47 subgroups of order 3, and each is inverted by 6d involutions
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(4.2). Hence | Js| + |Js| = 4-7-6d. Each subgroup X of order 3 is
centralized by 2d — 1 involutions (4.2). One of them lies in H, and 2¢ of
them lie in J7 because X normalizes 2 subgroups of order 7 in H. The re-
maining ones invert no non-identity element of H. Hencec¢ = 4:7(2d — 2 —
2e).

Each of the 7 involutions of H commutes with 24 involutions outside H.
Hence | Jo | + | Js| = 7-24, and thus | Jo| = 0.
We collect:

f=4%

c=87(d—-1—¢e) with e=0 or 1,

by =c+ 7-83m with m > 0 an integer (see Lemma 2),
by = 8:7(d — 1),

b = 4-7,

by = 8e,

all other b, equal 0, for =n > 1.
Next we apply Lemma 3 to get information on m:

87(d—1—e)+ 7-83m
<$@+287d—1)+5474+6-8)—87(d—1)—4-7— 8e.
This simplifies to
IM< L +3d+2E+2e—5+1+1—%3—3e+te

< 3d 4+ 3e+ 3+ 1.
Hence

4.4) m<d+e+ 15

From Lemma 1 we get
|J|=74+87d—1—e)+7-83m+3-87(d—1)+6-4-7+7-8

which simplifies to

(4.5) |J] =714 8(4d + 3m — 1)).

By (4.2), a subgroup of order 5 fixes exactly d involutions. Hence | J | = d
mod 5. This together with (4.5) yields

(4.6) 5 divides 2d + 2m — 1.

Supposed = 1. Thenm = 2, by (4.4) and (4.6). Thus (4.5) yields | G| =
8.5-3.7-73. TFortunately, 73 is a prime. Let P be a subgroup of order 73.
Then | No(P): P | divides 2-3-7 since Cp(z) = 1 for all elements x of order
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2 or 5 (or 3). Since obviously no divisor >1 of 8:5:3 is = 1 mod 73, we
actually have | G:N¢(P) | = 4-5-7x with z a divisor of 6. From 4-5-7 =
140 = —6 mod 73 we conclude that 73 divides —6x — 1.

This contradiction proves d = 3.

Next suppose m = 0. Then (4.5) yields |G| = 8:5-3-7-89. Let Phea
subgroup of (prime) order 89. Since no divisor >1 of 8:5:3 is = 1 mod 89,
and 88 is not divisible by 8 or 5, it follows that | @:Ne(P)| = 4-5:3-7z
withz = 1or2. From5-3-7 = 105 = 16 mod 89 we conclude that 89 divides
4-16z — 1, a contradiction.

Hence m % 0. Then (4.4) and (4.6) yield m = 5.

By 4.5),|J| =71 +8(12+15—1)) = 7(1 +208) = 7-11-19.

Thus, the order of G is 8:3-5-7-11-19.
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