ON THE HIGHER ORDER SECTIONAL CURVATURES

BY
A. M. NAVEIRA

The riemannian (holomorphic) higher order sectional curvatures are invari-
ants of the riemannian (kaehlerian) structure weaker than the riemannian
(holomorphic) sectional curvature. The study of these invariants is very in-
teresting as can be seen by the abundant bibliography on this subject; for
example, the articles of Thorpe, Gray, Stehney, Hsiung, Levko, . ...

If the riemannian sectional curvature of order two is bounded, Berger [1]
gives an estimation of the curvature tensor components. Later, Karcher [2]
gives an easy proof of this estimation. We shall prove in Section 1 a generaliza-
tion of these results to the higher order riemannian curvature tensor com-
ponents R, when the sectional curvature of order p is also bounded.

Thorpe [6] gives the characterization of the constancy of the riemannian
sectional curvature of order p and he concludes properties on the Pontrjagin
classes of these manifolds. In an earlier article [4] we give a characterization of
the constancy of the holomorphic sectional curvature of order p and we deduce
properties on the Chern classes of the kaehlerian manifolds with constant hol-
omorphic sectional curvature of order two. We shall generalize in Section 2
some results of Thorpe on riemannian sectional curvatures of order p to the
holomorphic sectional curvatures of order p and we shall conclude some proper-
ties on the Chern classes of the kaehlerian manifolds with constant holomorphic
sectional curvature of order p.

1. Higher order curvature tensor estimates

Let M be a riemannian manifold of even dimension » and let A?(M) denote
the bundle of p-vectors of M. AP(M) is a riemannian vector bundle with inner
product on the fiber AP(m) over m, m € M, related to the inner product on the
tangent space M,, of M at m by

g(ul A A upa Uy A A vp) = det {g(uia vj)}9 uj Uj € Mm‘

Let R denote the covariant curvature tensor of M. For each even p > 0 we
define the pth curvature tensor R, of M to be the covariant tensor field of order
2p given by

Ry(uy,...,up vy,...,0,)
1
= 2"717—' ﬁZS 8(“)8(ﬁ)R(“a(1), Uqy(2)s Up(1)» Umz)) te 1
. a,peSp

R(Ua(p- 1) Ua(py Vp(o-1y V(o))
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where u;, v; € M,,, S, denotes the group of permutations of (1,..., p) and,
for o € S, &() is the sign of a.

It is evident that the tensor R, has the following properties:

(i) It is alternating in the first p and in the last p variables.

(i) It is invariant under the operation of interchanging the first p variables
with the last p.

Hence, at each point m € M, R, may be regarded as a symmetric bilinear
form on AP(M). By use of the inner product on AP(M), R, at m may then be
identified with a self-adjoint linear operator on AP(M). Explicitly, this identifica-
tion is given by

g{Rp(ul /\ A up)a Uy A A vp} = Rp(ula'-~a up, Viyerns Up). (2)

If {u,,...,u,} is an orthonormal basis of the tangent space, the sectional
curvature of order p of the section generated by u;,, ..., u;, is given by

K. osuy) = Ry ooy Uy gy ooy Uy).

As is well known [7], R, satisfies the generalized first Bianchi Identity

p+1

kz“;l (_1)kRp(vla L] ﬁk’ L] Up+1, Uks Wis - - wp—- 1) = 0. (3)
Let

0= Min K(uy,...,u,), A= Max K(u;,...,u;).

uijEMm uijeMm

PROPOSITION 1. If the sectional curvature of order p of a compact orientable
riemannian manifold satisfies

0 < K(uy,...,uy) <A
then
227" HA — §)

IR (u, u,, u', u, u,, v)] <
o U ool € —— 2

@
where u = (ug,..., Uy—y), W = (Ugi1,..., Up), v = (g,..., V,_,), and
Ugy .oy Upy Uy, ..., U,y are orthonormal. The range of . is0 < o < p — L.
Proof. We shall use induction; since
Ry(uy, o ytty gy thy + X, Ugynny Uy, Uy + X)
— Ry(Uy, ..y Upog, Uy = Xy Uypy ooy Up_ g, Uy — X)

= 4R, Uy, . ..y Uy gy Upy Uyy ooy Uy, X)
foru = (uy, ..., u,y), we have |R,(u, u,, u, x)| < $(A — 6) for any unit vector
x orthogonal to u;, ..., u,. Suppose
227 (A — §)

R (u, u,, u', u, u, v)] <
IR,(w, u, pol < S m
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Since R, verifies the first Bianchi identity, we have
Ry(u, Uy + X, Uygqs .oy Upy Uy U, Uy + X)
p(Us Uy — Xy Uy gy ooy Upy Uy U, Uy — X)
+ Ry, tyy Uy q + Xy Uyygy oo v Upy Uy Uy Uy + X)
= Ry(Uy tyy Uy — X, Uynye ooy Upy Uy Uy Upyq — X) + * -
+ R(Uy thyy o oy Up_y, Uy + X, U, U, U, + X)
Uy Uy ooy Up_ 1y Uy — X, U, U, U, — X)
= 2p — o + 2R U, u,, u', u, v, X).
Thus for any unit vector x orthogonal to u,, ..., Upy Vis e v oy Upg

R, (u, u,, v, u, v, x)

— 1 R U, + x U, + x

U, — X
,ua+1,...,u uv,—' + -
21/2 2172
U, + x u, + x
+ R ( p 19 p21/2 ,u’ v) p21/2 >

up - X u,, - X
p 1s 21/2 > U, U, 21/2 .

By the induction hypothesis, we conclude

- R,

pP—a —
lRp(ua Uy, u,’ u, v, x)l < 2_'(A'—6)
p—a+2
2. The Chern classes of kaehlerian manifolds with
constant holomorphic sectional curvature

Let M be a kaehlerian manifold; let (z?, z") be a complex coordinate
system in M, (Z; = 0/0z', Z; = 0/0Z%) a ba51s of the complex tangent spaces
of M. Given a hermitian metrlc g on M, it is well known that there exists a
unique extension to a complex symmetric bilinear form on the complex tangent
space of M such that

9(Z;, Zj) = g(Z;, Zj) =0 and g(Z, Zj) = 9gij

are the components of a hermitian matrix. That extension permits definition of
a symmetric bilinear form on the fiber A(TS(M)), m € M, where AS(T(M)) is
a complex vector bundle on M, by

9Z4 N N Zy, Zg, N N Zg) = det {g(Z,,, Zp)}
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where 4,, Bye {1,...,n,1,..., i}. Moreover, for each coordinate neighbor-
hood it is possible to take g;; = ,; at a fixed point.

LEMMA 1. Let P be an oriented holomorphic p-plane with a complex basis
Zy....24321,...,Zy),p = 25. Then

2S( _ 1)(1/2)s(s— 1)

R, (P) = Y We(BR(Zyy A Zg) A+ A R(Zys N Zgs)

(23)' a,peSs
(%
Proof. Complete (Z,,...,2Z, Zy,..., Zy) to a complex basis (Z,, ..., Z,,
Zy,...,7Z;). Since
R(Z, A Zr) = jz_ g{R(Zk A Zp), Z; A Zj}Zi AZ;

i, 1

(for a kaehlerian manifold
9RZ N Zp), Z, N Zj} = g{R(Z, N Z7), Z; N\ Z))} = 0)
it is possible to write the right hand side of (5) as

2s(__1)(1/2)s(s—1)
= Y e@eBg{RZau A ZpD), Ziy A Z3} %
(25)! (@, ) o BeSs

X g{R(Zus A Zﬁi)a Zi, A ZJ,}Zil A Zjl A A Z;s A st
Where (l) = (ila sty is)’ (J) = (jly e :js)' Hence
9D, Z), N Zg, NN Zy, N Zz)

2s(__ 1)(1/2)s(s- 1)
= S B L PR Ea A Z)
. i), o p, Y, 0E€Ds
Zi1 A Zfl} X

coe s
0,

D

X g{R(Zys A Zg), Zi, N Z;,}ee()d1, - - 81,00

os l'yl

s 1)\(1/2)s(s—1)
SZED Ty weBereo)

(2s)! a, B, 7, 0¢€5s
X g{R(Zyy A Zg1), Zy,, A Zg,,} % -+ x g{R(Zys A Zps),
Z,, A Zz,}
= (_1)(1/2)s(s-l)g{Rp(Z1 Ao A Zs ANZr A+ A Zs)a
Zy, N ANZyg AN Zg, A AZg)
=g{R(Zy A ANZNZr AN NZ),Ziy NZg, A=+ A Zi, A Zg,).

This completes the proof, since with respect to any other p-vector spanned by
elements of the complex basis, both sides of (5) have zero component.
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Remark 1.

1
RWy A" N W)= o Z; e)RWor A Waa) A=+ A RWopmiy A Wop)
(6)

holds in general, where W,,..., W, are arbitrary elements of the complex
tangent space. We show the particular expression of (6) for (s, s)-planes.

COROLLARY 1. Suppose s > 0 and s’ > 0 are integers with s + s' < n. Let
P be an oriented holomorphic (2s + 2s')-plane with an oriented complex basis

(Zla e Zs+s” ZT’ cees Z(s+s')")
and let

T ={Z, A" AZy ANZj Ao A Zy;

Js*
l<ii< " <ig<s+s8,1<j, < "<j<s+5}
Then

(25)! (25! *
m Qgr R,(Q) A R,(Q™) @)

where p = 2s, p' = 25’ and Q¥ is the oriented complement of Q in P spanned by
elements of the preferred basis.

Rp+p’(P) =

Proof. By Lemma 1,
2s+s'(__ 1)(1/2)(s+s’)(s+s'— 1)

Ryip(P) = Z e(Pe(O)R(Z,y A Zs1) A -+

(2S + 25’)! 7, 0€Ss+s’
A R(Zy(s+s') A Z(é(s+s’))')‘

For each pair (i) = (i, << iy, () = (j;, <':* < jJ), we choose a pair

(is+ 15+ is+s’)’ (js+ 15+ - ’js+s’) such that (ib ey is+s’) and (jla o ,js+s') are
even permutations of (1,..., s + §"). Then

2s+s’( _ 1)(1/2)(s+s')(s+s' -1)

Rpp(P) = (s + 25)!

» .){ S deBARZuy A Zsp) A A R(Zuy, A z,-,,,)}

a, BeESs
/\{ T AR sy A Zigrry A
Py TEDs/
/\ R(Zip(s+s’) /\ th(s+s’)}
(2s)! 2s)! *
= 2 R A R, .
@s 1 2991 Qgr AQ) Q%)

The statements of Lemma 1 and Corollary 1 have an equivalent formulation



170 A. M. NAVEIRA

through higher order curvature forms ‘P;;‘. " '; regarding these forms as the
components of a tensorial form R, on M with values in the bundle of complex
p-vectors as follows: If W, ..., W, are vectors in the complex tangent space
andz = (m, Z,,...,2Z,, Z7, ..., Z;) is a complex frame, if W/,..., W), are
complex tangent vectors on the bundle of complex frames such that dIIWj =
W;, 1 <j < 2s, then
Rp(Wls ceey WZs) = Z \P;ll ?S(Wi’ R Wés)zil A te
@, W
NZyNZy Ao A Z,
wherel <i; <--*<ig<nl<j < <j; <n (5),(7) take the form
o 2s(_1)(1/2)s(s— 1) ; ;
2] b o=~ 7 o 1 coe las
wih )1 a’ﬂZES’ e(@e(B¥s, A A Wi, 8)

g o GNEONED

T T (DA D25 + 25)] w8 ERusss

fa(s+1)* * *la(s+s")
A \Pfﬁ(n 0 JB(s+s?)

As we know, the holomorphic sectional curvature of order 2s in a kaehlerian
manifold M of the holomorphic 2s-plane generated by

Koy ooy Xy IXy, ..., JX)

e(0)e(B)Yis e
&)

is given by
K,(P) = R,(Xy,..., X JXy, ..., JXy, Xy, Xy JXy, ..., TXY).

If 0 = (0%,..., 0° is the canonical form on the bundle of unitary frames,
set ¢' = 0' + i0""; we have the following Proposition [4] that characterizes
the constant holomorphic sectional curvatures.

PROPOSITION 2. Let M be a kaehlerian manifold with constant holomorphic
sectional curvature of order p, K,. Then the curvature form of order p is given by

, . 1
Wik = = K
ks T s+

{S!(]Si‘ A A ¢)is/\$jl A A a];
0= DIXSEY A A PR A P (10)

A¢ik+1/\...A¢is/\$]1/\.../\$jk-1/\('ﬁlk
/\$j"+'/\“‘/\&j’+“‘+5}:"'5}: Z ¢ln/\.
Age e 2

A ¢As A alx A A als}.
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Remark 2. In Proposition 2, we suppose, without loss of generality, that if
#(y, ..y d) N (.- sj) =rtheni;, =j,..., i =j,0<r<s

PROPOSITION 3. Let M be a kaehlerian manifold of dimension n. Assume that
M has constant pth holomorphic sectional curvature K, and constant qth hol-
omorphic sectional curvature K, for some even p and q withp + q = 25 + 25’ < n.
Then M has constant (p + q)th holomorphic sectional curvature cK,K,, where ¢
is given by

{(s + )P (s + s + 1) (2s)! 25)!
! @2s + 25! (s + DI + D! (s

Proof. By Proposition 2, it suffices to show that

4

\Il‘iil"‘i.f+s' e
(s + s + D!

R K,

{(s + S’)! ¢il /\ ...A ¢is+.v' /\ (-ﬁjl /\ ...A $j5+s'
+(+ = DIYSEY A A Pt A P
k A 11)
A ¢ik+1 A A ¢is+s’ A 61’1 Ao A ('b'ik—l A ('ﬁlk
/\g’ﬁfxn/\.../\ ('ﬁis+s'+...+5ji:...5is+s' 2
A

Js+st
1°° *As+s’

¢’~1 A A ¢ln+s' A 5/11 A A alus'}
but that is a consequence of (9) and (10).

PROPOSITION 4. Let M be a kaehlerian manifold with pth holomorphic sec-
tional curvature K, identically zero for some even p. Then M has qth holomorphic
sectional curvature identically zero for all ¢ > p.

The proof follows from Proposition 2 and (9).

PROPOSITION 5. Let M be a kaehlerian manifold with pth holomorphic sec-
tional curvature constant K,. Then the Chern classes c,(M), c3(M),...are
generated by c(M).

Proof. Since c(M) is represented, up to a constant factor, by (see [3])
Y Wi} where summation is over all s-tuples (iy, . . ., i), 1 < i; < n, it suffices
to show that 3" Wit. . i js a multiple of

YWHIEAN AN PR
Indeed, by Proposition 3, M has mpth holomorphic sectional curvature constant

for all integers m > 1. It is possible to verify the following by inspection of the
formula in Proposition 2: If the kth holomorphic sectional curvature is constant,
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then the coefficient of ¢/t A -+ A ¢/ A ¢/ A -+ A @P*in T Wit 1k is inde-
pendent of the choice j; < - < ji. It follows that 3. Wit:: ! is a multiple of

Zd,h A A ¢ik A (-ﬁ“ JNEER /\$ik.

Setting k = mp and k = p here, we quickly obtain the claim of the preceding
paragraph.
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