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Introduction

Given a module M over a ring R, G. Azumaya [1] introduced the dual
notions of M-projective and M-injective modules. These concepts have actually
led M. S. Shrikhande to a study of hereditary and cohereditary modules [5].
More recently Azumaya, Mbuntum and the present author obtained necessary
and sufficient conditions for the direct sum (R)s A, of a family of modules to be
M-injective [2]. While R-injective modules are the same as injective modules
over R, the class of R-projective modules in the sense of Azumaya in general is
larger than the class of projective R-modules. In this paper we introduce the
notion of a strongly M-projective module and the associated notion of a strong
M-projective cover. Next we investigate strong M-projective covers. We show
that if every module possesses a strong M-projective cover then R/9.I(M) is
(left) perfect, where I[(M) is the annihilator of M. If R/I(M) is perfect, we
show that every R-module A with tM(A) 0 possesses a strong M-projective
cover, where

tM(A) {x A If(x) 0 for allf Hom (A, m)}.
Another application of the ideas here is the result that if I(M) 0, then an
R-module B is strongly M-projective iff B is projective. In particular if R is
(left) perfect and 9.I(M) 0, then an R-module B is M-projective iffB is actually
projective. Since [(R) 0, we can regard this result as a generalization of the
"known" result that when R is perfect an R-module is R-projective iff it is
projective. It will be interesting to characterise the rings with the property that
R-projective modules are the same as the projective modules over R.

1. Preliminaries

Throughout this paper R denotes a ring with - 0, R-mod the category of
unital left modules. All the modules we deal with are unital left modules.
M denotes a fixed object in R-rood. We recall briefly the concepts of M-
projective and M-injective modules introduced by G. Azumaya and state two
results due to him [1].

DEVINITION }.1. A module P is called M-projective if given any eipmorphism
b: M -, N and any f: P -, N, there exists a 9: P --* M such that b 9 f.

Received July 2, 1975.
Research done while the author was partially supported by a NRC grant.

507



508 K. VARADARAJAN

An M-injective module is defined dually.

DEFINITION 1.2. An epimorphism if" A - B is called an M-epimorphism if
there exists a map h: A M such that ker ff c ker h 0.
M-monomorphisms are defined dually.

PROPOSITION 1.3. [1] Let P R-mod. Then the following statements are
equivalent.

(1) P is M-projective.
(2) Given any M-epimorphism A B and any f: P - B, there exists a

g P - A such that k g f.
(3) Every M-epimorphism onto P splits.

The dual of this proposition characterises M-injective modules.

DEFINITION 1.4. Co(M is the class of all M-projective modules, Ci(M) is the
class of all M-injective modules. For any A R-mod,

and
CP(A) {M R-mod A is M-projective}

Ci(A) {M e R-mod A is M-injective}.

PROPOSITION 1.5. [ ] (1) Cp(M) is closed under the formation of direct sums
and direct summands.

(2) Ci(M) is closed under theformation of direct products and direct factors.
(3) CP(A) is closed under submodules, homomorphic images andformation of

finite direct sums. IfA has a projective cover, CP(A) is closed under theformation
ofarbitrary direct products (and hence arbitrary direct sums as well).

(4) C i(A) is closed under submodules, homomorphic images and arbitrary
direct sums.

In this paper the term R-projective module will be used to denote a module
which is R-projective in the sense of Definition 1.1. As has already been pointed
out in [2] the class of R-projective modules in general is larger than the class of
projective R-modules.

LEMMA 1.6. Let A C,(M), K c A and i: K A the inclusion. If

i*: Hom (A, M) Hom (K, M)

is the zero map then A/K C,(M).

Proof. Write B for A/Kand let r/: A - B denote the canonical quotient map.
Let qS: M N be any epimorphism andf: B N any map. Since A C,(M),
there exists a map g: A M such that b 9 f r/. Now, g i*(9) O.
Hence g induces a map: B Msatisfying r/ g. It is clear that b f.

Recall that an epimorphism " A B is called minimal if Ker a is small in A.
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LEMMA 1.7.
isomorphism.

Any minimal M-epimorphism : A --. B with B Cp(M) is an

Proof By (3) of Proposition 1.3, z splits. Thus ker e is a direct summand of
A. Since ker e is small in A we see that ker e 0.

LEMMA 1.8. Let

be exact with i(K) small in A.
Hom (K, M) is the zero map.

If B Cp(M), then i*: Hom (A,M)

Proof
sequence

Let f Hom (A, M). Writing L for K c kerf we get an exact

0 K/L AlL B----. 0

where and are induced by and b respectively. Iff: A/L M is induced by
f, it is clear that kerf ker 0. Thus : AlL B is an M-epimorphism.
Moreover I(K/L) is small in A/L. Lemma 1.7 now implies that is an isomor-
phism and hence K/L 0. Thus, L K and i*(f) f f/K O.

2. Strongly M-projective modules

Given any set J and any A R-mod, we write A s for the direct product
]-[,s A and A(s) for the direct sum @,j A, where A, A for each a J.
The annihilator of A will be denoted by 9J(A).

DEFINITION 2.1 A module A is called strongly M-projective if A Cp(Ms)
for every indexing set J.

Trivially every projective module is strongly M-projective for every M R-
mod. From the second half of (3) of Proposition 1.5 we get the following as an
immediate consequence.

LEMMA 2.2 Let A Cp(M). If A possesses a projective cover, then A is
strongly M-projective.

DEFINITION 2.3. A submodule K of A is said to be M-independent in A if
given any x :/: 0 in K, there exists anfe Hom (A, M) such that f(x) O.

If K 0, the condition stated in Definition 2.3 is emptily satisfied. Also if
L = K c B c A and K is M-independent in A, then trivially L is seen to be
M-independent in B.

DEFINITION 2.4. A homomorphism f: A B is called M-independent if
kerf is M-independent in A.

LEMMA 2.5. Let d? A B be an M-independent epimorphism andL ker .
Then d? is an ML-epimorphism.
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Proof. For any x - 0 in L letfx:A M be such thatf,(x) 4: O. Let
fo: A M be the zero map. Let h: A M be defined by h(a) (f(a)),L.
Then ker h c ker b 0.
For any A e R-mod, let tM(A) {x e A If(x) 0 for allf e Hom (A, M)}.

Then tM(R) 2[(M). It is clear that A is M-independent in itself if and only if
tM(A) O.

DEFINITION 2.6. An object A R-mod is called M-independent if tM(A) O.

Remark 2.7. (a) Given x e A with x q t(A), there exists anf: A M with
f(x) O. Sincef/t(A) 0, we get an induced mapf" A/tM(A) M. Clearly
f(x + tM(A)) 760. Thus A/tM(A) is M-independent in itself. In otherwords
t(A/t(A)) 0. For any 9"A B it is clear that 9(tM(A)) c tM(B). Thus
tM is a radical on R-rood in the sense of Bo-Stenstr6m [6, Chap 1]. However,
tM is neither left exact, nor idempotent. For instance consider tz, on
Z-mod, where Zp Z/pZ. Then t(Z) pZ, t(pZ) pZZ. Thus

t(Z) c pZ pZ p2Z t(pZ).

Also t(t(Z)) p2Z 76 t(Z). This is just to impress upon the reader that
M-projectivity and M-injectivity can not in general be "subsumed" under
"torsion theories".

(b) When M is injective tM is the radical associated to a hereditary torsion
theory on R-mod.

It is easily seen that every A e R-mod is M-projective iff M is semi-simple iff
every A e R-mod is M-injective. The next theorem gives conditions under which
every A e R-mod is strongly M-projective.

THEOREM 2.8. The following statements are equivalent.
(1) Every R-module is strongly M-projective.
(2) Every cyclic R-module is strongly M-projective.
(3) R/9.I(M) is a semisimple Artinian ring.
(4) Ms is a semisimple R-modulefor every indexin9 set J.

Proof (1) (2) is trivial.
(2) (3). Any left ideal of R/9.1(M) is of the form I]9.1(M) with I a left ideal

of R satisfying I [(M). Let q:R]9.1(M) R]I denote the quotient map.
Then ker r/ I]9.1(M). Since R/gA(M) is M-independent in itself it follows that
I]9.1(M) is M-independent in R]9.1(M). If we write K for I]gA(M), from Lemma
2.5 it follows that r/ is an Mr-epimorphism. Assumption (2) implies that
R]I Cv(Mr). An application of (3), Proposition 1.3 shows that r/: R/91(M) -.
R/I splits in R-mod and hence in R/gA(M)-mod. Thus I](M) is a direct
summand of R/gI(M) as an R/gX(M)-module.

(3) =,- (4). Since 92(M)Ms 0 (for any indexing set J) we can regard Ms

as an R/N(M)-module. The R-submodules of Ms are the same as the R/I(M)
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submodules of Ms. The semisimplicity of R/9.1(M) implies that Ms is semi-
simple as an R]2l(M)-module and hence as an R-module also.

(4) = (1) is trivial.

Remark 2.9. M @p Zp (direct sum over all the primes p) is an example
of a semisimple Z-module for which Z/9.1(M) Z is not semisimple.

PROPOSITION 2.10. Ifevery M-independent R-module is injective then R/9.1(M)
is a semisimple ring.

Proof Since R/9.1(M) is M-independent, any left ideal of R/9.I(M) being a
submodule of R/9.1(M) is M-independent, and hence injective as an R-module.
Thus every left ideal of R/9.1(M) is an R-direct summand and hence an R]9.1(M)
direct summand of R/9.1(M).

LEMMA 2.1 1. For any A R-mod we have 9.1(M)A c tM(A).

Proof Trivial.

Remark 2.1 2. If A is any M-independent R-module, from Lemma 2.1 we see
that 9.1(M)A 0. Hence A can be regarded as an R/q2(M)-module in a natural
way. If R/9.1(M) is semisimple Artin (as a ring) then A is injective as an R/9.1(M)-
module. But in general A need not be injective as an R-module. Thus the con-
verse of Proposition 2.10 is not true. For instance let M Zp in Z-mod and
A Zp. Then 9.1(M)= pZ and Z/(M)= Zp is a field. Also tl(Z)=
tzp(Z) 0. However Z, is not injective as a Z-module.
When M is an injective R-module the converse of Proposition 2.10 is valid.

PROPOSITION 2.13. Let M be an injeetive R-module such that R[9.1(M) is a
semisimple ring. Then any M-independent R-module is injeetive

Proof. Let A be any M-independent R-module. Let I be any left ideal in
R and f: I A any map. We will show that f(I c 9.1(M)) 0 using the fact
that M is an injective R-module. Suppose on the contrary f(2) : 0 for some
2 I 2[(M). Since tl(A) 0 we can find a g: A M with g(f(2)) 0.
Since M is injective, there exists an h" R --+ M such that h lI g of. Then
0 g(f(2)) h(2) h(2.1) 2h(l) 0 since 2eg.l(m) and h(1)m.
This contradiction shows that f(I c 2[(M)) O.
Thus f induces a map f: I/I c 9.1(M) A. Clearly f is an R/92(M)-map.

The semisimplicity of R]9.1(M) implies that f can be extended to an R]9.1(M)
homomorphism 0: R/9.1(M) A. If q: R R[9.I(M) is the canonical quotient
map, then it is clear that 0 q’R A is an R-homomorphism extending
f: I A. Thus A is an injective R-module.

Combining Propositions 2.10 and 2.1 3 we get the following"

COROLLARY 2.14. When M is injeetive, each of the statements (1), (2), (3), (4)
of Theorem 2.8 is equivalent to (5) stated below:

(5) Every M-independent R-module is injective.
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3. Strong M-projective covers

DEFINITION 3.1. A minimal epimorphism : A B is called a strong
M-projective cover if

(1) A is strongly M-projective and
(2) is M-independent (in the sense of Definition 2.4)

As in the case of projective covers, strong M-projective covers do not exist in
general. Conditions for existence will be investigated presently. But before that
we will prove the essential uniqueness of a strong M-projective cover when it
exists.

LEMMA 3.2. Suppose : A B is a strong M-projective cover and n: P B
an epimorphism with P strongly M-projective. Then there exists an epimorphisrn
h: P A satisfying h n.

Proof. Let L ker . Since is M-independent, from Lemma 2.5 we see
that is an M’-epimorphism. Since P Cp(ML), by (2) of Proposition 1.3 we
get a map h: P A satisfying h n. Since n is onto, we get Imh + L A.
The smallness of L in A gives Imh A.

PROPOSITION 3.3. Suppose (Z A B, (z2 A2 B are any two strong
M-projective covers ofB. Then there exists an isomorphism h: A A2 such that
02o h Zl.

Proof By Lemma 3.2, there exists an epimorphism h" A1 A2 satisfying
2 h zl. If K1 ker 1, K ker h from 2 h (Z we immediately get
K c Ka. Hence K is M-independent in A and is also small in A 1. Lemma 2.5
now implies that h is a minimal MK-epimorphism. Since Az Cp(MK), an
application of Lemma 1.7 yields that h is an isomorphism.
We next show that any B R-mod which possesses a projective cover auto-

matically admits a strong M-projective cover. We will actually indicate a method
of constructing a strong M-projective cover of B from a given projective cover
of B.

THEOREM 3.4. Suppose B has a projective cover n" P - B. Let L ker n
and

T {x L If(x) O for allf nom (P, M)}.

Let : PIT B be the map induced by n. Then : PIT B is a strong M-
projective cover of B.

Proof. If i: T - P denotes the inclusion of Tin P, from the very definition of
T we have i*: Hom (P, M)- Hom (T, M) to be the zero homomorphism.
By Lemma 1.6 we see that PIT Cp(M). Clearly T is small in P. Hence the
canonical quotient map rl" P - PIT is a projective cover of PIT. Lemma 2.2
now yields PIT C(Ms) for every set J. It is easily seen that LIT is M-inde-



M-PROJECTIVE AND STRONGLY M-PROJECTIVE MODULES 513

pendent in PIT. In addition L/T is small in PIT. This proves that : PIT B
is a strong M-projective cover of B.

COROLLARY 3.5. If R is left perfect (resp. semiperfect) every module (resp.
cyclic module) over R possesses a strong M-projective cover.

PROPOSITION 3.6. SupposeM R-mod satisfies 9.1(M) O. Then B R-mod
is strongly M-projective iffB is projective.

Proof The implication is trivial. As for the implication =, let B be
strongly M-projective. Let

O___._K __F ___B.___..,O

be an exact sequence in R-mod with F free. Let {e,}s be as basis for F.
Suppose 0 - x k. Then x Y. 2e with at least one 2 - 0. Since Od(M) 0
there exists a g: R M with g(2) :/: 0. Then h: F M given by h Re
h Rea 0 for fl - clearly satisfies h(x) O. Thus K is M-independent in F.
By Lemma 2.5, b is an M/-epimorphism. Since B Cp(Mr), by (3) of Prop-
osition 1.3 we see that q5 splits. Hence B is projective.

COROLLARY 3.7. Let M R-mod be such that 9.1(M) O. Suppose B is an
R-module possessing a projective cover. Then B is projective iffB is M-projective.

Proof We have only to prove the implication . This is immediate from
Lemma 2.2 and Proposition 3.6.
Any R-module B satisfying 91(M)B 0 can be regarded as an R/(M)-

module. In particular this is the case if tt(B) 0 by Lemma 2.11.

LEMMA 3.8. Suppose B R-mod satisfies 9.1(M)B O. Then B is strongly
M-projective iff as an R/9.1(M)-module B is projective.

Proof From 91(M)Ms 0 we see that Ms is an R/9.1(M)-module, (what-
ever be the indexing set J). Also it is clear that for any A R-mod satisfying
Od(M) 0, the R-submodules of A are the same as the R/(M)-submodules of
A. It follows from this comment that B is strongly M-projective in R-mod iff B is
strongly M-projective in R/9.1(M)-mod. The annihilator 9R/I(M)(M) of M as an
R/9.1(M)-module is clearly seen to be zero. Lemma 3.8 now follows from
Proposition 3.6.

THEOREM 3.9. The following statements are equivalent.
(1) Every B R-mod satisfying 9.1(M)B O, possesses a strong M-projective

cover (in R-mod).
(2) R/9.1(M) is left perfect.

Proof (1) => (2). Let B R/9.I(M)-mod. Then B regarded as an R-module
satisfies 9.I(M)B 0. Let " A B be a strong M-projective cover of B
in R-rood. Let K ker . From (9.I(M)A)c 9.I(M)B 0 we see that
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[(M)A c K. Hence 0 induces a map " A/9.1(M)A B. Now, A/9.I(M)A is
an R/2l(M)-module and ker " K/I(M)A is small in A]9.1(M)A. Thus is a
minimal epimorphism in R/l(M)-mod. If i" 9.1(M)A A denotes the inclusion,
it is clear that

i*" Hom (A, M) HomR (9.1(M)A, M)

is zero. Hence for any indexing set J, the map i*" Hom (A, Ms)
HomR (t(M)A, M) is zero. Since A is strongly M-projective as an R-module,
applying Lemma 1.6 we see that A/2I(M)A is strongly M-projective in R-rood.
Now Lemma 3.8 implies that A/t(M)A is a projective R/(M)-module. Thus

" A/t(M)A B is a projective cover of B in R/9.l(M)-mod. This proves that
R/@t(M) is left perfect.

(2) = (1). Let B e R-mod be such that 9A(M)B 0. Let r" P --. B be a
projective cover of B in R/t(M)-mod. Then P is an R/2t(M)-direct summand
and hence an R-direct summand of @,s R/9.I(M) for some set S. If i" 9.1(M) -R denotes the inclusion, clearly i*" HOmR (R, M) HOmR (9.1(M), M) is zero
and hence

i*" HOmR (R, Ms) - HomR (9.1(M), M s)
is zero for every set J. Since R is free it is strongly M-projective in R-mod.
By Lemma 1.6 we see that R/9.I(M) is strongly M-projective in R-rood. From (1)
of Proposition 1.5 it follows that P is strongly M-projective in R-mod.
Now R/9.1(M) is M-independent. From this it follows immediately that
@s RIgA(M) and hence P are M-independent. If K ker z, then K is
M-independent in P (by the comments following Definition 2.3). Thus z" P
B is a strong M-projective cover of B in R-mod.

Obvious modifications in the proof of Theorem 3.9 yield"

THEOREM 3.10. The following statements are equivalent.
(1) Every cyclic B R-mod satisfying 9.1(M)B 0 possesses a strong M-

projective cover as an R-module.
(2) R/9.I(M) is semiperfect.

PROPOSITION 3.11. The following statements are equivalent.
(1) The direct product I-Ls B of any family B, of strongly M-projective

R-modules with 9.1(M)B 0 for all J is strongly M-prqjective.
(2) (R/gA(M))s is strongly M-projective for every indexing set J.
(3) R/9.1(M) is left perfect, and anyfinitely generated right ideal ofR/9.1(M) is

finitely related.

Proof Immediate consequence of Theorem 3.3 of [4] and Lemma 3.8.

REFERENCES

1. G. AZUMAYA, M-projective and M-injective modules (Unpublished).
2. G. AZUMAYA, F. MBUNTUM AND K. VARADARAJAN, On M-projective and M-injective modules,

Pacific Math, vol. 59 (1975), pp. 9-16.



M-PROJECTIVE AND STRONGLY M-PROJECTIVE MODULES 515

3. H. BASS, Finitistic dimension and a homolottical #eneralization of semi-primary rin#s, Trans.
Amer. Math. Soc., vol. 95 (1960), pp. 466-488.

4. S. U. CHASE, Direct products of modules, Trans. Amer. Math. Soc., vol. 97 (1960), pp.
457-473.

5. M. S. SHRIIHANDE, On hereditary and cohereditary modules, Canadian J. Math., vol. 25
(1973), pp. 892-896.

6. Bo-S’rENS’rRSM, Rin#s and modules ofquotients, Lecture Notes in Math., vol. 237, Springer-
Verlag, N.Y., 1971.

THE UNIVERSITY OF CALGARY
CALGARY, ALBERTA


