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Introduction

If S and T are sets andp: T S is a function, then a section ofp is a function
q: S T such that p q ls. According to the Axiom of Choice, there is a
section ofp if and only ifp is surjective. If (S, ) and (T, if) are measurable
spaces (or "Borel spaces"; S is a set and - is a sigma-algebra of subsets of S)
and if p: T S is measurable (i.e., p-I(A) ff for all A ), the question of
the existence of a measurable section q: S T arises. If there is a measure #
on S, it might only be required that p q 1/z-almost everywhere. We con-
sider below a still less restrictive possibility (called a "weak section").
The existence of measurable sections and related questions have been con-

sidered by many mathematicians" a good survey with many references is
Parthasarathy’s book [20]. Other references not mentioned there include
[7], [22, Lemma 4.1, p. 27], [2, Theorem 4, p. 135], [24], [4, Theorem 6],
[19, p. 15], [3, Chapter VIII], [17]. All of these papers (except [3]) assume
at least that T is metrizable space, most assume that it is also separable. ([24]
assumes only that T has a base with cardinal not exceeding the first uncountable
cardinal and is hereditarily Lindelof.) In the present paper, we are interested
in the situation for "large" spaces T.

If S and T are measurable spaces and p: T - S is a measurable function,
then a map p, which takes finite measures on T to finite measures on S may be
defined by p,(2)(B) 2(p-l(B)). In this situation, the following question has
been asked: If/z is a finite measure on S, does there exist a finite measure 2 on
T such that p,(2) /Z? This can be viewed as a problem on the extension of a
measure to a larger sigma-algebra. (See 1-18], [15], 1-1], [27], 1-13], [14].)

It is known [27], [14] that there is a connection between these two problems.
Indeed (compare Theorem 1.2, below), if q is a measurable section of p, then

q,(/z) has the property p,(2) /Z. In this paper we establish an approx-
imate converse for this result under certain topological conditions. Roughly
speaking, we show that if 2o is an extreme point of the set of all measures 2
with p,(2) #, then 2o is of the form q,(/z) for some weak section q of p.
See the precise statement and proof below (Theorem 1.3).

In the classical case of the problem of sections, the problem is related to two
others, namely "selection" and "uniformization," which can be described
(somewhat oversimplified) as follows. Let T’ S x T and let u: T’ S be
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the canonical projection. If R T’ and u(R) S, then a selection for R is a
function q: S T such that (s, q(s)) R for all s e S. A uniformization for
R is a set R’ R such that u-l(s) c R’ consists of exactly one point for each
s e S. If no measurability is involved, then the problems are related as follows.
If q is a selection for R, then {(s, q(s)): s e S} is a uniformization for R. If
R’ is a uniformization for R, then it is the graph of a function q" S T which
is a selection for R. If v: S R is a section of U]n, then v(S) is a uniformization
for R and hence the graph of a selection for R. If p: T S is a surjective
function, then its graph R {(p(t), t) e T } is a subset of T’, and a function
q: S T is a section ofp if and only if it is a selection for R.
Even when measurability is involved the problems are related in the classical

case where S and T are "small" spaces (say, Polish spaces). Then the graph of
a measurable function is a measurable set, the range of an injective measurable
function is a measurable set, etc. But in the case of "large" spaces, these
connections no longer exist. The question of finding a measurable section for a
measurable function p: T S is still equivalent to finding a measurable
selection for its graph, but that graph is no longer a measurable set. If v: S R
is a measurable section of u]n, then v(S) is a uniformization for R, but v(S) is
no longer a measurable set. L. D. Brown !-3] has proved a measurable selection
theorem for measurable sets which applies to some "large" spaces, but as
noted above, this does not yield a section theorem in those spaces.

1. Statements of the theorems

We begin with some definitions.
Let (S, -, p) be a finite measure space. We will write " for the com-

pletion of with respect to the measure p. If A, B e , then A and B are said
to be equivalent, written A _= B [p-I, iff p(A A B) 0. The equivalence class
of A is written [A]u, and the collection of all equivalence classes (the measure
algebra) is written /p. Recall that /# is a a-Boolean algebra in such a way
that the canonical projection " [# is a tr-homomorphism. The outer
(inner) measure associated with/ is denoted #* (p.). A set R

_
S is said to

be thick iff #*(R) p(S). If A
_

S, we write PA for the restriction of p to A,
defined by #A(B) #*(A c B) for B e ’.

Let (S, ) and (T, c) be measurable spaces. A function u: S T is
said to be measurable (from to aj) iff u-I(B) e " for all B e . If # is a
finite measure on , define a measure u.(kt) on aj by u.(p)(B) it(u-X(B)).
Recall the change-of-variables formula: Tfd[u.(p)] sfoudl for all
bounded C-measurable functions f: T R.

Let (S, , #) be a finite measure space, and let (T, ) be a measurable
space. Two measurable functions u, v: S T are weakly equivalent, written
u =- v[p],iffu-(B) v- (B) [p] for all B f#. If p: T Sandq:S- T
are measurable, then q is a weak section ofp iff p q 1 s [#].
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PROPOSITION 1.1. Let (S, -,/.t) be a finite measure space and let (T, f#)
be a measurable space. If u, v: S T are measurable functions, then the
following are equivalent:

(a)
(b) f u f v [a.e. #] for all bounded -measurablefunctionsf: T R;
(c) U,(PA) V,(Pa) for all A .
Proof (b) (a). Takef Z, the characteristic function of B ft.
(a) (c). For B m if, we have

u,(a)(B) (A u-X(B)) (A v-’(B)) v,(a)(B).

(c)(b). IfAe,then

solo u for [a.e. ].

To 1.2. Let {S, , ) be a finite measure space, let T, ) be a
measurable space, and let p: T S be a measurable function. Ifp has a weak
section, ten there is a measure 2 on G such that p,(2) .
Proo Letq:S T be a weak section of p, sothatpoq l s [g]. Let

q,(). Then p,(2) p,(q,(p)) (po q),(p) (ls),() .
We are interested in the converse of this theorem which would read: If there

is a measure 2 on ff such that p,() , then p has a weak section. An example
in Section 4 shows that the converse is not true in this generality. Topological
hypotheses will enable us to prove a partial converse (Theorem 1.3).

Let X be a completely regular space. (Throughout this paper, "completely
regular" will be understood to include "HausdorK") We will write Eb(X) for
the set of all bounded, continuous, real-valued functions on X, and (X) for
the set of all Baire sets in X, i.e., the smallest sigma-algebra with respect to which
all functions in o(X) are measurable. A finite measure on (X, (X)) is
tight iff for every > 0 there is a compact set K X with *(K) p(X) e.
We write (X) for the set of all tight probability measures on (X, (X)), and
topologize (X) by the weak topology [26, p. 181] defined by b(X). Recall
[8, p. 239] that if X is a compact Hausdorff space, and is a probability
measure on (X), then can be uniquely extended to a regular Borel prob-
ability measure such that

p (G) sup {p(K): K G, K compact Baire set}
for all open sets G X and

#^(B) inf {#^(G): G
___

B, G open}
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for all Borel sets B
___

X. In particular, if G is open, then #^ (G) It,(G), so
if F is closed, then # (F) #*(F). (In fact this extension is also valid for tight
Baire measures on noncompact spaces X [11, p. 144], [25, Satz 2.2.10].)
The main result is the following.

THEOREM 1.3. Let X and Y be completely regular spaces, and let p: X Y
be continuous. Let # 3(Y). If there is a tight measure 2 3(X) such that
p,(2) It, then there is a :(Y) to :(X) measurable weak section ofp.

The proof is in Section 3. Note that this is not a theorem about the measure
algebras of X and Y: there are many possible choices for the measure 2, each
having different null sets. In fact, for the choice of 2 made in the proof of the
theorem, the range of the weak section is 2-thick.

This theorem shows that the existence of a measurable weak section follows
from the existence of a certain tight measure. The following is a criterion for
the latter.

PROPOSITION 1.4. Let X and Y be completely regular spaces, let p: X - Y be
continuous, and let It 3(Y). Then there is a measure 2 3(X) such that
p,(2) It/fand only if Y is (according to It) locally somewhere the image (under
p) ofa compact set, that is, for every A M(Y) with It(A) > O, there is a compact
set K

_
X such that p(K)

_
A and It*(p(K)) > O.

This is proved in Section 2. The proof is largely routine.

COROLLARY 1.5. Let X and Y be completely regular spaces and let p: X --, Y
be continuous and surjective. Suppose

(a) X is a-compact; or

(b) X is locally compact and p is open; or

(c) X is a complete metric space andp is open.
Then, for every It 3(Y) there exists ) 3(X) with p,(2) It.

Proof. If A 3(Y) and It(A) > 0, then there is a compact set L
_
A with

It*(L) > 0 since It is tight. In each of the three cases we will show that there
is a compact set K

_
X with p(K)

_
L and It*(p(K)) > 0. This will complete

the proof by Proposition 1.4.
(a) X is a-compact" say X on= Kn where K, is compact. Thus

0 < It*(L)

It* (_ [Lcp(K,,)])
It* (=) p(K,, cp-(L)))

<- ., It*(P(K,, o P- (L))),
tl=l

so #*(p(K,, c p-(L))) > 0 for some n. But K c p-(L) is compact.
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(b) For each y L, choose xy e X with p(xy) y, and choose a compact
neighborhood Kr of xy. Since p is open, p(Ky) is a neighborhood of y, so there
are a finite number of points Yl,..., Y, L with ’_1 p(Kr,)

_
L. Thus

#*(p(Ky, c p-I(L))) > 0 for some i. But Kr, c p-a(L) is compact.
(c) We define inductively a sequence B, of closed subsets of X such that B,

is 1/n-bounded (i.e., B, is covered by finitely many sets of diameter at most 1In),
B,+I - B,, and p(B,) L (B, denotes the interior of B,). Take Bo X.
Suppose B,_ has been defined. For each y L, choose xr B?,_ with p(x)
y and choose a closed neighborhood Ur

_
B,_ of xy with diameter at most

1In. By compactness of L and openness ofp, there are a finite number of points
Yl,..., Yk L with U= p(Uy,)

_
L. Let B, U’=a ur,. This completes

the inductive definition of the B,. Let B ff= B,. Then B is closed and
totally bounded, hence compact. By completeness of X, we have p(B)

_
L. []

2. Existence of measures

PROPOSITION 2.1. Let X and Y be completely regular spaces and let p" X --, Y
be continuous. If t (X), then P,(IO (Y). The map p," 3(X) --, 3(Y) is

affine and continuous.

Proof Suppose # (X). Let e > 0. Then there is a compact set K
_
X

with #*(K) > 1 e. But p(K) is compact in Y. If B (Y) and B p(K),
then p,(#)(B) #(p-(B)) > #*(K) > 1 e, so p,(#)*(p(K)) > 1 .
Therefore p,(#) is tight.
To show that p, is affine, calculate

p,(tl + (1 t)v)(B) (tl + (1 t)v)(p-’(B))
tlt(p-’(B)) + (1 t)v(p-’(B))
tp,(lO(B) + (1 t)p,(v)(B).

To show that p, is continuous, it suffices to show that for each f fi;0(Y), the
map/ y fd[p,(/z)] is continuous on (X). But

;rf d[P*()] fxf P d,

andf p (gb(X), SO p xf p d# is continuous. []

THEOREM 2.2. Let X and Y be compact Hausdorffspaces and let p" X - Y be
continuous and surjective. Then p," 3(X) - 3(Y) is surjective.

Proof Define a linear operator T: (g0(Y) (g(X) by T(f) fop. Then
T is an isometry of ($;0(Y) onto a closed subspace of (g0(X). Let # e (Y).
Then f--, fd# is a linear functional of norm 1 on (g0(Y), so by the Hahn-
Banach theorem it can be extended to a linear functional of norm 1 on IE0(X).
Since 1 d# 1, the extension must be positive, and by the Riesz represent-
ation theorem the extension is of the form 9 9 dv for some v e (X).
Then for f 0(Y) we have fop dv f d#, i.e., p,(v) !. []
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It would be desirable to prove a proposition like the above for noncompact
spaces. One way to do it might be to imitate the above using one of the "strict"
topologies [23] for ($o(X) and (b(Y); the difficulty is in showing that f--f p
is a homeomorphism onto its range in a strict topology. Instead of that, we
will generalize Theorem 2.2 by applying the theorem to obtain Proposition 1.4.
We first prove three routine lemmas.

LEMMA 2.3. Let X be a completely regular space and let Y X. Then
(Y) Y c (X) provided one of the followin9 holds:

(a) Y is Lindelof,
(b) Y is a zero-set,
(c) Y is a cozero-set,
(d) X is metrizable,
(e) X is normal and Y is an F,.

Proof We prove (and use below) only case (a). Iff (b(X), then fir
(o(Y),soM(Y) Y(X). The set {U X: Uisan open Baireset} isa
base for the topology of X (since X is completely regular), so

{Y U: U
_

Xis an open Baire set)

is a base for the topology of Y. The sigma-algebra generated by a subbase
for the topology of a Lindelof space includes the Baire sets (see [6, Lemma 1.3]
the proof is the same as in [-8, Theorem C, p. 221]), and (X) is a sigma-
algebra containing the above base, so M(Y)

_
Y c 5(X). []

LEMMA 2.4. Let X be a subset of a locally convex space E. Suppose X is

Lindelof in the weak topology. Then the sigma-algebra of Baire sets for X in the
weak topology is the smallest sigma-algebra with respect to which hlx is measurable
for all h E*.

Proof The set {Xh-I(U):hE*, U_ Ropen} is a subbase for the
weak topology on X, and consists of Baire sets, so the sigma-algebra it generates
is (X) as in the previous proof. []

LEMMA 2.5. Let X be a completely regular space, let q(3(X), and let :U be
a subcollection of the collection of all compact subsets of X. If X is locally
somewhere an element of :,U (i.e., for every A (X) with I(A) > O, there is

K o:U with K A and la*(K) > 0), then there exist a (possibly finite) sequence
KI, K2, and a disjoint sequence Bx, Bz, M(X) such that B,

_
K,,

Un=l n=l

Proof Let k be the smallest positive integer k for which there is K oU
with #*(K) > 1/k; let K be such that #*(K) > 1/k. If #*(Ka) 1,
we are done; assume/*(K1) < 1. Let B ’(X) be such that B Ka and
/(B) /*(Ka). Let k2 be the smallest integer k for which there is K
with K

_
X\B and #*(K) 1/k; let K2 ,t be such that K2 --- X\B and
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#*(Kz) > 1/kz. If #*(K w Kz) 1, we are done; assume p*(K1 w Kz) < 1.
Let B2 ff (X) be such that K2 -Bz X\B and /(Bz)= #*(K2). Con-
tinuing in this manner, we obtain a sequence K, K2,..., e gCr, a disjoint
sequence B, B2, ff (J(), and a sequence k, kz,..., of integers such that
if K e gO(" and K X\(B w’"w Bn_l) then p*(K) <_ 1/(k, 1). I claim
that k, if not, then

n=l n=l

contradicting the finiteness of/. I claim next that #(X\ff= B,) 0. If not,
there is Ke with K___ X\ff=B, and #*(K) > 0. But for each n, we
have K X\(B w...w B,), so /(K) < 1/(k, 1), and thus #*(K) 0, a
contradiction. Replace B by B1 w (x\U, B,). The resulting sets have the
required properties. []

Proof of Proposition 1.4. Suppose there is a measure 2 (X) such that
p,(2) /. Let A e M(Y) with/ffA) > 0. Then 2(p-(A)) > 0, so (since 2 is
tight) there is a compact set K p-a(A) such that 2*(K) > 0. Note that
p(K) A. Now ifBe(Y) and B

_
p(K), thenp-(B) K, so t(B)

2(p-(B)) > 2*(K). Hence *(p(K)) > 2*(K) > 0. Thus Y is (according to
#) locally somewhere the image (under p) of a compact subset of X.

Conversely, suppose that Y is locally somewhere the image of a compact
subset of X. Then by Lemma 2.5 there exist compact sets K1, K2,..., --- Xand disjoint Baire sets Ba, B2,..., c_ y such that p(K,)

_
B,, U.= B, Y,

and #*(Uff=a p(K,)) 1. Let/, be the measure induced by # on p(K,), i.e.,

/,(A) #*(A) for all A M(p(K,)) p(K,) c M(Y).

By Theorem 2.2, there exist measures , on K, with p.(2,) /,. Define on
(X) by 2(A) Z, 2,(K, c A). Then 2 (X) and p.(2) /. []

3. The selection theorem

In this section we prove Theorem 1.3. We begin with some lemmas. Recall
that if X is a completely regular space, then the set (X) of tight probability
measures on X is also a completely regular space in the weak topology [26,
Theorem 1, p. 181]. We begin with three easy results on M((X)).

LEMMA 3.1. Let X be a completely regular space. Iff: X R is a bounded,
(X) to (R) measurable function, then the map l f d# is a bounded,,
((X)) to M(R) measurable function on 3(X).

Proof The class of all bounded Baire functions f: X R is the smallest
class of functions including the bounded continuous functions and closed under
bounded pointwise sequential limits [10, (11.46)]. The conclusion is true for
continuous functions f, and if f, f boundedly, then f, d --. f d# by the
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bounded convergence theorem. Hence the conclusion is true for all bounded
Baire functions. []

If A e 3(X) and r R, define X] 3(X) by X4 {/ 3(X)" #(A) >_ r }.
Here is a useful characterization of (3(X)) for compact X.

PROPOSITION 3.2. Let X be a compact Hausdorff space. Then (3(X)) is
the sigma-algebra generated by {XA" A (X), r R}.

Proof Let cg be the sigma-algebra generated by {X]" A ’(X), r R}.
By Lemma 3.1 we have cg

_
(3(X)). For each bounded Baire function

f:XR, letf"(X) R be defined byf’(#)- fd#. Thenf’ is
measurable when f is the characteristic function of a Baire set. Hence f’ is
Cg-measurable when f is a finite linear combination of such functions. Every
bounded Baire function on X is a bounded pointwise limit of such finite linear
combinations, so f’ is Cg-measurable whenf is a bounded Baire function on X,
hence in particular whenfis a continuous function on X. Now 3(X) is compact
since X is [26, p. 200], so by Lemma 2.4 we have cg (3(X)). []

LEMMA 3.3. Let X and Y be compact Hausdorffspaces, and let u" X Y be
(X) to (Y) measurable. If for every A (X) there is A’ 3(Y) with
u-l(A’) --A, then for every oAe(3(X)) there is 9.1’ (3(Y)) with
u (ga’)

Proof The set {u l(oA’)" 9.1’ (3(Y))} is a sigma-algebra, and (3(X))
is generated by the sets X of Proposition 3.2, so it suffices to prove the theorem
for of the form X]. Now by assumption there is A’ (Y) with u-(A’)
A. The definitions yield u 1(;],) X]. []

We will prove a result (Theorem 3.5) on weak equivalence of functions
which will be important in our proof of the existence of measurable weak
sections, but which is of independent interest.

PROPOSITION 3.4. Let X be a compact Hausdorff space, let (S, , #) be a
complete probability space, and let " (X)- [t be a cr-homomorphism.
Then there is an . to M(X) measurable function u" S - X such that u-I(A)
*(A) for all A M(X).

Proof Let 0" -// - be a lifting (see [16, Theorem 3, p. 992] or [11,
p. 36]). Then q)’ 0 o-M(X)- is a homomorphism of Boolean
algebras. For each s S, define

U {K
_

X" K is compact Baire and s c’(K)).

Now s is closed under finite intersections and does not contain 0; hence

0 or # 0. I claim 0 r consists of only one point. If xa, x2 6 X, then there
exist disjoint open Baire sets Gi with xi e Gi (i 1, 2). Now

(x\6,) w (x\6) x ,,
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so at least one of the (X\Gi) belongs to s, and the corresponding xi is not in
(’] ts. Let the unique element of 1 g( be called u(s). Thus u is a function
S ---, X. I claim next that u is measurable from - to (X). Let G be an open
Baire set in X. If u(s) G, then g(

_
G, so (by compactness) some finite

intersection of sets from oU is included in G, and hence some element of g(,
is included in G. Thus

u-’(G) {s e S: s e e’(G)} ’(G) e -.
Thus u is measurable. We have just proved that u-l(G) ’(G)e (G) for
open Baire sets G. But N(X) is generated by the open Baire sets and is a
a-homomorphism, so u-I(A) e (A) for all A e (X). []

THEOREM 3.5. Let X be a compact Hausdorff space, and let F be a closed
subset of X. Let (S, , #) be a complete probability space, and let u: S X
be to M(X) measurable. If F is u,(lO-thick, then there is v: S X, also
to M(X) measurable, such that u v [#] and v(s) Ffor all s S.

Proof Note (Lemma 2.3) that N(F)= F c 0(X). Define : M(F)--*
/p as follows. For A e M(F), choose A’ e (X) with A F ca A’, and let
(A) [u-(A’)], e //z. To show that is well defined, suppose also

A"eM(X) and AeFA". Then A’AA"e(X) and (A’AA")caF= 0,
so (since F is thick) u,(I)(A’A A")= 0, so p(u-(A’) A u-a(A"))= 0 and
[u-(A’)], [u-l(A")],. We claim that is a a-homomorphism. Indeed,
0 F c 0, so (0) [0]u; F F c X, so (I)(F) IX]u; irA F ca A’ and
B FcaB’, then AAB Fca (A’AB’), so (AAB) q(A) A(B); if
A, F ca A,, then QJ A, r (U A;), so ( A,) [,.J (A,). By Lemma
3.4, there is an - to (F) measurable function v: S --, F such that v-(A)
(A) for all A e 9(F). Thus v-(A)=-u-(A) [#] for all A e (X), so

v u []. []

THEOREM 3.6. Let X be a compact Hausdorff space, let (S, , #) be a
complete probability space, let T be a thick subset of S, and let u: T --. X be
T ca F to M(X) measurable. Then there is an to M(X) measurable function
v S X such that u =-

Proof Define : :A(X) /# as follows. For A e M(X), choose B e -such that u-(A) T c B, and define (A) [B]u. Then (I) is well defined
since T is thick, and (I) is a r-homomorphism as in the previous proof. By
Proposition 3.4 there is an , to M(X) measurable function v: S X such that
v-(A) (A) for all A (X). Thus

(vlr)-a(A) r c v-a(A) u-X(A) [/T] for all A e (X),

sou--villus]. []



MEASURABLE WEAK SECTIONS 639

If X is a completely regular space and x X, let ex denote the unit mass at x.
Define x {ex" x X}

_
(X). The map x ex is a homeomorphism

of X onto ( [26, Theorem 9, p. 187]. If A ’(X), we will write 9ta
{/ (X)" 0 < p(A) < 1}. Note 9ta M((X)) by Lemma 3.1.

PROPOSITION 3.7. Let X be a compact Hausdorff space and let 7 ((X)).
If7(9A) 0 for all A (X), then is 7-thick.

Proof We first prove the proposition in the special case that X is totally
disconnected (hence zero-dimensional [9, Theorem 3.5]). The algebra of open
and closed sets in X generates ’(X). If A is open and closed, then ;a is con-
tinuous, so the map # - p(A) is continuous, and therefore

a { (x). 0 < (A) < }

is an open Baire set. Note

( (X)\[3 {9ta" A is open and closed).

By the regularity of the regular Borel extension 7 of 7, we have 7^(E) 1
since 7(9tA) 0 for all open and closed A.
Now return to the general case. Let Y {0, 1}(x) have the product

topology, so that Y is compact and totally disconnected. For x e X, A e
M(X), define u" X - Y by

{; ifxA,u(x)(A)
if x A.

Then u is measurable from (X) to (Y). By Proposition 3.2, u,’(X)
3(Y) is ’(3(X)) to ((Y)) measurable. Let fl u**(7) 3((Y)). For
A ’(X), define

Ma {y Y" y(A) 1}.

Thus MA is open and closed in Y and A u-a(Ma). It follows that Ra
ua(RM). Also, (!ix u (ilr). By assumption, 7(.Ra) 0 for all A 6 (X),
so fl(Ra,) 0 for all A’ 6 (Y). By the first part of the proof, fl^ (ilr) 1.
We claim that 7*((!ix) 1. Let 6 ((X)) with 9.1 __p_ (!ix. By Lemma 3.3
there is 9.1’6 (3(Y)) with u(’) . It follows that ilr c u,(3(X))
’. Thus fl(9.1’) 1, so 7(9.1) 1. This shows 7*((tlx) 1, i.e., fflx is thick. []

We next prove a special case of Theorem 1.3.

THEOREM 3.8. Let X and Y be compact Hausdorffspaces and let p" X Y be
continuous and surjective. Thenfor every Baire probability measure # on Y there
is a (Y)U to (X) measurable weak section ofp.

Proof (i) Let .q {26 (X)’p,(2)= /}. By Proposition 2.1, R is
convex and closed (hence compact). By Theorem 2.2, R is nonvoid. The
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Krein-Milman theorem asserts that . has an extreme point 2. Now p,(2) #,
so [5, Theorem 3.3] 2 has a disintegration with respect to p, i.e., there is a
function u: Y 3(X) such that for all A (X) and B ’(Y), the map
y w- u(y)(A) is .(Y)"-measurable and

2(a p-()) j ,, u(y)(a) au(y).

By Proposition 3.2, the map u is (y)u to ((X)) measurable.
(ii) We will show that the compact set (- {ex: x e X} is u,(#)-thick.

By Proposition 3.7, it suffices to show that u,(p)(9a) 0 for all A e (X),
where 9ta {v e (X): 0 < v(A) < 1}. Suppose (for purposes of con-
tradiction) that u,(#)(9ta)> 0 for some A e (X). Define h: Y--, R by
h(y) u(y)(A); then h is (y)u to (R) measurable. Define ul, uz r 3(X)
by

ul(y)__lh--y)u(y)a if0 < h(y) < 1,

[u(y) otherwise,

uE( y) I1 -lh(y)
[.u(y)

u(Y)x\a if0 < h(y) < 1,

otherwise.

Then ul, u2 are (Y)" to (3(X)) measurable, 0 _< h(y) < 1,

#({y: 0 < h(y) < 1}) > 0,

and u(y) h(y)ul(y) + (1 h(y))u2(y). Let r be such that 0 < r < 1 and

#({y: 0 < h(y) < r}) > 0.

Define u3, u4 Y -’ (3(X) by

u(y)
u3(Y) I. u(y) + r- h( y)

if h(y) >_ r,

Ul(Y) +

u2(y) otherwise,

1 h(y) u2(y) ifh(y) > r,

otherwise,

so that ru3(Y) + (1 r)u4(y) u(y). Let

u3(y) u,(y) d(y)

(Pettis integrals). Then 2 r23 + (1 r),4.
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I claim that P,(/3) P- Let B e (Y). For all B’ e N(Y) we have

f ),( y) d#(y) f l d#(

u(y)(x) @(y)
’B

2(p- (B’ c B))

2(p-(B) p-(B’))

u(y)(p-’(B)) dl2(y),

so u(y)(p- (B)) X(Y) for #-almost all y. Now

0 <_ u3(y)(p-a(B)) <_ 1, 0 < u4(y)(p-(B)) <_ 1,

and u ru3 + (1 r)u, so

u3(y)(p- *(B)) ug(y)(p- (B)) ),(y) for #-almost all y.

Then p,(23)(B) p,(u3(y))(B)@(y)= ;,(y)dp(y)= /(B), so that
p,(23) /t. Similarly p,(24) p. Thus 23, /4 ff R.
We next claim that (u3(y))y r disintegrates 23 and (u4(y))y r disintegrates

24. Indeed, if A’ e (X), B e N(Y), then (since u3(y)(p-l(B)) 0 for almost
all y B)

23(A’ p-a(B)) .I u3(y)(A’ p- (B)) dp(y)

.I. ua(y)(A’ p-a(B)) dl(y)

< .f, u 3(y)(A’) air(y).

Similarly 24(A’ p-(B)) < u4(y)(A’)dlu(y). But u ru3 + (1 r)u4
and

2(A’ c p-’(B)) u(y)(A’) dl(y),

SO

and

23(A’ c p-(B)) f u3(y)(A’) dl(y)

24(A’ c p-a(B)) f u4(y)(A’) dp(y).
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Finally, take B {ye Y’0 < h(y) < r}. Then p(B) > 0 and for all
y e B we have u3(y)(A) h(y)/r > O, u4(y)(A) 0. Thus

and

23(A p-a(B)) f, u3(Y)(A) dl(y) > 0

24(A p-I(B)) J, u4(y)(A)dla(y) O.

Thus 23 # 2,, which contradicts the choice of 2 as an extreme point of
This contradiction shows that u,()(a) 0, hence that is u,(g)-thick.

(iii) By Theorem 3.5, there is u" Y
for all y e Y. But is homeomorphic to X and () ((X)), so
there is v" Y X which is (Y)" to (X) measurable with u’(y) %) for
all y e Y. If A e (X), then u(y)(A) u’(y)(A) [a.e. g] by Proposition 1.1, so

2p-.,(B)(A) 2(A p-l(B))

.[, u(y)(A) d(y)

.[, u’(y)(A) d(y)

so V,(UB) 2o-,(a). Finally, (p V),(UB) p,(V,(U,)) P,(2-,(B)) , SO

V is a weak section ofp.
Theorem 3.8 constitutes the main step in the proof of Theorem 1.3, which

we now complete.

Proof of Theorem 1.3. Recall that X and Y are completely regular spaces,
that p" X Y is continuous, 2 e (X), e (Y), and p,(2) . By Prop-
osition 1.4, Y is (according to ) locally somewhere the image (under p) of a
compact set in X. By Lemma 2.5, there exist compact sets K, K2,..., in X
and disjoint Baire sets B, B2, in Y such that

U B. Y, p(K.) B. and ,* p(K.) 1.
=1 n=l

For each n, there is by Theorem 3.8 a function u," p(K,) K, such that

p u. 1(. [o(.].
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By Theorem 3.6, there is v," B, K, with Volp(K.) u, [pp(K.)], so

po l) lB. []AB.].

Definer" YXbyv(y) v,(y) foryeB,. Thenpov lr[p].

4. Concluding remarks

We display a counterexample to a possible strengthening of the main theorem.
Weak sections do not always exist.

Let T be the unit circle in the complex plane; T is a compact group under
multiplication. Let o M(T). Let D

__
T be a countable dense subgroup,

and let S T/D have the quotient sigma-algebra aj; i.e., for B
__

S, define
B aj iff p-I(B) o, where p" T T/D is the canonical projection. Let /1
be normalized Haar measure on T, and let p p,(/1). Now D acts ergodically
on T, i.e., #(B) 0 or 1 for all B e c. Note that (/1)ss is a disintegration
of/1 with respect to p (but not a strict disintegration).
We claim thatp has no weak section. Suppose q" S T were a weak section.

Then q,(p) would be a Borel measure on the compact set T; also q,(#)(A) 0
or 1 for all A -. Hence q,(p) ex for some x T. Finally we have

1 ex(p- (p(x))) p,(ex)({p(x)})

p,(q,(p))({p(x)}) p({p(x)})

/1(xD) /1({xd}) O,

a contradiction.
In this case there is a measure/l (T) with p,(/1) p, but the set

a {v e (T)" p,(v) }

is not closed and has no extreme points; if there were an extreme point, the
argument of Theorem 3.8 could be applied to produce a weak section.

Here are a few remarks concerning the choice of definitions for this paper.
The Baire sets have been chosen rather than the Borel sets for use in "large"

spaces; one reason is the following example showing that the pointwise limit
of a sequence of Borel measurable functions f," T -, S need not be Borel
measurable. Let T [0, 1] and S [0, 1][’ 1] with the product topology.
For n 1, 2, 3,..., definef," T --, S as follows"

f,(t)(x) 1 /x nit- x[.

The f, are continuous, hence Borel measurable. But f, converges pointwise to
the function f: T S given by

f(t)(x) { ift=x,iftx.
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If A [0, 1] is nonmeasurable, then K {s S: s(x) 1 for all x .4} is
closed, hence Borel, but f-I(K) A is not measurable. On the other hand,
it is easy to show that the pointwise limit of a sequence of Baire functions is
Baire.
For real-valued functions on a measure space, equality almost everywhere

is an extremely fruitful equivalence relation. For functions with values in a
"large" space, it is not such a useful relation; the "weak equivalence" used
here seems to be better for some purposes (the name comes from the case of
functions with values in a locally convex space, where the notion is well known).
Here is a standard example which shows that the two notions are not the same.
Let T, S, and f: T S be as in the previous paragraph. Define g: T ---, S by
9(t)(x) 0. Then f and 9 are Baire measurable functions. Now f(t) :/: 9(t)
for all t; but if h is a bounded real-valued Baire function on S, then h(f(t))
h(9(t)) for all but countably many t, so f 9 [Lebesgue].
One cannot hope to prove uniformization-type theorems in the situation

envisioned in this paper. If T is compact and has no G-points, then S T
contains no Baire set whicti is uniform. Neither can one hope to obtain section
theorems from measurable selection theorems: If T is compact with cardinal
greater than the continuum and p: T T is the identity, then its graph in
T T is not a Baire set, so a measurable selection theorem for Baire sets will
not yield a measurable section for p.
We mention without details some extensions of results proved above.
One could proceed further (in the compact case) using the results in the proof

of Theorem 3.8 to establish a representation for any 2 (X) with p,(2) /.
The extreme points of .q are of the form v,(/), where v is a weak section of p.
Further, if v and u are weak sections of p, then v,(/) u,(/) if and only if
v u [/], so the set F of weak equivalence classes of weak sections of p can
be identified with the set of extreme points of .q. According to the Choquet-
Bishop-deLeeuw theorem [21, p. 24], there is for each 2 q a probability
measure on F such that 2 r V,(l)d(v). This generalizes Proposition 7
or [14-1.

There is known to be a connection between sections and liftings (see [11,
p. 169]). Let Y be a compact Hausdorff space, and let/z be a Baire measure on
Y with support all of Y. Let X be the Stone space for the measure algebra of
(Y,/); it will be realized below as the set of multiplicative linear functionals
on L(Y, !). There is a canonical continuous surjective map p: X Y (p is
essentially restriction of multiplicative linear functionals on the algebra L(Y, l)
to the subalgebra ((Y)). If q: Y X is a M(Y)’-measurable weak section
of p, then a lifting 0 for L(Y, la) is defined by O(f)(y)= q(y)(f), for f
L(Y, #), y Y. Of more interest, if q is a measurable section of p, then 0 is a

stron9 lifting (i.e., O(f) f forf ((Y)) and if p(q(y)) y a.e. then 0 is an
almost stron9 lifting [11, p. 127]. Whether strong liftings exist in general is not
known. If there do exist Y, / such that L(Y, It) has no strong lifting (or,
equivalently [11, p. 127-1, has no almost strong lifting), then it would follow
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that Theorems 1.3 and 3.8 cannot be improved by replacing "weak section" by
"section" or by "p q 1 a.e." (This paragraph resulted from a comment
made by the referee, and a discussion with J. Rosenblatt.)

It can be shown that Theorems 3.5 and 3.6 are true for completely regular
spaces X when the hypothesis that u,() be tight is added. This is done by
applying the respective theorems together with Lemma 2.5.

It would be interesting to generalize Theorem 1.3 to allow certain dis-
continuous maps p and/or nontight measures 2. It would be interesting to
know whether Proposition 3.4 is true for more general spaces X (such as
realcompact spaces or measure-compact spaces).
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