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If a fibration has a cross section, does its Serre spectral sequence collapse?
The answer is no and the counterexample is provided by a fibration S2 x Sa

E S2 due to G. Hirsch (see [1, p. 45]). In this note we construct a large class
of counterexamples by a very simple method. These examples show that fibra-
tions with cross sections and noncollapsing spectral sequences are not an
isolated phenomena, and they provide counterexamples for numerous variations
of the question. In particular there is Koszul’s problem [1, p. 46]: Does a fiber
bundle with structural group a connected Lie group with a cross section have a
collapsing spectral sequence? We answer that in the negative.

Let G be any connected topological group which is not a sphere or contract-
ible. Let G --. H EG be the Hopf fibration. (Think of it as the fibration
given by the clutching map #" G x G --. G, or equivalently the principal bundle
induced by the pullback of the map ZG EfBo Ba which is the adjoint of
the identity fB fBa.)
Now let G act on EG by oh(g, (h, t)) (gh, t).

PROPOSIXION. EG H x o ZG ZG has a cross section and a noneollapsing
spectral sequence.

Proof. The cross section exists since the north pole is a fixed point under the
action 6) of G on EG.

Let E H x EG. Consider the generalized Wang exact sequence as
explained in Spanier [4, p. 455, Theorem 5],

Hq(E) ’* H’(Z,G)
’#’*

Hq+ ((CG, G) x (Z,G))

where 6: Hq(G x EG) Hq+ I((CG, G) x (EG)). Note that 6 is an isomorph-
ism for q > 0. Assume the coefficients are a field. Now the spectral sequence
will not collapse if i* is not onto, and i* is not onto if dish* is not trivial. Now
66)* is not trivial if

6)*(k) (1 x k) + (og*(k) x 1) + E(ai x b)

has nonzero cross-terms. Now by arguments similar to [3, Theorem 4-1, we
see that if#*(x) (1 x x) + (x x 1) + E(ai x bi),then

6)*(tr(x)) (1 x a(x)) + E(a x a(b)) where tr: H*(X)- H*(EX)
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is the suspension homomorphi:m. Since G is not contractible or a sphere, there
is an element x H*(G) such that #*(x) has nonzero cross-terms. Hence
&*(tr(x)) has nonzero cross terms and so the spectral sequence does not collapse.

Remarks. (1) One may construct examples of fibrations with cross sections
and noncollapsing spectral sequences given actions &’G x F F such that
o9 tb( *) is contractible and th* has nonzero cross terms. These fibrations
are of the form F E EG.

(2) One may construct examples where the base is not a suspension. For
example EG EG x G (EG) B6 has a cross section but the spectral sequence
cannot collapse since this bundle is universal with respect to the one con-
structed in the proposition.

(3) We may construct an example where the fiber is a manifold and the
structure group is a Lie group G. We may imbed G equivalently in D", the closed
unit disk with equivalent closed tubular neighborhood T. Then G acts on the
subset W of D" x I given by

W D" x I- (D"- T) x (1/3, 2/3).

Now W is homotopy equivalent to EG and is a manifold with boundary and o9

is homotopic to a constant. By doubling W we get a closed manifold M and an
action o9" G x M M such that o9 is homotopic to a constant. Hence, by (1),
we have the required example.
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