PEAK SETS AND SUBNORMAL OPERATORS¹

C. R. PUTNAM

1. Preliminaries

If T is a bounded operator on a Hilbert space \mathfrak{H} , its spectrum and point spectrum will be denoted by $\sigma(T)$ and $\sigma_p(T)$ respectively. An operator T on \mathfrak{H} is said to be subnormal if it has a normal extension on a Hilbert space \mathfrak{H} containing \mathfrak{H} . Concerning such operators, see, for example, Halmos [8]. We recall some properties. If N is the minimal normal extension of T then $\sigma(N) \subset \sigma(T)$ (P. R. Halmos). In fact, $\sigma(T)$ consists of $\sigma(N)$ together with some of the bounded components of the complement of $\sigma(N)$ (J. Bram). A subnormal T on \mathfrak{H} will be called completely subnormal if there exists no nontrivial subspace of \mathfrak{H} which reduces T and on which T is normal. In particular, if T is completely subnormal, its point spectrum is empty.

For a compact set X of the complex plane, let C(X) denote the continuous functions on X and R(X) denote the functions on X which are uniformly approximable on X by rational functions with poles off X. Recall that a compact S is a spectral set for an operator T if X contains $\sigma(T)$ and if $||f(T)|| \le \sup_f \{|f(z)|: z \in X\}$, where f ranges over the rational functions with poles off X. It is clear that the spectrum of a subnormal operator is a spectral set for that operator. According to a result of von Neumann [12], if X is a spectral set for any operator T and if $f \in R(X)$, then f(T) is defined and f(X) is a spectral set for f(T). Further, if $\sigma(T)$ is a spectral set for any operator T and if $R(\sigma(T)) = C(\sigma(T))$, then T must be normal. (See also Lebow [11].) A local, generalized version of this last theorem for subnormal operators, and also for operators T for which $\sigma(T)$ is a spectral set, was given by Clancey and Putnam [3], [4].

Clearly, if T is subnormal on $\mathfrak H$ and if $f \in R(\sigma(T))$, then f(T) is subnormal; in fact, if N is a normal extension on $\mathfrak H$ of f(T) is a normal extension on $\mathfrak H$ of f(T). It may be noted that if N is the minimal extension of T then f(N) is the minimum extension of f(T) provided f satisfies certain natural necessary conditions; see Olin [13], also Conway and Olin [5]. If also $R(\sigma(T)) = C(\sigma(T))$ then T is normal.

A closed subset Q of a compact set X is said to be a peak set of R(X) if there exists a function (peak function) f in R(X) such that f(z) = 1 for $z \in Q$ and |f(z)| < 1 for $z \in X - Q$. See Gamelin [7, p. 56]. A peak set consisting of a single point is called a peak point.

The main result (Theorem 1 of section 2) establishes a connection between peak sets of $R(\sigma(T))$ and reducing subspaces of T when T is subnormal. This

Received February 17, 1976.

¹ This work was supported by a National Science Foundation research grant.

result, and the Corollaries 1-4 (Section 3) and Theorem 2 (Section 4), imply that if T is completely subnormal and if $N = \int z \, dE_z$ is its minimal normal extension, then E(Q) = 0 for certain "small" Borel sets Q of the complex plane, an absolute continuity property of N. Several related open problems are noted in Section 5.

2. The main result

Theorem 1. Let T be a subnormal operator on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{R} \supset \mathfrak{H}$. Suppose that

(i) Q is a proper peak set of $R(\sigma(T))$ and $E(Q) \neq 0$.

Then $E(Q)\mathfrak{H}$ is a subspace of $\mathfrak{H}, \neq 0$ and $\mathfrak{H},$ which reduces T; $T \mid E(Q)\mathfrak{H}$ is subnormal with the minimal normal extension E(Q)N on $E(Q)\mathfrak{H}$ (the range of E(Q)); and

$$(2.1) \sigma(T \mid E(Q)\mathfrak{H}) \subset Q.$$

If, in addition to (i), it is also assumed that

(ii)
$$R(Q) = C(Q)$$
,

then

(2.2)
$$T \mid E(Q)\mathfrak{H}$$
 is normal.

Proof. Let P denote the (orthogonal) projection $P: \mathfrak{R} \to \mathfrak{H}$. For $f \in R(\sigma(T))$ and $x \in \mathfrak{H}$, we have f(T)x = f(N)x and hence f''(T)x = f''(N)x for $n = 1, 2, \ldots$ If f is a peak function for Q then, on letting $n \to \infty$, we obtain $f''(T)x \to E(Q)x$, so that $E(Q)\mathfrak{H} \subset \mathfrak{H}$ and E(Q)P = PE(Q)P. Thus, E(Q)P = PE(Q)P is an orthogonal projection. Since, for $x \in \mathfrak{H}$, $TE(Q)x = \lim_{n \to \infty} Tf''(T)x = \lim_{n \to \infty} f''(T)Tx = E(Q)Tx$ (strong limits), we see that T (hence T^*) commutes with TE(Q)P, and hence TE(Q)TE(Q) reduces TE(Q)TE(Q). This argument is similar to one used by Sz.-Nagy and Foias [20, pp. 253–254].

Next, we show that $E(Q)\mathfrak{H} \neq 0$. Suppose the contrary, so that E(Q)P = 0, and hence $0 = N^{*k}E(Q)P = E(Q)N^{*k}P$ for $k = 0, 1, 2, \ldots$. Since N is the minimal normal extension of T, \mathfrak{R} is the space spanned by the vectors $\{N^{*k}x: x \in \mathfrak{H}, k = 0, 1, 2, \ldots\}$, and so E(Q) = 0, in contradiction to (i). Since Q is a proper subset of $\sigma(T)$, the relation $E(Q)\mathfrak{H} \neq \mathfrak{H}$ will follow from (2.1).

That $N_1 = E(Q)N$ on $E(Q)\Re$ is a normal extension of $T \mid E(Q)\Re$ is clear. Since $N_1^{*k} = E(Q)N^{*k}$ for $k = 0, 1, 2, \ldots$, then any reducing space of N_1 between $E(Q)\Re$ and $E(Q)\Re$ contains the space spanned by the vectors $\{E(Q)N^{*k}x: x \in \Re, k = 0, 1, 2, \ldots\}$, that is, $E(Q)\Re$, and hence N_1 is minimal. In order to prove (2.1) we first show that

$$\partial \sigma(T \mid E(Q)\mathfrak{H}) \subset Q.$$

Let $z \in \partial \sigma(T \mid E(Q)\mathfrak{H})$. Then there exists a sequence of unit vectors $x_n = E(Q)x_n \in \mathfrak{H}$ such that $(T-z)x_n \to 0$. Thus,

$$||(T-z)z_n|| = ||(N-z)E(Q)x_n|| \ge \text{dist } (z, Q) \to 0,$$

so that $z \in Q$, that is, (2.3) holds.

Since, by (2.3), relation (2.1) holds if $\sigma(T \mid E(Q)\mathfrak{H})$ has no interior, it may be supposed that

$$R = \operatorname{int} \sigma(T \mid E(Q)\mathfrak{H}) \neq \emptyset.$$

Clearly, $\sigma(T \mid E(Q)\mathfrak{H}) \subset \sigma(T)$ and, by (2.3), $\partial R \subset Q$. Since Q is a peak set of $R(\sigma(T))$, there exists an $f \in R(\sigma(T))$ such that f = 1 on Q and |f| < 1 on $\sigma(T) - Q$. In particular, f is analytic on R, continuous on $R \cup \partial R$, and f = 1 on ∂R . Hence, $f \equiv 1$ on R, so that $R \subset Q$, and (2.1) follows.

If (ii) holds, then (2.2) follows either from von Neumann's result mentioned above or from [3].

3. Peak sets

A number of consequences of Theorem 1 can be deduced by noting some special peak sets.

COROLLARY 1. Let T be a completely subnormal contraction ($||T|| \le 1$) on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{R} \supset \Omega$. If Z is any Borel set on |z| = 1 of arc length measure 0, then E(Z) = 0.

Proof. Clearly, it is sufficient to prove the corollary when Z is closed and is contained in $\sigma(T)$. It was shown by F. and M. Riesz [18, pp. 36–37], using a result of Fatou, that there exists a function f(z) continuous on $|z| \le 1$, analytic on |z| < 1, and such that f = 1 on Z and |f| < 1 otherwise. By Mergelyan's theorem (cf. [7, p. 48]), f(z) is the uniform limit on $|z| \le 1$ of polynomials and hence, since $\sigma(T) \subset \{z : |z| \le 1\}$, $f \in R(\sigma(T))$. Thus, Z is a peak set of $R(\sigma(T))$. Since Z has planar measure 0, it follows from the Hartogs-Rosenthal theorem (cf. [7, p. 47]) that R(Z) = C(Z). Since T is completely subnormal, Theorem 1 implies that E(Z) = 0.

Remarks. The above corollary was proved by Olin [13] using other methods; see also Conway and Olin [5, Corollary 7.11, p. 63]. The use of the Fatou-Riesz result above is based on a similar argument in Sz.-Nagy and Foias [20, p. 253].

COROLLARY 2. Let T be completely subnormal on \mathfrak{H} with the minimal normal extension $N = \int z \ dE_z$ on $K \supset H$. Let C be any rectifiable simple closed curve satisfying

(3.1) either
$$\sigma(T) \subset (C \cup \text{int } C)$$
 or $\sigma(T) \subset (C \cup \text{ext } C)$.

If Z is any Borel subset of C having arc length measure 0 then E(Z) = 0.

Proof. Suppose first that $\sigma(T) \subset (C \cup \text{int } C)$. In view of the Riemann mapping theorem there exists a function w = f(z) which maps $C \cup \text{int } C$ homeomorphically onto $|w| \le 1$ and which is conformal in int C; cf., e.g., Rudin [19, p. 282]. As in the proof of Corollary 1, it follows from Mergelyan's theorem that f(z) is the uniform limit on $C \cup \text{int } C$ of polynomials in z, so that, in particular, $f \in R(\sigma(T))$. Since T is subnormal, then, as noted in Section 1, f(T) is subnormal on \mathfrak{H} with f(N) on \mathfrak{R} as a normal extension. Further, f(N)is the minimal normal extension of f(T). For, if M is the minimal extension of f(T) then $f(T) \subset M \subset f(N)$ and if z = g(w) is the inverse mapping of w = f(z), then $T = g(f(T)) \subset g(M) \subset g(f(N)) = N$. Since N is the minimal extension of T, it follows that g(M) = N, and hence M = f(N). In this connection, see Putnam [14]. A similar argument shows that, since T is completely subnormal, so also is f(T). According to a theorem of F. and M. Riesz, the function f is absolutely continuous on C, so that W = f(Z) has arc length measure 0 on |w| = 1; cf., e.g., Tsuji [21, p. 318]. Clearly, if f(N) has the spectral resolution $f(N) = \int w dF_W (= \int f(z) dE_z)$, then E(Z) = F(W). Thus, the assertion of Corollary 2 follows from Corollary 1 in case the first condition of (3.1) is assumed. The proof of Corollary 2 when the second condition of (3.1) is assumed can be reduced to the proof in the first case by mapping ext C conformally onto int C.

For any closed set α of the complex plane, let cap (α) denote its logarithmic capacity. For this concept, see Hille [9, pp. 280–289], Tsuji [21, pp. 55 ff.], or, for a concise summary, Zalcman [22, pp. 132–136].

COROLLARY 3. Let T be completely subnormal on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{H} \supset \mathfrak{H}$. Let C be any simple closed curve (not necessarily rectifiable) satisfying (3.1). If Z is a closed subset of $\sigma(T) \cap C$ for which cap (Z) = 0, then E(Z) = 0.

Proof. As in the proof of Corollary 2 it may be assumed that the first condition of (3.1) holds. Since C is now not necessarily rectifiable the F. and M. Riesz theorem is not applicable. However, since cap (Z) = 0, then also cap (f(Z)) = 0 (Tsuji [21, p. 347]) and hence f(Z) has arc length measure 0 on |w| = 1. The desired result now follows from Corollary 1 by the same argument as that used at the end of the proof of Corollary 2. (Of course, if C is rectifiable, Corollary 3 is already implied by Corollary 2.)

COROLLARY 4. Let T be completely subnormal on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{H} \supset \mathfrak{H}$. Let C be a rectifiable simple closed curve having an arc length parametrization of class C^2 (or, more generally, C may consist of a finite number of C^2 -smooth arcs) and satisfying

(3.2)
$$\operatorname{meas}_{1}(C \cap \sigma(T)) = 0,$$

where meas₁ refers to arc length measure on C. Then E(C) = 0.

Remark. Note that in Corollary 4, the sets C, int C and ext C all may contain portions of $\sigma(T)$, unlike the situation in Corollaries 2 or 3, where it was assumed that one of the sets int C or ext C was free of points of $\sigma(T)$.

Proof. It can be supposed that int $C \cap \sigma(T) \neq \emptyset$ and ext $C \cap \sigma(T) \neq \emptyset$, since, otherwise, Corollary 4 is a special case of Corollary 2. It was shown by Lautzenheiser [10, Chapter 4, proof of Theorem 4.6], using a result of Davie and Øksendal [6], that the set $Q = (\operatorname{ext} C)^- \cap \sigma(T)$ is a peak set of $R(\sigma(T))$. (See also Putnam [15, pp. 269–270] and the remarks of [16, Section 7].) Clearly, relation (i) of Theorem 1 is satisfied and so E(Q)N is the minimal normal extension of $T \mid E(Q)\mathfrak{H}$. Relation (3.2) and an application of Corollary 2 to $T \mid E(Q)\mathfrak{H}$ then imply that E(C) = 0.

4. Peak points

It follows from Theorem 1 that if T is subnormal on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{R} \supset \mathfrak{H}$ and if z is a peak point of $R(\sigma(T))$ which is not an eigenvalue of T then $E(\{z\}) = 0$. Equivalently, if Ω denotes the set of peak points of $R(\sigma(T))$, then $(\sigma_p(N) \cap \Omega) \subset \sigma_p(T)$. Since $\sigma_p(T) \subset \sigma_p(N)$, we have then the following:

Theorem 2. If T is a subnormal operator on \mathfrak{H} with the minimal normal extension $N = \int z \, dE_z$ on $\mathfrak{R} \supset \mathfrak{H}$, then

(4.1)
$$\sigma_p(T) \cap \Omega = \sigma_p(N) \cap \Omega.$$

It was recently proved by Radjabalipour [17, p. 388], that if T is subnormal then

$$(\sigma_p(T^*))^* \cap \Omega = \sigma_p(T) \cap \Omega,$$

where $(\sigma_p(T^*))^* = \{\bar{z}: z \in \sigma_p(T^*)\}$. As Radjabalipour has noted, in view of Melnikov's peak point criterion (cf., e.g., [7, p. 205], or [22, p. 45]), any boundary point, z, of a component of the complement of $\sigma(T)$ is a peak point of $R(\sigma(T))$, and hence, if T is completely subnormal, relation (4.2) implies that \bar{z} cannot belong to $\sigma_p(T^*)$. It follows in a similar way from (4.1) of Theorem 2 that if T is completely subnormal then $E(\{z\}) = 0$. This result was obtained by a different method in Olin [13], and also in Conway and Olin [5, Corollary 7.10, p. 63]. Incidentally, it is possible for T to be completely subnormal even though $\sigma_p(T^*)$ is empty; such an example was given by Clancey and Morrel [2] using a result of Brennan [1].

5. Remarks

We do not know whether Corollary 4 remains true if C is not assumed to be smooth but is supposed only to be rectifiable, thus yielding a generalization of Corollary 2. Correspondingly, the problem is open as to whether a modification

of Corollary 4, obtained by omitting completely the hypothesis of rectifiability and replacing (3.2) by the weaker condition

$$(3.3) cap (C \cap \sigma(T)) = 0,$$

also remains true. Such a hypothetical result would of course generalize Corollary 3. Finally, we note that it is also unknown whether the minimal normal extension of a completely subnormal T can have an eigenvalue lying in the boundary of $\sigma(T)$. As is seen from Theorem 2, a necessary condition is that such a value not be a peak point of $R(\sigma(T))$.

Added in proof. The above question as to whether the minimal normal extension of a completely subnormal T may have an eigenvalue in the boundary of $\sigma(T)$ has since been answered affirmatively (and independently) in the preprints A class of subnormal operators by R. F. Olin and Eigenvalues of minimal normal extensions by M. Radjabalipour.

REFERENCES

- 1. J. E. Brennan, Invariant subspaces and rational approximation, J. Func. Anal., vol. 7 (1971), pp. 285-310.
- 2. K. F. CLANCEY AND B. MORREL, The essential spectrum of some Toeplitz operators, Proc. Amer. Math. Soc., vol. 44 (1974), pp. 129-134.
- 3. K. F. CLANCEY AND C. R. PUTNAM, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc., vol. 163 (1972), pp. 239–244.
- 4. ——, Normal parts of certain operators, J. Math. Soc. Japan, vol. 24 (1972), pp. 198-203.
- 5. J. B. CONWAY AND R. F. OLIN, A functional calculus for subnormal operators, II, preprint.
- A. M. DAVIE AND B. K. ØKSENDAL, Rational approximation on the union of sets, Proc. Amer. Math. Soc., vol. 29 (1971), pp. 581-584.
- 7. T. W. GAMELIN, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 8. P. R. Halmos, A Hilbert space problem book, Van Nostrand, N.Y., 1967.
- 9. E. HILLE, Analytic function theory, vol. II, Blaisdell, Waltham, Mass., 1962.
- R. G. LAUTZENHEISER, Spectral sets, reducing subspaces, and function algebras, Thesis, Indiana Univ., 1973.
- 11. A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl., vol. 7 (1963), pp. 64-90.
- 12. J. VON NEUMANN, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., vol. 4 (1951), pp. 258-281.
- 13. R. F. OLIN, Functional relationships between a subnormal operator and its maximal normal extension, Thesis, Indiana Univ., 1975.
- 14. C. R. Putnam, *The spectra of subnormal operators*, Proc. Amer. Math. Soc., vol. 28 (1971), pp. 473–477.
- 15. ——, Invariant subspaces of certain subnormal operators, J. Func. Anal., vol. 17 (1974), pp. 263-273.
- 16. ——, Generalized projections and reducible subnormal operators, Duke Math. J., vol. 43 (1976), pp. 101-108.
- 17. M. RADJABALIPOUR, On subnormal operators, Trans. Amer. Math. Soc., vol. 211 (1975), pp. 377-389.
- F. AND M. RIESZ, Über die Randwerte einer analytischen Funktionen, Quatrième Congrès des Math. Scand. Stockholm, 1916, pp. 27–44.

- 19. W. Rudin, Real and complex analysis, McGraw Hill, N.Y., 1966.
- B. Z. Sz.-Nagy and C. Foiaş, Sur les contractions de l'espace de Hilbert, IV, Acta Sci. Math. (Szeged), vol. 21 (1960), pp. 251-259.
- 21. M. TSUJI, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
- L. ZALCMAN, Analytic capacity and rational approximation, Lecture notes in mathematics, vol. 50, Springer, 1968.

PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA