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1. Preliminaries

If T is a bounded operator on a Hilbert space ., its spectrum and point
spectrum will be denoted by a(T) and a,(T) respectively. An operator T on I
is said to be subnormal if it has a normal extension on a Hilbert space R con-
taining .. Concerning such operators, see, for example, Halmos [8]. We recall
some properties. If N is the minimal normal extension of T then a(N) c a(T)
(P. R. Halmos). In fact, a(T) consists of a(N) together with some of the
bounded components of the complement of a(N) (J. Bram). A subnormal T on

Ib will be called completely subnormal if there exists no nontrivial subspace of .
which reduces T and on which T is normal. In particular, if T is completely
subnormal, its point spectrum is empty.
For a compact set X of the complex plane, let C(X) denote the continuous

functions on X and R(X) denote the functions on X which are uniformly
approximable on Xby rational functions with poles off X. Recall that a compact
S is a spectral set for an operator T if X contains a(T) and if IIf(T)ll -<
sup {If(z)l z e X}, wherefranges over the rational functions with poles off X.
It is clear that the spectrum of a subnormal operator is a spectral set for that
operator. According to a result of yon Neumann [12], if X is a spectral set for
any operator T and iff e R(X), then f(T) is defined and f(X) is a spectral set
forf(T). Further, if a(T) is a spectral set for any operator T and if R(a(T))
C(a(T)), then T must be normal. (See also Lebow [11].) A local, generalized
version of this last theorem for subnormal operators, and also for operators T
for which a(T) is a spectral set, was given by Clancey and Putnam [3], [4].

Clearly, if T is subnormal on Ib and iffe R(a(T)), then f(T) is subnormal;
in fact, if N is a normal extension on R of T then f(N) is a normal extension
on R off(T). It may be noted that if N is the minimal extension of T thenf(N)
is the minimum extension off(T) provided f satisfies certain natural necessary
conditions; see Olin [13], also Conway and Olin [5]. If also R(a(T))=
C(a(T)) then T is normal.
A closed subset Q of a compact set X is said to be a peak set of R(X) if there

exists a function (peak function)f in R(X) such that f(z) 1 for z Q and
If(z)l < 1 for z x Q. See Gamelin [7, p. 56]. A peak set consisting of a
single point is called a peak point.
The main result (Theorem 1 of section 2) establishes a connection between

peak sets of R(a(T)) and reducing subspaces of T when T is subnormal. This
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result, and the Corollaries 1-4 (Section 3) and Theorem 2 (Section 4), imply
that if T is completely subnormal and if N j" z dE.. is its minimal normal
extension, then E(Q) 0 for certain "small" Borel sets Q of the complex plane,
an absolute continuity property of N. Several related open problems are noted
in Section 5.

2. The main result

THEOREM 1. Let T be a subnormal operator on with the minimal normal
extension N z dE= on P, . Suppose that

(i) Q isaproperpeakset ofR(a(T))andE(Q) O.

Then E(Q) is a subspace of , 0 and , which reduces T," T E(Q) is
subnormal with the minimal normal extension E(Q)N on E(Q)R (the range of
E(Q)) and

(2.1) o’(TI E(Q)) c Q.

If, in addition to (i), it is also assumed that

(ii) R(Q)= C(Q),

then

(2.2) T IE(Q) is normal.

Proof. Let P denote the (orthogonal) projection P" R . Forf R(a(T))
and x ., we have f(T)x f(N)x and hence f"(T)x =f"(N)x for n
1, 2, If f is a peak function for Q then, on letting n , we obtain
f"(T)x E(Q)x, so that E(Q)f9 and E(Q)P PE(Q)P. Thus, E(Q)P
PE(Q)P is an orthogonal projection. Since, for x, TE(Q)x lim Tf"(T)x
limf"(T)Tx E(Q)Tx (strong limits), we see that T (hence T*) commutes
with PE(Q)P, and hence E(Q) reduces T. This argument is similar to one
used by Sz.-Nagy and Foia [20, pp. 253-254].

Next, we show that E(Q) : O. Suppose the contrary, so that E(Q)P O,
and hence 0 N*kE(Q)P E(Q)N*kP for k 0, 1, 2, Since N is the
minimal normal extension of T, R is the space spanned by the vectors
{N*x’x I, k 0, 1, 2,...}, and so E(Q)= 0, in contradiction to (i).
Since Q is a proper subset of a(T), the relation E(Q) va will follow from
(2.).

That Nx E(Q)N on E(Q)R is a normal extension of T IE(Q) is clear.
Since N]’ E(Q)N* for k 0, 1, 2,..., then any reducing space of N1
between E(Q)f9 and E(Q)R contains the space spanned by the vectors
{E(Q)N*x x ., k 0, 1, 2,... ), that is, E(Q)R, and hence N1 is minimal.

In order to prove (2.1) we first show that

(2.3) Oa(T E(Q)) Q.
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Let z c c3cr(T[ E(Q)). Then there exists a sequence of unit vectors x,
E(Q)x, such that (T z)x - O. Thus,

[](T- z)z,[] [[(N- z)E(Q)x,[[ >_ dist (z, Q) 0,

so that z 6 Q, that is, (2.3) holds.
Since, by (2.3), relation (2.1) holds if a(T[E(Q)) has no interior, it may be

supposed that
R int a(T[ E(Q)) v O.

Clearly, a(T] E(Q)) c a(T) and, by (2.3), OR c Q. Since Q is a peak set
of R(a(T)), there exists an f6 R(a(T)) such that f on Q and [f[ < 1 on
(T) Q. In particular, f is analytic on R, continuous on R w OR, and f
on OR. Hence, f _= on R, so that R c Q, and (2.1) follows.

If (ii) holds, then (2.2) follows either from von Neumann’s result mentioned
above or from [3].

3. Peak sets

A number of consequences of Theorem can be deduced by noting some
special peak sets.

COROLLARY 1. Let T be a completely subnormal contraction (IITll -< 1) on
with the minimal normal extension N z dE= on R 1). IfZ is any Borel set
on Iz] of arc length measure O, then E(Z) O.

Proof. Clearly, it is sufficient to prove the corollary when Z is closed and is
contained in (T). It was shown by F. and M. Riesz [18, pp. 36-37], using a
result of Fatou, that there exists a functionf(z) continuous on ]z] < 1, analytic
on [z[ < 1, and such thatf on Z and ]f] < 1 otherwise. By Mergelyan’s
theorem (of. [7, p. 48]), f(z) isthe uniform limit on Izl < 1 of polynomials
and hence, since (T) c {z: Iz] < 1}, f R(r(T)). Thus, Z is a peak set of
R((T)). Since Z has planar measure 0, it follows from the Hartogs-Rosenthal
theorem (cf. [7, p. 47]) that R(Z) C(Z). Since T is completely subnormal,
Theorem implies that E(Z) O.

Remarks. The above corollary was proved by Olin [13] using other methods;
see also Conway and Olin [5, Corollary 7.11, p. 63]. The use of the Fatou-Riesz
result above is based on a similar argument in Sz.-Nagy and Foias [20, p. 253].

COROLLARY 2. Let T be completely subnormal on with the m&imal normal
extension N z dE= on K H. Let C be any rectifiable simple closed curve
satisfying

(3.1) either a(T) c (C w int C) or a(T) c (C w ext C).

IfZ is any Borel subset of C having arc length measure 0 then E(Z) O.
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Proofi Suppose first that a(T) c (C w int C). In view of the Riemann
mapping theorem there exists a function w f(z) which maps C w int C
homeomorphically onto Iw[ < and which is conformal in int C; cf., e.g.,
Rudin ]-19, p. 282]. As in the proof of Corollary 1, it follows from Mergelyan’s
theorem thatf(z) is the uniform limit on C w int C of polynomials in z, so that,
in particular, f e R(tr(T)). Since T is subnormal, then, as noted in Section 1,
f(T) is subnormal on . with f(N) on R as a normal extension. Further, f(N)
is the minimal normal extension off(T). For, if M is the minimal extension
of f(T) then f(T) M f(N) and if z g(w) is the inverse mapping of
w f(z), then T g(f(T)) c g(M) g(f(N)) N. Since N is the minimal
extension of T, it follows that g(M) N, and hence M f(N). In this con-
nection, see Putnam [14]. A similar argument shows that, since Tis completely
subnormal, so also is f(T). According to a theorem of F. and M. Riesz, the
function f is absolutely continuous on C, so that 14’ f(Z) has arc length
measure 0 on Iwl 1; cf., e.g., Tsuji [21, p. 318]. Clearly, if f(N) has the
spectral resolution f(N) w dFw (= f(z) dEz), then E(Z) F(W). Thus,
the assertion of Corollary 2 follows from Corollary in case the first condition
of (3.1) is assumed. The proof of Corollary 2 when the second condition of (3.1)
is assumed can be reduced to the proof in the first case by mapping ext C
conformally onto int C.

For any closed set of the complex plane, let cap () denote its logarithmic
capacity. For this concept, see Hille [-9, pp. 280-289], Tsuji [21, pp. 55 ft.-I, or,
for a concise summary, Zalcman [22, pp. 132-136].

COROLLARY 3. Let T be completely subnormal on with the minimal normal
extension N z dEz on . Let C be any simple closed curve (not neces-
sarily rectifiable) satisfying (3.1). If Z is a closed subset of tr(T) m C for which
cap (Z) 0, then E(Z) O.

Proof As in the proof of Corollary 2 it may be assumed that the first con-
dition of (3.1) holds. Since C is now not necessarily rectifiable the F. and M.
Riesz theorem is not applicable. However, since cap (Z)= 0, then also
cap (f(Z)) 0 (Tsuji [21, p. 347]) and hencef(Z) has arc length measure 0 on
]wl 1. The desired result now follows from Corollary 1 by the same argument
as that used at the end of the proof of Corollary 2. (Of course, if C is rectifiable,
Corollary 3 is already implied by Corollary 2.)

COROLLARY 4. Let T be completely subnormal on with the minimal normal
extension N z dEz on . Let C be a rectifiable simple closed curve
having an arc length parametrization of class C 2 (or, more generally, C may
consist of a finite number of C2-smooth arcs) and satisfying

(3.2) meas (C m tr(T)) 0,

where meas refers to arc length measure on C. Then E(C) O.



392 c.R. PUTNAM

Remark. Note that in Corollary 4, the sets C, int C and ext C all may
contain portions of a(T), unlike the situation in Corollaries 2 or 3, where it was
assumed that one of the sets int C or ext C was free of points of a(T).

Proof. It can be supposed that int C c a(T) # 0 and ext C c a(T) # O,
since, otherwise, Corollary 4 is a special case of Corollary 2. It was shown by
Lautzenheiser [10, Chapter 4, proof of Theorem 4.6], using a result of Davie
and Oksendal [6], that the set Q (ext C)- c a(T) is a peak set of R(a(T)).
(See also Putnam [15, pp. 269-270] and the remarks of [16, Section 7].)
Clearly, relation (i) of Theorem 1 is satisfied and so E(Q)N is the minimal
normal extension of T E(Q). Relation (3.2) and an application of Corollary 2
to T IE(Q) then imply that E(C) O.

4. Peak points

It follows from Theorem 1 that if T is subnormal on . with the minimal
normal extension N z dEz on R ib and if z is a peak point of R(a(T))
which is not an eigenvalue of T then E({z}) 0. Equivalently, if fl denotes
the set of peak points of R(a(T)), then (ap(N)
ap(N), we have then the following:

TnEOgEM 2. If T is a subnormal operator on fO with the minimal normal
extension N z dEz on R , then

(4.1) ap(T)

It was recently proved by Radjabalipour [17, p. 388], that if T is subnormal
then

(4.2) (a,(T*))* c f* a,(T) E,

where (O’p(T*))* {: Z 6 ap(T*)}. As Radjabalipour has noted, in view of
Melnikov’s peak point criterion (cf., e.g., [7, p. 205], or [22, p. 45]), any
boundary point, z, of a component of the complement of a(T) is a peak point
of R(a(T)), and hence, if T is completely subnormal, relation (4.2) implies that
cannot belong to ap(T*). It follows in a similar way from (4.1) of Theorem 2
that if T is completely subnormal then E({z}) 0. This result was obtained
by a different method in Olin [13], and also in Conway and Olin [5, Corollary
7.10, p. 63]. Incidentally, it is possible for T to be completely subnormal even
though ap(T*) is empty; such an example was given by Claneey and Morrel [2]
using a result of Brennan [1].

5. Remarks

We do not know whether Corollary 4 remains true if C is not assumed to be
smooth but is supposed only to be rectifiable, thus yielding a generalization of
Corollary 2. Correspondingly, the problem is open as to whether a modification
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of Corollary 4, obtained by omitting completely the hypothesis of rectifiability
and replacing (3.2) by the weaker condition

(3.3) cap (C a(T)) O,

also remains true. Such a hypothetical result would of course generalize
Corollary 3. Finally, we note that it is also unknown whether the minimal
normal extension of a completely subnormal T can have an eigenvalue lying in
the boundary of a(T). As is seen from Theorem 2, a necessary condition is
that such a value not be a peak point of R(cr(T)).

Added in proof. The above question as to whether the minimal normal ex-
tension of a completely subnormal T may have an eigenvalue in the boundary
of a(T) has since been answered affirmatively (and independently) in the pre-
prints A class of subnormal operators by R. F. Olin and Eigenvalues of minimal
normal extensions by M. Radjabalipour.
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