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1. Introduction

We will extend results of Hsieh Xie-Fan [2], G. Freud [1], and M. Izumi, S.
Izumi and J.-P. Kahane [3] to several variables and obtain some refinements in
one variable. The main result in one variable is that if a Fourier series is
lacunary in a certain sense and satisfies a Lipschitz condition of a certain order
at some point ten the series is in the Lipschitz class of that order.
To establish this and related results, two steps are needed. The first is to use

lacunarity at a point to estimate the Fourier coefficients. This is accomplished
by a technique due to Noble [7] who worked on a related problem. We modify
the technique somewhat and where a special trigonometric polynomial was
used, we use a summable function on Rn whose Fourier transform is C and
has compact support. This is a technical improvement especially in several
variables. It also makes it possible to investigate two point or n point regularity
problems.
The second step is to go from the coefficient estimate to membership in a

Lipschitz class, a problem first investigated by Lorentz. We will use a result of
Pesek. (See Pesek [8] and [9] for proofs and references.) From these two results
and a counting argument we obtain various one point regularity results for
multiple Fourier series with gaps. These results apply to certain partial differen-
tial equations with constant coefficients. In the last section we give some
counterexamples that show our previous results are in some instances best
possible.
We wish to point out the possibility of posing analogous problems. Instead

of assuming regularity at a point, assume it on larger sets such as neighbor-
hoods, sets of positive measure, or submanifolds of the torus. Then ask what
lacunarity conditions will guarantee regularity on the whole torus. For a neigh-
borhood results are known. See Kahane [4]. In this case regularity is expressed
in terms of Sobolev spaces.

2. Preliminaries

We summarize the conventions, definitions, and results that we shall need.
Let T" be the n-dimensional torus. Let Rn be n-dimensional Euclidean space

and Z" be the lattice points ofR" with integer coordinates. By the identification
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T" - R"/(2nZ) we can and usually will identify functions on T" as functions on
R* which are 2n periodic in each variable.

If x=(x,...,x)R" and t=(t,...,t,)R" then xt=xt and

If a is a multi-order, then It will be clear from context which of
these conventions is being used.

Iff LI(R’), we define the Fourier transform off by

f(x) f f(t)e -’x’ at

C(R) is the class of infinitely differentiable functions on R" with compact
support. 6e is the Schwartz class of rapidly decreasing functions.
Iff LI(T") and m Zn, the Fourier coefficient off at m is given by

f(m) (2n)-n f f(t)e -’m’ dt
0,2nl

f(m)e’ is called the Fourier series off. If this series is absolutely conver-
gent, it converges to f
Iff L(T") and g L(R"), their convolutionf g is in L(T’) and is defined

by

Then

f g(x) fRnf(x Y)O(Y) dy.

We have

(1) (f g)^ (m) f(m)#(m)
wheref(m) is the Fourier coefficient offat m and (m) is the Fourier transform
of g evaluated at m.
We now define the Lipschitz class A(T’) for a > 0.

DEFINITION 1. Let k be the greatest integer less than a. We say thatf e A if
f has partial derivatives of all orders less than or equal to k and if- k < 1
then

Daf + t) Daf(x) O( -)
for all fl of order k, but if k 1 then

Daf x + t) 2Daf(x) + DtJf(x t)II o O(Itl)
for all fl of order k.
Note that if is an integer, we use Zygmund’s A* classes instead of the

classical Lipschitz spaces.
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We will not use this definition directly. We will use the following theorem
from Pesek [8] and [9].

THEOREM A. Let f L (T), 0t > 0, 0 _< _< n, q > 1, and E
_
Z. Assume

(2) If(m)l -< Clml
Then suppf

_
E impliesf A= if anti only if

(3) card (E m {x r <_ ix <- qr}) <_ C(q, E)r"
where card means set cardinality.

ThiS result will allow us to go from coefficient estimates to membership in a
Lipsehitz class.

Finally we define what it means to be Lipschitz of order at a point.

DEFINITION 2. Let k be the greatest integer less than 0t; thenfiR Lipschitz of
order at Xo if there is a number 6 > 0 and a polynomial P(x)ofdegree k such
that

(4) If(x)- P(x)[ <_ B[x- Xo] if Ix- Xo] < 6

where B is a constant not depending on x.

3. The coefficient estimate

In this section we will prove the following theorem.

THEOREM 1. LetfeLl(T), 0>0, E_Z", T>0, 0<6< 1, B>0, and
0 < 0 <_ 1. Assume

(5) suppf_ E,
(6) diRt (m, E\{m}) > vim [ for m E,
(7) f is Lipschitz of order at some xo

Then
(8) lY(m)l -< Clml where C does not depend on m.

The expression dist (m, E\{m}) is the distance from m to its nearest neighbor
in E. (5) and (6) give the lacunarity condition. The nonvanishing coefficients are
separated by a distance proportional to a power of their distance from the
origin.
For the case n 1 this result is due to Hsieh Xie-Fan [2] and M. Izumi, S.

Izumi, and J.-P. Kahane [3].
The proof of Theorem 1 depends on Lemmas 1 and 2. We shall state these

lemmas and use them to prove Theorem 1. Then we will prove the lemmas.

LEMMA 1. Let {a#}0<l#l< k be complex numbers indexed by multi-orders of
total order at most k. Then there is a trioonometric polynomial T of deree at
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most nk (where n is the dimension) such that

(9) DaT(O)= aa, O< fll < k.

LEMMA2. Let fLI(T), z>0, B>0, 0<i<l, N>0, and meZ".
Assume:

(o)
()
()

Then

/13t
m.

if p Z and 0 < P ml < N, then f(p)= O,
If(x)l _< Blxl for Ixl < ,
N > tg-I/2.

If(m) < Co N where Co depends on n,f, B, , and fi but not on N and

The work of proving Theorem 1 is actually done in Lemma 2. The idea of
such a "local" lemma is found in Katznelson [5, p. 105].
Proof of Theorem 1. Without loss of generality we assume Xo 0. By

Lemma 1 there is a trigonometric polynomial T(x) with total degree at most nk
such that

(14)
Thus

(15)

OaT(O) DaP(O) for 0 < BI < k.

f(x) T(x) <- f(x) P(x) + P(x) T(x)
<_Blxl + Alxl+’

<B’lxl iflxl <6.

We estimate the first term by (7) and the second by (14) and Taylor’s
theorem. Recall that k is the greatest integer less than

Define F(x)=f(x)- T(x). Then suppf_ E’ where E_ E’ and
card (E’\E) < .
Thus E’ satisfies (6) with ? replaced by some ?’ > 0. So

dist (m, E’{m})> ?’Ira for m E’.

By (15), IF(x)l ’lxl" for Ix[ < 6.
If we let m e E’, F be B’ be B, 6 be 6, be , and N r’lm , mma 2

applies when y’lm ] > 6-a/2 and therefore

IP(m) Co( In I) Co()-lm -for all but a finite number of the elements of E’ by (13).
Since if(m)=f(m) for all but a finite number of m e E,

[f(m)l Clml- for m E

where the constant C has been adjusted to cover the finite number of excep-
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tions. Ifm $ E, the inequality is still true sincef(m) 0. Thus we have (8) which
proves Theorem 1.
Now we must prove the lemmas.

ProofofLemma 1. First we restrict our attention to the case n 1. We must
show that there is a trigonometric polynomial T(x)= =o be such that
DT(O) a for 0 < v < k.
We see by computation that this is equivalent to (ij)b a for 0 _< v _< n.

The matrix of this linear system is a Vandermonde matrix. The standard for-
mula for the determinant of a Vandermonde matrix shows that this one is
nonsingular. Thus this system has a solution. The lemma has been proven for
n=l.
From this result we see that there are trigonometric polynomials Tk(X)

where 0 < v < k and the degree of T is at most k such that

(16) DJTkv(O) 6jr for 0 < j < k, 0 < v < k.

(6. is the kronecker delta.)
Now we consider the general case. Let T(x)= .,o11- a l-[’J-- T.[x).

Then
D’T(O) a,D’fiT.,(x)]

O-<l#l<k j-- o

O_<l/l_<k j=l

=at ifO< I1

by (16)

This gives (9) and Lemma 1 is proven.

Proof of Lemma 2. Let 9 be a summable function on R" such that"

(17) e C(R"),
(18) 0(x)= 0 if Ix > 1,
(19) 0(0)=1,
(20) 0 is even.

Since j e C(R"), O is in the Schwartz class 5. We claim

(21) f(m) I,.f(x)e-imN"o(Nx) dx

Let us prove (21). Letfe Lt(T"), dp . The vth Fourier coefficient off t is

f(v)c}(v) by (1). Since is rapidly decreasing, f, b has an absolutely conver-
gent Fourier series. Thus

f, dp(O)= Ef(v)r}(v)= f. f(x)rk(-x) dx.
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Since !7 e if’, N"17(Nx) D. (Nn17(Nx)) 7(x/N) by a change of variables. By
the above and (20),

f f(x)e-’’"N"17(Nx) dx f f(x)e-’="N17(-Nx) dx

Y. ]( + m)O(/N) (by (18))

=](m)O(O)
=f(m) (by (11)and (19)).

The claim (21) has been proven.
Now we have the estimate

lY(m)l -< . If(x)l Im’a(svx)l dx

=(s +s,,, +s,,,Ixl < iv- < I,xl ill ill <

f(-)l .N",(.N.)

)xl>

Denote these pieces I, II, III, and IV respectively.
We will prove Lemma 2 by getting a satisfactory estimate on each of the four

pieces I, II, III, and IV.

I flxI<N_I f(x) N" o(Nx) dx

_< B fl_<,,,_, II=N’Ia(N)I dx (by (11))

<_ BN-" Is. N"a(Nx) dx B a II,. N-<’

This takes care of I.

II flV_t<_lxl<N_t/2 f(.x) I.N" a(N.x) dx

_< B f/V_l<lxl<N_l/2 I: N"a(Nx) dx (by (12 and 13)).

This method of estimatingf(m) is originally due to Noble [7].
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Since g 6 6e there exists c, such that Ig(x)[ _< c, I1-,++’’. Thu

II <_ c1 B fN_IIIN_I/2
C1BN-- fN_t<lxl<N_/2 IX I-(n+ 1) dx.

By changing to spherical coordinates this equals Cl Boo._ N-- INN-1/2, r- 2 dr
where con_ is the area of the (n 1)-sphere. This last equals

Cl Boon_ N-- 1(N N1/2) -< Cl Bon-

This takes care of II.

III IN_ 1/2 < Ixl <
f(x) N" (N) d.

Since # 6 , there exists c2 such that a()l -< 2 [X l-2(n+a). Thus

III < c2 fr_ 1/2< Ixl <-
f(x) N"(N x I)- 2,.+, dx

C2 fN- 1/2< Ixl <
f(x) N.(NN- 1/2)- 2(n +at), dx

C2 N-a fN_l/2<lxl<l f()l d

< c, f I],N-

This takes care of III.
Before we estimate IV, let us note that there is a constant c3 such that

(22) fl,-<. If(x) dx C3 Rn

since fe L(T’). Since g e 6e, there exists a constant ca such that
c, I -’"+. Thus

f(x) lN"(Nlx I)-’"+=’ dx

c,N f f(x)l Ixl -’"+’ dx.
>
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It will suffice to show that Jl,l>, If(x)l Ixt"’’+’ dx < oo. We have

I, II(,<)1 -<"+’> X II( )1 -‘"+’>
xl > j= o ss Ixl s 2J

J= Ixl s 2i+

cs X 2-+’2+ TM {by (22))

=c2 2-
So each of the four pieces has an estimate of the desired type. So
f(m)l <_ Co N and we have proved Lemma 2.

4. Applications and examples

By use of Theorem A from Pesek [8] (quoted in Section 2), Theorem 1 and a
geometric lemma, we shall prove various one point regularity results.

THEOREM2. Let feLi(T"), 0>0, E_Z", />0, 0<6<1, B>0,
0 < 0 <_’1. Assume:

(5) suppf_ E;
(6) dist (m, E\(m}) > elm for m E;
(7) there is a point Xo such thatfsatisfies a Lipschitz condition oforder ct at

X0

Thenf Ao+ n(o- 1) if > n(1 0)/0.

We state the case 0 1 as a corollary.

COROLLARY 1. Letf L (T), suppf
_

E. Assume

(23) dist (m, E\{m})> elm for m e E,

andfsatisfies a Lipschitz condition oforder at some point ofT". Thenfis in the
Lipschitz class A.

In the case n 1, the corollary is the result of Hsieh Xie-Fan [2] and M.
Izumi, S. Izumi, and J.-P. Kahane [3]. G. Freud [1] obtained a special case prior
to their results.

It is a consequence of Lemma 3, to be stated below, and Lemma 2 of Pesek
[8] that if E Z satisfies (23) then in fact E is contained in the finite union of
Hadamard sets. (A Hadamard set F can be described as a sequence {2k} such
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that [g+ 1 > q[2[ for all k and some q > 1.) Thus condition (23) is fairly
stringent.
We need the following geometric lemma.

LEMMA 3. Let 0 < 0 _< 1, > 0, q > 1, and E
_

Z". Assume that

(6) dist (m, E\{m})> y ]m ] for m E.

Then card (E c {x r <_ Ix -< qr})<_ C(q, E)r1-.

Thus the lacunarity condition of Theorems 1 and 2 implies the lacunarity
condition (3) of Theorem A with z n(1 0).

Proof We wish to estimate card (E c {x r < Ix < qr}). Let

ml, mz E c {x[r <_ Ixl -< qr}.
Then dist (m, m.)> 7[m1_>7r by (6). We can conclude that
card (E c {x[r <_ Ix[ _< qr}) is no more than the largest number of points that
can be placed in a cube ofside 2qr so that the distance between any two of these
points is at least 7r.

Since

([2qr/(r/Ex/-)] + )(r/Ex)_> 2qr,

we shall still be estimating card (E c {x It <_ xl-< q})if we estimate the
largest number of points separated pairwis by a distance of at least r in an
n-cube whose side has this larger length. Subdivide this n-cube into n-cubes
with side 7//2x. The diameter of each of these smaller n-cubes is ra/2. At
most one point of a set of points separated by r can lie in any of the small
n-cubes. Therefore

card (E {x r < Ix _< qr})< number of small cubes

([2qrl(r12xil’)] + 1)"
([4x/ qr-/] + 1)"

_< (2.(4x/ q/),).)r,,(-0)
since [x] + 1 _< 2x if x > 1.

This gives the desired estimate for large r. Since E
_

Z", w can complete the
proof by adjusting the constant for small r. Lcmma 3 has been proven.

Proofof Theorem 2 and Corollary 1. Theorem 2 has the same hypotheses as
Theorem 1. Thus we have ]f(m)l <-Clm]-. Using this estimate, and
Theorem A with 0 n(1 0) as 0t and n(1 0) as z (which we are allowed to
do by Lemma 3), we obtainf A0=-tl-0)if 0t- n(1- 0)> 0 which it is if
> n( 0)10.
Corollary 1 is just the special case 0 1 of Theorem 2. These proofs are

complete.
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We can combine Theorem 1 and Theorem A to get a further result.

THEOREM 3. Let fe LI(T"), E_Z", >0, O<tg< 1, B>O, 0<0< 1,
0 < z < n, and q > 1. Assume:

(5) suppf_ E;
(6) dist (m, E\(m}) > lmlfor m e E;
(7) there is a point Xo such thatfsatisfies a Lipschitz condition oforder at

that point; also assume condition (3) of Theorem A:

card (E c {x r < Ix < qr})< C(q, E)r.
Thenf Ao-, if Oot > z.

Proof. Apply Theorem 1; then apply Theorem A with Oa- z as and
as r.

The next result is a consequence of Theorem 1.

THEOREM 4. Let fe LI(T). Suppose that (6) and (7) holdforf. Suppose also
that at some point f has differentials of all orders. Thenf is a C function.

Proof. Since f has differentials of all orders at some point, it satisfies Lip-
schitz conditions of all orders at that point. By Theorem 1 we have f(m)[ _<

clml- for > 0. Thus f(m)l -< Clml- for allk. Sofe C(T). Theorem
4 is proven.
When n 1, this is due to M. Izumi, S. Izumi, and J.-P. Kahane [3].
We shall devote the rest of this section to examples.

Example 1. Let n 1, and let E {4m}] w {4m + 2}]. Then if f is Lip-
schitz of order a > 0 at some point, f A/2.

Example 2. Let n 1 and let E {27} u {27" + 3}. Then iffis Lipschitz
of order > 0 at some point, f Aa/3.

Example 3. Let n 1, and let E {m2}. Then iffis Lipschitz of order a > 1
at some point, then f Ate_ t/2.

Example 4. Let n 3 and E {(m, m2, 3m)}. Then iffis Lipschitz of order
> 0 at some point, f A.

Example 5. Let n 3 and E {(m, m2, m3)}. Then iffis Lipschitz of order
> 1/2 at some point, f e At2/a-/a.

The examples given above exhibit both polynomial and exponential growth.
We will conclude this section with two examples concerningpartial differen-

tial equations.
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Example 6. Consider the equation uxx = iu, and assume u e LI(T2). Then
u(x, t) ae + (formally)

so supp fi {(m, m)} and our results apply.

(1) If u has differentials of all orders at some point, then u C(T).
(2) If u satisfies a Lipschitz condition of order > 1 at some point, then

fe A,_ 1)/2.

Next we give an example of a partial differential equation with a stronger
property.

Example 7. Consider the equation ux, 2u, + u 0 with u LI(T2). Then
supp

_
{(ml, m2) m2t 2m 1}.

We claim that if u satisfies a Lipschitz condition of order at some point
then u is in the Lipschitz class A. By Corollary 1 it suffices to show E satisfies
(23). E is the set of solutions to Pell’s equation with d 2. See, for instance,
Nagell [6, p. 195]. The solutions with positive entries are given by (ak, bk)’=
where a + b v/2 (3 + 2v/2). (We equate rational and irrational parts.)We
also have the point (1, 0). The other solutions are given by changes of sign. We
note that the positive solutions grow geometrically. With a little care we see
that solutions in different quadrants are sufficiently far apart. Thus (23) is
satisfied, and our claim is valid.
There are, of course, many more partial differential equations to which our

results apply. But given the role of Diophantine equations it would be very
difficult and probably impossible to characterize this class of equations.

5. Some counterexamples

In this section we will construct counterexamples that show that the laeunar-
ity condition (6) of Theorem 1 cannot be weakened if 0 _< 1.

THEOREM 6. Let 0 < < 1, E
_

Z", 0 < 0 < 1. Assume that E does not sat-
isfy (6). Then there exists an fe L(T) such that suppf_ E, f satisfies a Lip-
schitz condition of order at O, but

To prove this, we need a lemma.

LEMMA 4. Let am > O, bm > O, and bm o(a). Then there exists c,. >_ 0 such
that lim supra Cm am and , c.,b, < .

Proof. There exists Cm > 0 such that lim c,a,.= and lim c.b,.= O.
Indeed let C’m l/x/am bin. Since lim c, b,,, 0, for every k there exists jk such
that c), b, _< 2- . Let Cm c’., if m j for some k. Let c, 0 otherwise. Then
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E Cm bs < 2-k < 03 and lim sup Cs as 03. The proof of Lemma 4 is
complete.

Proof of Theorem 6. Assume dist (m, E\{m})> , m fails for all V > 0.
Then there exists {mk} -- E such that limk-,oo [m,_l/lm m2k+ 11 03. So
m_k m2k + 1 o( mz 10).
We apply Lemma 4 to ]mz 10 and ]mz mz+ . There exists C >_ 0 such

that E C ]mz- mz+x < o and lim sups C [mz [= . Then
Clmz- mz+ < o implies E Ck < 03. Since the Fourier series
C(es’-- emz‘+) is absolutely convergent, it defines an L functionf. We

will show fhas the desired properties. We have that lim sup Clm, 1o
implies f(m) O(]m 1-0). And we have

If(x)-f(0)l IE C(e’s’-k" e’S2k+ ’x) 0l
< Z C min (I m2 m2k +1 II I, 2)
<_2 Y’. Clm m+ Ix <_ 1)(since

where B 2 Ck [m:z m2-l is finite. Theorem 6 has been proved.
We would like to extend the argument to larger but have not succeeded. In

the case where n 1 and 0 1, this argument can be generalized by taking
primitives. This technique is awkward in higher dimensions.
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