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ON FORMAL INTEGRATION OF
DOUBLE TRIGONOMETRIC SERIES

BY

M. J. KOHN

1. We will be working in two dimensional Euclidean space. We denote
points of E2 by x (x t, x2)= td and integral lattice points by n (n t, n2).
We set [x[ (x2 + xz)/2 and n x= nixi + n2x2. By a sum ’ we mean
l,I o. Let

(1.1) T= E cn ein’x
n Z2

be a double trigonometric series which is circularly summable at Xo to finite
sum s. Let T* be the series obtained by formally integrating T once with respect
to x and once with respect to x2"

(1.2) T* CoX1 x2
Cn ein" + Xl -" X2E’ Cn ein’x E, Cn ein’x

nln2O /’/1 n2 hi=0 1/’/2 n2=O

We are interested in proving a theorem of"Riemann type" for T*. That is, we
want to give conditions on the coefficients of T and on the order of summabi-
lity of T which will insure that T* converges at Xo to a function F(x) which has,
in some sense, at Xo a "second symmetric derivative" with value s.
We define, to this end, the idea of a symmetric derivative of a function F(x)

defined in a neighborhood ofXo E2 by expanding a weighted circular mean of
F(x), taken about the circle Ix Xol t, in a Taylor’s series ofeven powers of
t. This definition may be thought of as a two dimensional analogue of the
formula (1.2) from [8, vol. 2, p. 59]. When the proper weighted circular mean is
chosen, we are able to apply it to T* to prove a two dimensional analogue of
results from [8, vol. 1, p. 320].

2. We make the following definition. Let f(0) be defined for 0 e [0, 2n]
such that f(0 + n) f(0). Let F(x) be defined in a neighborhood of Xo e E2
and integrable over each circle Ix- Xol t, for small. Let 2r be an even,
positive integer.

DEFINITION. F has, at Xo, a 2rth f-derivative with value a2r if

(2.1) F(xo + te’)f(O) dO

a2 2 a2r
=ao+2-- +’’’+22(r+ 1)!(r-

as O.

+
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If f(O) 1, the expansion of the left side of (2.1) into a series with different
coefficients is called the oeneralized Laplaeian and is studied in [7]. If t)(O)=
cos 0 + sin 0 (which satisfies f(O + n)= -fl(O)) the expansion of

2 F(xo + te’)f(O) dO

in a Taylor’s series of odd powers of is considered in [5].
For this paper, we will study (2.1) with (0) cos 0 sin 0. It turns out that

the resulting f-derivative is well suited for application to the series (1.2).

3. The value of our f-derivative is given by the following theorem.

THEOREM 1. Let f(0) cos 0 sin 0. Let r > 1. Suppose F(x) and all partial
derivatives ofF of order < 2r + 1 exist and are continuous in a neiohborhood
of Xo E2. Then F has at Xo a 2r-th fl-derivative with value

a2r g bX2
%" F(xo).

Proof. We may assume Xo 0. We abbreviate

Ox"/ Ox" =o
by F(m, n). By Taylor’s formula,

F(te’) 2 . cos 0 x + sin 0 F(0)
j=O

1 (+ (r + 1)
cos 0

for some e (0, t). us,

(3.1) F(te’) cos 0 sin 0 dO

+ t sin O o-) 2"+ lF(#e’)

E f., cos 0 xxt + sin 0 F(0) cos 0 sin 0 dO
j=O

(2r + i)! 2n
cos 0 x + sin 0 O-) 2’+F(#ei). cos 0 sin 0 dO

2r

at + R2r+l.
j=O
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Here,

(3.2)

where

1 1
a j 2n

cos 0 sin- OF(k, j- k) cos 0 sin 0 dO

J 1 1 f;k=0 k’. (j- k)". 2r
cosk+ 0 sinj-k+ 0 dO. F(k, j- 1)

J 1

k=O k’. (j- k)!. cjF(k,
j- k),

Ckj COSk + 0 sinj- k + 0 dO.

Clearly, Ckj 0 ifj is odd. When j is even, we find using reduction formulae,

0 if k is even,

k’ (j- k)’Ckj--- if k is odd.

2J(J+2)’(k-22 1),(J-k2-1),.
We set m 1/2j, s 1/2(k 1). Returning to (3.2), ifj is odd then aj 0, and ifj is
even then

J 1
(3.3) aj

k=O k. (j k). CkjF(k, j- k)

1 k! (j- k)! F(k, j- k)
k=O, .2j j+
kodd 2 2 2

s=02 22m(m + t)lS. (m 1 s). F(2s + 1, 2m 2s 1)

22m(m + 1) (m 1) =o s

+ F(0).+ l (m l

For the estimate of R2,+ we obtain,

(3.4)
2

t2r+ IO 0(1) COS 0 sin 0 dO o(t2r).R2r+

Applying (3.3) and (3.4) to (3.1), the proof of Theorem is complete.
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4. We now apply Definition (2.1) to study formally integrated double trig-
onometric series. Let fl be a nonnegative number. We will say the series (1.1) is
Bochner-Riesz-fl summable at x0 to s if

lim 1- c.ei..XO=s.
R--,m Inl<R

THEOREM 2. Suppose series (1.1) is Bochner-Riesz-fl summable at Xo tofinite
sum s, for some number with 0 < fl < 3/2. Suppose the coefficients cn of(1.1)
satisfy

for some e > O.
Let

nl=O

n2=O

F(x) CoX x2
Cn ein

nln2 q:o, nl n2
Inl < R

Cn ein’x -k- g 2
, Cn ein

nl=0, in2 n2=0,Z" in
Inl < R Inl < R

Then, as R , FR(x) converges a.e. on T2 to afunction F(x) which is integrable
on each circle Ix- Xo] t. Moreover, F has at Xo a second D-derivative, with
t)(0) cos 0 sin 0, equal to s.

We can think of Bochner-Riesz-fl summability as a two dimensional version
of Cesaro-fl summability. Thus Theorem 2 may be considered as an analogue,
of sorts, of part of the result on p. 66, vol. 2, of [8]. Note that the order of
summability required in the two dimensional version is somewhat weaker than
in the one dimensional case.

5. Before we give the proof of Theorem 2 we need to establish a lemma. In
what follows, Jr(z) indicates the Bessel’s function of order v.

LEMMA.

(5.1)

Then,

Let n (hi, n2) In :# 0. Define, for
-exp (in’x)

if n nz :/: O,
nl n2

x,(in2)-’ exp (in x) if n, O,

x2(in,)-’ exp (in" x) if n2 O.

9.(tei) cos 0 sin 0 dO J(Inlt)
In]



DOUBLE TRIGONOMETRIC SERIES 85

Proof
Then,

(5.3)

We first assume nl n2 4: 0. Let n /l l cos candn,/ln sin

g.(te) cos 0 sin 0 dO

nl n 2r
exp (in" te) cos 0 sin 0 dO

-1 1 io’n n 2r
exp {iln It (cos 4 cos 0 + sin 4 sin 0)} cos 0 sin 0 dO

-1

n n 2
exp {iln It cos (0- 4)} cos 0 sin 0 dO.

Let/ 0 qb. Then

cos 0 sin 0 1/2 sin 20

1/2 sin (2# + 2b)
+/- sin 2/ cos 2b + 1/2 cos 2kt sin 2b.

So returning to (5.3),

2r
O(te) cos 0 sin 0 dO

1 cos 2
nn2 2

l fo"2n
exp (ilnlt cos )sin 2 d/

2n
exp (ilnlt cos ) cos 2kt d/

-1
=0+.

nl n2

J(lnlt)

by formula 2 from [1, p. 81].
We next consider the case when n 0. Then,

(5.4)

In 2-- exp (iln cos ) cos 2/z d/

9.(tei) cos 0 sin 0 dO

1 "zn cos 0
2n In2

exp (in2 sin 0) cos 0 sin 0 dO

t. l fo"in2 2n
cos 0 exp (in2t sin 0 sin 20 dO.
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We integrate the last integral by parts. Then (5.4) becomes

11o" -t 1 i" exp (in2t sin O
cos 20 dO

2n
g(te) cos 0 sin 0 dO

in2 2re in2

nl 2
exp (int sin O) cos 20 dO

J2(n2 t)

J2(Inlt)

since Inl and J(-z)= J(z).
A similar argument applies for the case when n -O. Thus the proof of the

lemma is complete.

6. Having established the lemma, the proof of Theorem 2 is now very
similar to the proof of the theorem in [4]. We will give the proof in detail for the
case fl 1. If 1 < fl < 3/2 the proof becomes much more complicated, so we
just sketch the idea and refer the reader to [4] for some details.

Without loss of generality we may assume Co 0, Xo 0, and s 0. Write
S S(O)= 1.1< c., and for q > 0 set

foS=. (R- u S, du.

We are assuming that series (1.1)is Bochner-Riesz-1 summable to 0 at Xo 0.
Therefore (see [2])El,l<s c,(R- In l)= o(R)as R . Hence,

(6.1) S=o(R) as R.

e condition (4.1) insures that F(x)= lim Fs(x)exists a.e. on each
circle Ix] and that sup>o " IF(te’)l dO < M, (see [3]). Thus,

2n
F(te’)fl(O) dO lim - Fs(te’)fl(O) dO.

We apply the lemma to the integral on the right.

Inl < R

E Cnl l- J (l l t)
Inl < R

Inl<R
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where y(z)-- z-2J2(z). W( change the last sum into an integral and integrate
twice by parts.

(6.2) Z c.e(Inlt)= S.(Rt) S.-d-u (Ut) du

d f d2

sv(gt) s v(Rt) + S v(.t) ..
Note that the hypothesis (4.1)implies E.zz Il-l.l for om

e > 0. Thus, using Holder’s inequality,

(6.3) Sa= c.
Inl<

Z (Inl"-’/=lc.I)(Inl’-’/)
Inl < R

n Z2 [nl<R

C" R(3-)/2

o(/2).
Using brmula (51) from 1, p. 11] and the hct that 3(z) O(z- /z) as z ,
it is clear that

(6.4) yn)(z) O(z-/2) as z br n 0, 1, 2,

Combining (6.1), (6.3), and (6.4), the integrated terms on the rit of (6.2)
drop out as R . us,

F(te’)n(o) dO lira c{ In lt)

2 S y(ut)du

0 + O" + tB(t).
We will complete the proof by showing B(t)O as 0.

/td2 fd2

"o 1/t

ft)+ 2(t).
To estimate B(t) we note that y(z) is an entire function, so for lzl < 1,

d2

() < c.
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Thus, when 0 < u < 1/t,

and

,ll Io ol.t ct eu o0110 oI.t eu otlt.

To estimate B2(t) we use (6.4).
d-B2(t) S u2 (ut) du

1/

o(). to()- d

o(t-) o(- 3/2) du

o(1).
This completes the proof of Theorem in the case when 0 fl 1.

If 1 < < 3/2 write 1 + . We begin as in the proof above, but at equa-
tion (6.2) we integrate by parts once again. We obtain, after showing the
integrated terms tend to 0,

(6.5)
2 F(te’)n(O) dO -t2 S (ut) du.

Iff(u) is a function defined for u > 0 and q is a positive number we denote by

io (u z)"-y(z)dz,l"(f )(u) F--
the fractiolial integral of order r/off (see [6]). Now if we let f(u) S., then

$2 l-(f)(u)= I’-I +(f)(u)= l’-S2 += fo (u z)-,1"(1 ) s dz.

Returning to (6.5),

2n
F(te’)f(O) dO -t2 lim $2 du y(ut) du

R

" (u z)-, x+ y(ut) dut2
u--,olim F(1 ) S dz -d-u-R !g d3

--t2 lim fo Sz + (u z)- y(ut) du dz._. r(1 ). u
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R

t -,oolim Io Sz /H(z, t, R) dz

lira +
R--* 1/

t2{p + Q}.

Using estimates similar to those in [4], we find

[H(z, t, R)[ _< Ct2 z

Ct- /(R z)-R
Hence

for 0<z< 1/t,

for z > 1/t.

P fo (z +)O(t2) z dz o(1)
and

R

Q lim I (za +)O(t- 5/2)(R z)-’R /2 dz o(1).
R-* 1/t

This completes the proof of Theorem 2.

7. It seems probable that many other weights f(0) (for example, surface
harmonics of even order) may be used with Definition (2.1) to derive theorems
of Riemann type for multiple trigonometric series. The key step in establishing
such a result is the verification of the lemma of Section 5. For general surface
harmonics and for application to Tk for k > 2 the proof of the lemma may be
aided by the Funk-Hecke Theorem [1, p. 247], which facilitates the computa-
tion of some surface integrals involving surface harmonics. Details will be given
elsewhere.
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