REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY PAUL E. BLAND

In [11], Varadarajan introduced the notion of strongly M-projective modules. He showed that every $B \in \operatorname{Mod} R$ satisfying $B \mathscr{A}(M) = 0$ possesses a strong M-projective cover if and only if $R/\mathscr{A}(M)$ is a right perfect ring where $\mathscr{A}(M)$ denotes the right annihilator of M in R. We show that if a certain class of modules in $\operatorname{Mod} R$ is closed under factors, then every $B \in \operatorname{Mod} R$ possesses a strong M-projective cover if and only if $R/\mathscr{A}(M)$ is right perfect, thereby conditionally extending Varadarajan's result to $\operatorname{Mod} R$. We also show via a pullback diagram that $B \in \operatorname{Mod} R$ is strongly M-projective if and only if $B/B\mathscr{A}(M)$ is a projective $R/\mathscr{A}(M)$ -module. Varadarajan has shown this for the special case when $\mathscr{A}(M) = 0$.

If M is injective and $(\mathcal{T}, \mathcal{F})$ is the hereditary torsion theory on Mod R cogenerated by M, then it is shown that $B \in \text{Mod } R$ is codivisible with respect to $(\mathcal{T}, \mathcal{F})$ if and only if B is strongly M-projective. From this it follows that if B has a projective cover, then B is codivisible with respect to $(\mathcal{T}, \mathcal{F})$ if and only if B is M-projective in the sense of G. Azumaya [1].

Throughout this paper R will denote an associative ring with identity and our attention will be confined to the category $\operatorname{Mod} R$ of unital right R-modules. We will often abuse notation and write $B \in \operatorname{Mod} R$ for an object of $\operatorname{Mod} R$. Furthermore all maps will be morphisms in $\operatorname{Mod} R$ while $\mathscr{A}(M)$ and M^J will denote the right annihilator of M in R and the direct product of the family $\{M_a = M\}$ $(a \in J)$ respectively. In addition, M will denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call $B \in \text{Mod } R$ strongly M-projective if every row exact diagram of the form

where J is any indexing set can be completed commutatively. This is a natural generalization of M-projective modules first studied by G. Azumaya [1]. Azumaya called B M-projective if the diagram above can be completed commutatively when J is a singleton.

If K is a submodule of $B \in \text{Mod } R$, then K is said to be M-independent in B if for each $0 \neq x \in K$ there is an $f \in \text{Hom}_R(B, M)$ such that $f(x) \neq 0$.

Received September 12, 1977.

 $f \in \text{Hom}_R$ (B, M) is said to be M-independent if ker f is M-independent in B while B is called M-independent if B is M-independent in itself.

A module $B \in \text{Mod } R$ is said to have a strong M-projective cover if there exists a strongly M-projective module A and an M-independent epimorphism $\varphi \colon A \to B$ with small kernel. Recall that if K is a submodule of A, then K is a small submodule of A if whenever B is a submodule of A such that K+B=A, B=A.

The first of the following two lemmas shows that Mod R has enough strongly M-projective modules.

LEMMA 1. For any $B \in \text{Mod } R$, there is a strongly M-projective module A and an M-independent epimorphism $\varphi: A \rightarrow B$.

Proof. Let $g: F \to B$ be a free module on B and set $K = \{x \in \ker g \mid f(x) = 0 \text{ for all } f \in \operatorname{Hom}_{\mathbb{R}}(F, M^J) \text{ and every indexing set } J\}$. If given a row exact diagram

where η is the natural projection, then the projectivity of F yields a completing map $h: F \to M^J$ which makes the diagram commutative. But h(K) = 0 and so there is an induced map $h^* \colon F/K \to M^J$ which makes the inner diagram commute. Thus F/K is strongly M-Projective. Next let A = F/K and suppose that φ is the map induced by g. If $0 \neq x + K \in \ker \varphi$, then for some indexing set J there is an $f \in \operatorname{Hom}_R(F, M^J)$ such that $f(x) \neq 0$. Now f(K) = 0 and so there is an $f^* \in \operatorname{Hom}_R(A, M^J)$ such that $f^*(x + K) = f(x) \neq 0$. But since $0 \neq f(x) \in M^J$, one can certainly find a map $p: M^J \to M$ such that $p(f(x)) \neq 0$. Consequently, $p \circ f^* \in \operatorname{Hom}_R(A, M)$ is such that $p \circ f^*(x + K) \neq 0$. Thus φ is M-independent.

The following lemma seems to be known. Since we have been unable to find a proof in the literature, we include a proof for the sake of completeness.

LEMMA 2. Let

be a row exact commutative diagram such that the right hand square is a pullback diagram. Then the splitting of the top row follows from the splitting of the bottom row.

Proof. Suppose that the bottom row splits and let

$$0 \longrightarrow C' \xrightarrow{g'} B' \xrightarrow{k'} A' \longrightarrow 0$$

be the splitting maps. Since A and A' are isomorphic we can assume, without loss of generality, that A = A'. Let

$$p_1: A \oplus C \rightarrow A$$
 and $p_2: A \oplus C \rightarrow C$

be the canonical projections and define $\varphi: A \oplus C \rightarrow B'$ by

$$\varphi(a, c) = k(a) + g'(\beta(c)).$$

Then $g \circ \varphi = \beta \circ p_2$ and so since the right hand square is a pullback diagram there is a unique mapping $\phi \colon A \oplus C \to B$ such that $f \circ \phi = \varphi$ and $\alpha \circ \phi = p_2$. Notice next that $k' \circ \varphi = p_1$ and so since $A \oplus C$ is a product there is a unique mapping $\phi^* \colon B \to A \oplus C$ such that $p_1 \circ \phi^* = k' \circ f$ and $p_2 \circ \phi^* = \alpha$. Hence it follows that $\alpha \circ \phi \circ \phi^* = f \circ 1_B$. Thus by the uniqueness of factorization through products we see that $\phi \circ \phi^* = 1_B$. Similarly by the uniqueness of factorization through pullbacks $\phi^* \circ \phi = 1_{A \oplus C}$. Thus φ is an isomorphism and if $i_2 \colon C \to A \oplus C$ is the canonical injection, then $\phi \circ i_2$ is a splitting map for the top row of the diagram.

PROPOSITION 3. $B \in \text{Mod } R$ is strongly M-projective if and only if $B/B \mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module.

Proof. Let B be a strongly M-projective and consider the row exact diagram

$$B/B\mathcal{A}(M)$$

$$\downarrow$$

$$M^{J} \longrightarrow N \longrightarrow 0$$

of $R/\mathcal{A}(M)$ -modules and $R/\mathcal{A}(M)$ -maps. (Note M^J is an $R/\mathcal{A}(M)$ -module since $M^J\mathcal{A}(M)=0$ for any indexing set J.) If we view these as R-modules and R-maps in the natural fashion, then we have a commutative diagram

where h is the completing map given by the strong M-projectivity of B. But $h(B \mathcal{A}(M)) \subseteq M^J \mathcal{A}(M) = 0$ and so there is an induced map $h^* \colon B/B \mathcal{A}(M) \to M^J$ which makes the original diagram commute. Hence $B/B \mathcal{A}(M)$ is a strongly M-projective $R/\mathcal{A}(M)$ -module. Now Varadarajan has shown [11, Proposition 3.6] that when M is faithful, any strongly M-projective module is projective. Thus $B/B \mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module since M is a faithful $R/\mathcal{A}(M)$ -module.

Conversely, suppose that $B/B\mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module. Now by Lemma 1 there is an exact sequence

$$0 \longrightarrow K \xrightarrow{k} A \xrightarrow{\varphi} B \longrightarrow 0$$

such that A is strongly M-projective and K is M-independent in A. This yields a row exact diagram

$$0 \longrightarrow K \xrightarrow{k} A \xrightarrow{\varphi} B \longrightarrow 0$$

$$\downarrow^{\eta_1} \qquad \downarrow^{\eta_2} \qquad \downarrow^{\eta_3}$$

$$0 \longrightarrow \frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} \xrightarrow{k^*} A/A \mathcal{A}(M) \xrightarrow{\varphi^*} B/B \mathcal{A}(M) \longrightarrow 0$$

where k^* and φ^* are the maps induced by k and φ respectively and η_1 , η_2 and η_3 are the natural projections. Since $K \cap A \mathscr{A}(M) = 0$,

$$\frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} \cong K$$

and so Lemma 2 will apply if we can show that the right hand square is a pullback. Toward this end let $P = \{(x + A \mathcal{A}(M), y) \in A/A \mathcal{A}(M) \oplus B \mid \varphi^*(x + A \mathcal{A}(M)) = \eta_3(y)\}$. Then

$$P \xrightarrow{p_2} B$$

$$\downarrow^{p_1} \qquad \downarrow^{n_3}$$

$$A/A \mathcal{A}(M) \xrightarrow{\varphi^*} B/B \mathcal{A}(M)$$

where p_1 and p_2 are the obvious maps is well known to be a pullback diagram. Hence there is a unique map $\phi: A \to P$ such that $p_1 \circ \phi = \eta_2$ and $p_2 \circ \phi = \varphi$ and so it must be the case that

$$\phi(a) = (a + A \mathcal{A}(M), \varphi(a)).$$

We claim that ϕ is an isomorphism. If $\phi(a) = 0$, then $a \in A \mathscr{A}(M)$ and $a \in \ker \varphi = K$. Hence $a \in K \cap A \mathscr{A}(M) = 0$. Also if

$$(x+A \mathcal{A}(M), v) \in P$$

then there is an $a \in A$ such that $\varphi(a) = y$. But then

$$\phi(a) = (a + A \mathcal{A}(M), y) \in P$$

and so $\varphi^*(a+A\mathcal{A}(M)) = \varphi^*(x+A\mathcal{A}(M))$. Therefore

$$(x-a)+A\mathcal{A}(M)\in\ker\varphi^*$$
.

Let $z \in K$ be such that $(x-a)+A\mathcal{A}(M)=z+A\mathcal{A}(M)$ and set a'=a+z. Then $\varphi(a')=y$ and $x+A\mathcal{A}(M)=(a+z)+A\mathcal{A}(M)$. Therefore $\varphi(a')=(x+A\mathcal{A}(M),y)$ and so φ is an isomorphism as was asserted. That B is strongly M-projective now follows from the assumption that $B/B\mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module, Lemma 2 and the fact that a direct summand of a strongly M-projective module is strongly M-projective.

Corollary 4. If $B \mathcal{A}(M) = B$, then B is strongly M-projective.

Now let C(M) denote the class of all modules in Mod R which are M-independent in some over-module. We will say that C(M) is closed under factors if whenever K is M-independent in B, K/K' is M-independent in B/K' for each submodule K' of K.

PROPOSITION 5. If $B \in \text{Mod } R$ has a strong M-projective cover, then $B/B \mathcal{A}(M)$ has a projective cover as an $R/\mathcal{A}(M)$ -module. Conversely, if C(M) is closed under factors and $B/B \mathcal{A}(M)$ has a projective cover as an $R/\mathcal{A}(M)$ -module, then B has a strong M-projective cover.

Proof. Our proof follows closely that given for Theorem 10 in [8]. First suppose that $B \in \text{Mod } R$ has a strong projective cover, then we have an exact sequence $0 \to K \to A \to B \to 0$ where A is strongly M-projective and K is small and M-independent in A. But this yields an exact sequence

$$0 \rightarrow \frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} \rightarrow A/A \mathcal{A}(M) \rightarrow B/B \mathcal{A}(M) \rightarrow 0$$

where by Proposition 3, $A/A \mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module. Now it is known that if $f: X \to Y$ is R-linear and K is small in X, then f(K) is small in Y [7, Hilfssatz 3.1]. Hence $(K + A \mathcal{A}(M))/A \mathcal{A}(M)$ is small in $A/A \mathcal{A}(M)$ and so $B/B \mathcal{A}(M)$ has a projective cover as an $R/\mathcal{A}(M)$ -module.

Conversely, let

$$P \xrightarrow{u} B/B \mathcal{A}(M)$$

be a projective cover of $B/B\mathcal{A}(M)$ as an $R/\mathcal{A}(M)$ -module and suppose that C(M) is closed under factors. By Lemma 1 there is an exact sequence

$$0 \longrightarrow K \longrightarrow A \xrightarrow{\varphi} B \longrightarrow 0$$

where A is strongly M-projective and φ is M-independent. Hence we have a row exact diagram

$$0 \longrightarrow \frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} \longrightarrow A/A \mathcal{A}(M) \xrightarrow{\varphi^*} B/B \mathcal{A}(M) \longrightarrow 0$$

with φ^* being the map induced by φ . Now by Proposition 3, $A/A\mathscr{A}(M)$ is a projective $R/\mathscr{A}(M)$ -module and so there is a map $f: A/A\mathscr{A}(M) \to P$ such that $\mu \circ f = \varphi^*$. But φ^* is an epimorphism and so it follows that $P = \operatorname{Im} f + \ker \mu$. Therefore f is an epimorphism since $\ker \mu$ is small in P. Now P is projective and so f splits. Hence we have submodules X and Y of A such that

$$A/A \mathcal{A}(M) = X/A \mathcal{A}(M) \oplus Y/A \mathcal{A}(M)$$

with $X/A \mathcal{A}(M) = \ker f$ and $Y/A \mathcal{A}(M) \cong P$. Also since $\ker f \subseteq \ker \varphi^*$, it follows that

$$\frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} = X/A \mathcal{A}(M) \oplus Z/A \mathcal{A}(M)$$

where $Z/A \mathcal{A}(M) \subseteq Y/A \mathcal{A}(M)$ is small in $Y/A \mathcal{A}(M)$ and consequently in $A/A \mathcal{A}(M)$. Notice next that since $K \cap A \mathcal{A}(M) = 0$, $K + A \mathcal{A}(M) = K \oplus A \mathcal{A}(M)$ and so

$$X = X' \oplus A \mathcal{A}(M)$$
 and $Z = Z' \oplus A \mathcal{A}(M)$

where $X' = X \cap K$ and $Z' = Z \cap K$. Also $K \oplus A \mathcal{A}(M) = X + Z$ yields $K = X' \oplus Z'$. Now let $A^* = A/X'$ and $K^* = K/X'$; then

$$A*\mathcal{A}(M) = \frac{X' + A\mathcal{A}(M)}{X'} = X/X'$$

and so

$$A^*/A^* \mathcal{A}(M) \cong A/X \cong (A/A \mathcal{A}(M))/X/A \mathcal{A}(M)) \cong Y/A \mathcal{A}(M) \cong P.$$

Hence $A^*/A^*\mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module and so, by Proposition 3, A^* is a strongly M-projective R-module. Note also that

$$A^*/K^* = (A/X')/(K/X') \cong A/K \cong B.$$

Next we claim that K^* is small in A^* . Suppose $A^* = K^* + W^*$ where $W^* = W/X'$ for some $W \subseteq A$. Since $K^* = K/X' \cong Z'$ and Z' is M-independent in A, it follows that $Z' \mathscr{A}(M) = 0$ and consequently that $K^* \mathscr{A}(M) = 0$. Hence $A^* \mathscr{A}(M) = K^* \mathscr{A}(M) + W^* \mathscr{A}(M) = W^* \mathscr{A}(M) \subseteq W^*$. But $A^* \mathscr{A}(M) = X/X'$ and so

$$A/A \mathcal{A}(M) = \frac{K + A \mathcal{A}(M)}{A \mathcal{A}(M)} + W/A \mathcal{A}(M)$$
$$= Z/A \mathcal{A}(M) + X/A \mathcal{A}(M) + W/A \mathcal{A}(M)$$
$$= Z/A \mathcal{A}(M) + W/A \mathcal{A}(M) = W/A \mathcal{A}(M)$$

because $\mathbb{Z}/A\mathscr{A}(M)$ is small in $A/A\mathscr{A}(M)$. Therefore A=W and so $A^*=W^*$.

Since it follows easily from the fact that C(M) is closed under factors that K^* is M-independent in A^* , our proof is complete.

The following proposition is now obvious. See [2] for several characterizations of right perfect rings.

PROPOSITION 6. If C(M) is closed under factors, then every $B \in \text{Mod } R$ has a strong M-projective cover if and only if $R/\mathcal{A}(M)$ is a right perfect ring.

We conclude with the following observations concerning strongly M-projective modules and torsion theories. The reader can consult [4], [6], [9] for the general results and terminology on torsion theories. If $(\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory on Mod R, then it is well known that $(\mathcal{T}, \mathcal{F})$ is cogenerated by an injective module [5, Theorem 1.1] and that uniquely associated with $(\mathcal{T}, \mathcal{F})$ there is a left exact idempotent radical

$$T: \operatorname{Mod} R \to \operatorname{Mod} R$$

such that $\mathcal{T} = \{B \mid T(B) = B\}$ and $\mathcal{F} = \{B \mid T(B) = 0\}$ [9, Corollary 2.7]. In fact, if M is the injective module cogenerating $(\mathcal{T}, \mathcal{F})$, then $T(B) = \bigcap \ker f$ where $f \in \operatorname{Hom}_R(B, M)$. Hence \mathcal{F} coincides with the class of M-independent modules. Also since every map f from R to M is a multiplication map determined by the action of f on the identity of R, $T(R) = \mathcal{A}(M)$.

A module $B \in \text{Mod } R$ is said to be codivisible with respect to a torsion theory $(\mathcal{T}, \mathcal{F})$ on Mod R if every row exact diagram

$$A \xrightarrow{f} A' \longrightarrow 0$$

where $\ker f \in \mathcal{F}$ can be completed commutatively. The interested reader can consult [3], [8], [10] for some recent results on codivisible modules.

PROPOSITION 7. If $(\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory on Mod R cogenerated by an injective module M, then the following are equivalent for $B \in \text{Mod } R$:

- (1) B is codivisible with respect to $(\mathcal{T}, \mathcal{F})$.
- (2) B is strongly M-projective.

Furthermore if B has a projective cover, then (1) and (2) are equivalent to:

(3) B is M-projective.

Proof. Rangaswamy has shown [8, Theorem 8] that if $(\mathcal{T}, \mathcal{F})$ is hereditary (in fact $(\mathcal{T}, \mathcal{F})$ need only be pseudo-hereditary [10]), then $B \in \text{Mod } R$ is codivisible if and only if B/BT(R) is a projective R/T(R)-module where T is as described above. But since $T(R) = \mathcal{A}(M)$, the equivalence of (1) and (2) follows from our above observations and Proposition 3. Next suppose that B

has a projective cover, then if B is M-projective, B is strongly M-projective [11, Lemma 2.2]. Therefore, in this case, (3) is equivalent to (1) and (2).

REFERENCES

- 1. G. AZUMAYA, M-projective and M-injective modules (Unpublished).
- 2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., vol 95 (1960), pp. 466-488.
- 3. P. E. BLAND, Perfect torsion theories, Proc. Amer. Math. Soc., vol 41 (1973), pp. 348-355.
- 4. S. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., vol 121 (1966), pp. 223–235.
- 5. J. P. Jans, Some aspects of torsion, Pacific J. Math., vol 15 (1965), pp. 1249-1259.
- 6. J. LAMBEK, Torsion theories, additive semantics, and rings of quotients, Lecture notes in mathematics, no. 177, Springer-Verlag, Berlin and New York, 1971.
- 7. B. PAREIGIS, Radikale und kleine moduln, Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1966, Abt. 11, pp. 185-199.
- K. M. RANGASWAMY, Codivisible modules, Communications in Algebra, vol 2 (1974), pp. 475–489.
- 9. B. Stenstrom, Rings and modules of quotients, Lecture notes in mathematics, no. 237, Springer-Verlag, Berlin, 1971.
- M. L. TEPLY, Codivisible and projective covers, Communications in Algebra, vol 1 (1974), pp. 23-38.
- 11. K. VARADARAJAN, M-projective and strongly M-projective modules, Illinois J. Math., vol 20 (1976), pp. 507-515.

EASTERN KENTUCKY UNIVERSITY RICHMOND, KENTUCKY