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REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY
PauL E. BLAND

In [11], Varadarajan introduced the notion of strongly M-projective
modules. He showed that every B € Mod R satisfying Bsf(M) =0 possesses
a strong M-projective cover if and only if R/«f(M) is a right perfect ring
where o/(M) denotes the right annihilator of M in R. We show that if a
certain class of modules in Mod R is closed under factors, then every
B eMod R possesses a strong M-projective cover if and only if R/sf(M) is
right perfect, thereby conditionally extending Varadarajan’s result to
Mod R. We also show via a pullback diagram that BeMod R is strongly
M-projective if and only if B/B&(M) is a projective R/sf(M)-module.
Varadarajan has shown this for the special case when (M) =0.

If M is injective and (7, %) is the hereditary torsion theory on Mod R
cogenerated by M, then it is shown that BeMod R is codivisible with
respect to (F, %) if and only if B is strongly M-projective. From this it
follows that if B has a projective cover, then B is codivisible with respect to
(F, %) if and only if B is M-projective in the sense of G. Azumaya [1].

Throughout this paper R will denote an associative ring with identity and
our attention will be confined to the category Mod R of unital right
R-modules. We will often abuse notation and write BeMod R for an
object of Mod R. Furthermore all maps will be morphisms in Mod R while
(M) and M’ will denote the right annihilator of M in R and the direct
product of the family {M, = M} (a€J) respectively. In addition, M will
denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call BeMod R strongly M-projective if
every row exact diagram of the form

where J is any indexing set can be completed commutatively. This is a
natural generalization of M-projective modules first studied by G. Azumaya
[1]. Azumaya called B M-projective if the diagram above can be completed
commutatively when J is a singleton.

If K is a submodule of B € Mod R, then K is said to be M-independent in
B if for each 0#xeK there is an feHomg(B, M) such that f(x)#0.
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f e Homg (B, M) is said to be M-independent if ker f is M-independent in B
while B is called M-independent if B is M-independent in itself.

A module B eMod R is said to have a strong M-projective cover if there
exists a strongly M-projective module A and an M-independent epimorph-
ism ¢: A— B with small kernel. Recall that if K is a submodule of A, then
K is a small submodule of A if whenever B is a submodule of A such that
K+B=A, B=A.

The first of the following two lemmas shows that Mod R has enough
strongly M-projective modules.

LemMma 1. For any B eMod R, there is a strongly M-projective module A
and an M-independent epimorphism ¢: A— B.
Proof. Let g:F — B be a free module on B and set

K ={xeker g| f(x)=0 for all fe Homg (F, M’) and every indexing set J}.
If given a row exact diagram

N——0

where m is the natural projection, then the projectivity of F yields a
completing map h:F—> M’ which makes the diagram commutative. But
h(K)=0 and so there is an induced map h*: FJK—M’ which makes the
inner diagram commute. Thus F/K is strongly M-Projective. Next let
A =F/K and suppose that ¢ is the map induced by g. If 0 # x + K eker ¢,
then for some indexing set J there is an f e Homg (F, M”) such that f(x) #0.
Now f(K)=0 and so there is an f* € Homg (A, M’) such that f*(x+K)=
f(x)#0. But since 0# f(x)e M’, one can certainly find a map p: M’ >M
such that p(f(x))#0. Consequently, pef*cHomg(A, M) is such that
pef*(x+K)#0. Thus ¢ is M-independent.

The following lemma seems to be known. Since we have been unable to

find a proof in the literature, we include a proof for the sake of complete-
ness.

LemMA 2. Let
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be a row exact commutative diagram such that the right hand square is a

pullback diagram. Then the splitting of the top row follows from the splitting of
the bottom row.

Proof. Suppose that the bottom row splits and let

0 C-EsB-55A 0

be the splitting maps. Since A and A’ are isomorphic we can assume,
without loss of generality, that A = A’. Let

pi: ABC—A and p,: ABC—C
be the canonical projections and define ¢: AG@ C— B’ by

¢(a, c)=k(a)+g'(B(c)).

Then go¢ = B°p, and so since the right hand square is a pullback diagram
there is a unique mapping ¢: A@ C— B such that fo¢ =¢ and a°d =p,.
Notice next that k'c¢ = p, and so since A@ C is a product there is a unique
mapping ¢*: B>A®C such that p,o¢*=k’of and p,°¢™=a. Hence it
follows that acpodp™=foly. Thus by the uniqueness of factorization
through products we see that ¢o¢™* =15. Similarly by the uniqueness of
factorization through pullbacks ¢*o¢p=1,gc. Thus ¢ is an isomorphism
and if i,: C— A®DC is the canonical injection, then ¢ i, is a splitting map
for the top row of the diagram.

ProrositioN 3. BeMod R is strongly M-projective if and only if
B/BoA(M) is a projective R/s4(M)-module.

Proof. Let B be a strongly M-projective and consider the row exact
diagram

B/BA(M)
M —N—0

of R/{(M)-modules and R/sf(M)-maps. (Note M’ is an R/sf(M)-module
since M’ (M) =0 for any indexing set J.) If we view these as R-modules
and R-maps in the natural fashion, then we have a commutative diagram

'/ B/ B (M)

M —N——0
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where h is the completing map given by the strong M-projectivity of B. But
h(BA(M)) = M’ s¢(M) =0 and so there is an induced map h*: B/B«(M)—
M’ which makes the original diagram commute. Hence B/B#(M) is a
strongly M-projective R/sf(M)-module. Now Varadarajan has shown [11,
Proposition 3.6] that when M is faithful, any strongly M-projective module
is projective. Thus B/Bs{(M) is a projective R/sf(M)-module since M is a
faithful R/sf(M)-module.

Conversely, suppose that B/Bsf(M) is a projective R/sf(M)-module. Now
by Lemma 1 there is an exact sequence

0 K—*>A—25B 0

such that A is strongly M-projective and K is M-independent in A. This
yields a row exact diagram

0 K A hd B 0
K+AdAM) i J o* )
0 AdD A/AA(M)—2— B/BA(M) —> 0

where k* and ¢* are the maps induced by k and ¢ respectively and n,, 1
and m5 are the natural projections. Since KN A (M) =0,

K+Ad(M)
As(M)
and so Lemma 2 will apply if we can show that the right hand square is a

pullback. Toward this end let P={(x+Ad(M),y)c AIA4(M)DB |
©*(x + Ast(M)) = ms(y)}. Then

=K

P8

P \ﬂs

*

A/A (M) —— B/B(M)

where p, and p, are the obvious maps is well known to be a pullback
diagram. Hence there is a unique map ¢: A— P such that p;°¢ =n, and
p.°¢ = ¢ and so it must be the case that

¢(a)=(a+AAM), ¢(a)).

We claim that ¢ is an isomorphism. If ¢(a)=0, then ac A«4(M) and
acker ¢ =K. Hence ac KNAA(M)=0. Also if

(x+AAM), y)eP,
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then there is an a € A such that ¢(a)=y. But then
d(a)=(a+AAM), y)eP

and so ¢*(a+Ad(M)) = ¢*(x + Asd(M)). Therefore
(x—a)+Ad(M)eker ¢*.

Let zeK be such that (x—a)+Ad(M)=z+AHf(M) and set a’'=a+z.
Then ¢(a')=y and x+AAM)=(a+z)+Ad(M). Therefore ¢(a’)=
(x+Add(M),y) and so ¢ is an isomorphism as was asserted. That B is
strongly M-projective now follows from the assumption that B/Bs{(M) is a
projective R/sf(M)-module, Lemma 2 and the fact that a direct summand of
a strongly M-projective module is strongly M-projective.

Corollary 4. If Bs4(M)= B, then B is strongly M-projective.

Now let C(M) denote the class of all modules in Mod R which are
M-independent in some over-module. We will say that C(M) is closed
under factors if whenever K is M-independent in B, K/K' is M-independent
in B/K' for each submodule K’ of K.

ProrosiTioNn 5. If BeMod R has a strong M-projective cover, then
B/Bs#(M) has a projective cover as an R/sf(M)-module. Conversely, if C(M)
is closed under factors and B/Bs4(M) has a projective cover as an R/sf(M)-
module, then B has a strong M-projective cover.

Proof. Our proof follows closely that given for Theorem 10 in [8]. First
suppose that BeMod R has a strong projective cover, then we have an
exact sequence 0— K— A — B—(0 where A is strongly M-projective and K
is small and M-independent in A. But this yields an exact sequence

K+Ag(M)

0=—2 (M

—>A/AA(M)— B/BA(M)—0

where by Proposition 3, A/A«(M) is a projective R/sf(M)-module. Now it

is known that if f: X— Y is R-linear and K is small in X, then f(K) is small

in Y [7, Hilfssatz 3.1]. Hence (K+ A«(M))/A (M) is small in A/A (M)

and so B/Bo(M) has a projective cover as an R/sf(M)-module.
Conversely, let

P —— B/BA(M)

be a projective cover of B/Bs(M) as an R/sf(M)-module and suppose that
C(M) is closed under factors. By Lemma 1 there is an exact sequence

0 K A—=>B 0
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where A is strongly M-projective and ¢ is M-independent. Hence we have
a row exact diagram P

K+As(M)
AAM)

with ¢™ being the map induced by ¢. Now by Proposition 3, A/A(M) is a
projective R/sf(M)-module and so there is a map f: A/A(M)— P such
that pef=¢*. But ¢* is an epimorphism and so it follows that P=
Im f +ker w. Therefore f is an epimorphism since ker w is small in P. Now P

is projective and so f splits. Hence we have submodules X and Y of A such
that

0

AlA (M) -2 B/BA(M) —> 0

A/AAM) = X] A4 (M)D Y/ A 4(M)

with X/Ad(M)=kerf and Y/AA(M)=P. Also since kerf<ker ¢*, it
follows that
K+Ad(M)
AA(M)

where Z/Ad(M)< Y/AA(M) is small in Y/A(M) and consequently in
A/AA(M). Notice next that since KNALM)=0, K+ALg(M)=
K® A (M) and so

X=XPAAM) and Z=Z'PAAM)
where X’'=XNK and Z'=ZNK. Also KOPAAM)=X+Z yields K=
X'®Z'. Now let A*¥=A/X' and K*=K/X'; then

X'+AdAM

= X/AA(M)D Z| A A(M)

A*A(M) =
and so

A*[A*A(M)= Al X =(A/AAM))/|X|AAM))= Y/ A4(M)=P.

Hence A*/A*o(M) is a projective R/sf(M)-module and so, by Proposition
3, A* is a strongly M-projective R-module. Note also that
A*K*=(A/X)(K/X")=A/K =B.

Next we claim that K* is small in A*. Suppose A*=K*+ W* where
W*=W/X' for some WcA. Since K¥=K/X'=Z' and Z' is M-
independent in A, it follows that Z's¢(M)=0 and consequently that
K*s4(M)=0. Hence A*«(M) = K*o4(M)+ W*(M)= W*o(M) < W*. But
A*g(M)=X/X' and so

K+Ad(M)
A (M)

= Z|AA(M)+ X] A 4(M)+ W/ A 4(M)

=Z|AA(M)+ W/ AA(M) = W/ A A4(M)

A/AAM) = + W/AAM)
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because Z/A (M) is small in A/A4(M). Therefore A=W and so A*=
wW*

Since it follows easily from the fact that C(M) is closed under factors that
K* is M-independent in A¥*, our proof is complete.

The following proposition is now obvious. See [2] for several characteriza-
tions of right perfect rings.

ProrosrTioN 6. If C(M) is closed under factors, then every B € Mod R has
a strong M-projective cover if and only if R/4(M) is a right perfect ring.

We conclude with the following observations concerning strongly M-
projective modules and torsion theories. The reader can consult [4], [6], [9]
for the general results and terminology on torsion theories. If (7, %) is a
hereditary torsion theory on Mod R, then it is well known that (7, %) is
cogenerated by an injective module [5, Theorem 1.1] and that uniquely
associated with (7, %) there is a left exact idempotent radical

T:Mod R — Mod R

such that §={B|T(B)=B} and % ={B|T(B)=0}[9, Corollary 2.7]. In
fact, if M is the injective module cogenerating (7, #), then T(B)= NKker f
where f e Homg (B, M). Hence % coincides with the class of M-independent
modules. Also since every map f from R to M is a multiplication map
determined by the action of f on the identity of R, T(R) = «{(M).

A module BeMod R is said to be codivisible with respect to a torsion
theory (9, %) on Mod R if every row exact diagram

f’B

PR
.

Ak/—f—>A’—>0

where ker f € # can be completed commutatively. The interested reader can
consult [3], [8], [10] for some recent results on codivisible modules.

ProrositioN 7. If (T, %) is a hereditary torsion theory on Mod R cogener-
ated by an injective module M, then the following are equivalent for B e
Mod R:

(1) B is codivisible with respect to (T, F).

(2) B is strongly M-projective.

Furthermore if B has a projective cover, then (1) and (2) are equivalent to:

(3) B is M-projective.

Proof. Rangaswamy has shown [8, Theorem 8] that if (T, %) is heredit-
ary (in fact (9, %) need only be pseudo-hereditary [10]), then B eMod R is
codivisible if and only if B/BT(R) is a projective R/T(R)-module where T is
as described above. But since T(R) = (M), the equivalence of (1) and (2)
follows from our above observations and Proposition 3. Next suppose that B
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has a projective cover, then if B is M-projective, B is strongly M-projective
[11, Lemma 2.2]. Therefore, in this case, (3) is equivalent to (1) and (2).

1
2.

5.
. J. LAMBEK, Torsion theories, additive semantics, and rings of quotients, Lecture notes in

10.
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