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LIE ALGEBRA COHOMOLOGY AT IRREDUCIBLE MODULES

BY
JoHN BRENDAN SuLLIvan?!

We will develop a procedure for producing irreducible modules for the
Lie algebra of a semisimple, simply connected algebraic group at which the
1-cohomology is non-zero. Further, we will relate our computations of Lie
cohomology to the cohomology of the algebraic group. The cohomology of
the group may be zero at a module where the cohomology of the Lie algebra
is non-zero, but there is an efficient method for augmenting the module to
give a module where the cohomology of the group is non-zero.

Hochschild showed that the (restricted) 1-cohomology of a non-abelian
p-Lie algebra L is non-zero at the L-module Hom (LU, k), where U is
the restricted universal enveloping algebra of L [3]. In Sections 1 and 2, we
show that his methods can be used in the case of the Lie algebra of a
Chevalley group to produce a good supply of irreducible modules {V} at
which the 1-Lie cohomology is non-zero. One begins with a suitable
p-semi-linear map from the Lie algebra to the trivial Lie algebra k, and uses
the isomorphism

H*(LU, k)=H"(LU., Hom (LU, k))

to obtain a 1-cohomology class with values in Hom (LU, k). By passing to
subquotients of Hom (LUj, k), one obtains some irreducible modules {V}} at
which the 1-cohomology is non-zero. The highest weights of these modules
are the differentials of the elements {—a;} where {a;} is a basis for the root
system of the group relative to a maximal torus T.

The space of 1-Lie cocycles at an irreducible module is itself a module for
the group. In showing in Theorem 2.2 that the cohomology spaces are
non-zero at {V};=‘™, we produce a line of 1-cocycles that is stable under
the action of an appropriate Borel subgroup of the group, and show that the
weight of the line under the action of T does not occur in the module V;.
Consequently, the cocycles in the line are not coboundaries. At the same
time, the weight of this line gives the highest weight of a composition factor
of the 1-Lie cohomology as a module for the group. As an illustration, we
give the result of Sections 1 and 2 specifically for the Lie algebra of the
special linear group.

A module at which the group cohomology is non-zero may be obtained
economically from V; by tensoring V; with the dual module (H'(L, V))*
(Corollary to Theorem 2.2).
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In Section 3, we carry out a complete computation of the cohomology
space of the Lie algebra of the special linear group Sl;, as a module for Si;,
at the irreducible module V,; whose highest weight is the differential of —a;, for
the usual basis {o;} of the root system of Sl;. H'(sls, V) is isomorphic as an
Sl;-module to the Frobenius power of the identity representation of Sl;
(Theorem 3.4). The computation depends on knowing that the space of vectors
in V; whose weight equals the weight of the line stable under the Borel sub-Lie
algebra has dimension one (Lemma 3.3).

As a corollary to this theorem, we see that Sl; has non-zero 1-cohomology at
V, tensored with the Frobenius power of the identity representation of Sl;. This
resultshows how far one need go torealize an extension of the trivial module k by

V, (parametrized by an element of H'(sl;, V,)) as an sl;-submodule of an
Sl;-module.

Notation

Let k be a field of characteristic p. Let L be a finite-dimensional p-Lie
algebra over k. We also let k stand for the trivial one-dimensional L-
module and for the trivial one-dimensional p-Lie algebra.

Suppose that L is the Lie algebra of an algebraic group G. The space of
1-Lie algebra cocycles Z'(L, V) with values in a G-module V may be given
the structure of a G-module as follows:

(- HD=g- (f(Ad(g™H(1))) where geG, leL, feZ'(L,V)

and Ad is the adjoint representation of G on L.
The expression ‘p-linear’ is used in place of the usual expression ‘p-semi-
linear’.

sl,., denotes the special linear Lie algebra, and SI,,, denotes the special
linear group.

1. The cohomology of the restricted universal enveloping algebra

We will study restricted representations of a finite-dimensional p-Lie
algebra L. Let U, be the restricted universal enveloping algebra of L. Inside
U, there is the associative algebra without unit, Uy = LU;. First we will
look at the cohomology spaces H" (U7, V) of the associative algebra U; at a
right U7-module V.

Make V into a two-sided Uj-module by adding on the trivial left

U7 -module structure. Give the space of 1-cochains Hom (U}, V) the left
U;i-module structure

(u* W) =fu'w)—uw'fw) [=fu'w),

and the right U7 -module structure (f * u)(u’) = f(u')u. (We have ‘exchanged’
the left and right module structures given in [2].) -
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Theorem 3.1 of [2] gives an isomorphism of cohomology spaces
H™(Ut, V)=H™"*(Ut,Hom (U7, V)).
The isomorphism may be induced from the map on cochains,
Hom ((Up)®™, V) — Hom (U7)®*™~Y, Hom (U}, V)),
f—=F where f(a;® ® ap1)(0m)=f(an ® a4, ®" - ® Gy

We will exploit the isomorphism H*(U7, k)= H*(U;, Hom (U{, k)) in pro-
ducing non-trivial 1-cohomology classes.

1.1. Construction. There is a canonical linear map Hom, j;,cor (L, k) =
H?*(U%, k). The map is injective if [L, L]= L. The construction follows the
method of construction used in [3] in showing that non-abelian p-Lie
algebras have representations which are not completely reducible. The
material in the remainder of Sections 1.1 and 1.2 comes essentially from [3].

Let h: L — kt =k be a p-linear map to the base field. Form the direct
product of Lie algebras E=L+kt, and give E the p-map (I, a)®'=
(I, h(1)). The quotient map of p-Lie algebras E — L induces an algebra
map Ug — U, and by restriction, ¢: Ug — Uy. Order a basis [, ..., 1, for
L and define a linear map ¢: Ui — Ug by

Yy gy =151+ 13 for 0=o;<p.

¢ is a linear splitting of ¢. We associate to E (and hence to h) a cocycle
g € Z*(U¢, k) as follows. The kernel of ¢ is Ugt = Ugt + kt; let y: Ugt — kt
be the projection relative to this sum. Define a bilinear mapping g: U X
Ur — kt by g(u, v) = y(¥(u)g(v) — ¥(uv)). The relation g(uv, w) = g(u, vw)
holds for g and g is a 2-cocycle. (A different choice of linear splitting of ¢
gives a 2-cocycle which is cohomologous to g.) Map Hom, jc., (L, k) —
H?*(Ut, k) by mapping h to the cohomology class of g. We will not check the
linearity of this map here.

1.2. ProposITION. The map
Homp-linear (L7 k) g H2(UI> k) = HI(UI, Hom (UZ’ k))
is injective if [L, L]=L.

Proof. We use the relations given in [3] to prove this proposition. Let
S = Uy +kt be the right U7 -module extension of Uy by kt corresponding to
the 1-cocycle g Then g, which is the image of h under the map of the
proposition, is given by the formula g(u)(v)=g(v, u), and the module
structure on S is given by

(v+at)lu=vu+gu)(v)t for u,veU; and ack.

Suppose that there is a stable complement Q to the submodule kt.
Express each element v of Uy as q(v)+r(v), where q(v) lies in Q and r(v)
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lies in kt. The relations of [3] show that r is zero over [L,L] and that
r(I) = —h(1) for l € L. Hence, under our hypothesis, r(L)=0 and h=0.

Remark. One can also show that the map is injective using the method
of [4, §8].

2. Non-zero one-cohomology for the Lie algebra

2.0. Let G be a simply connected semisimple algebraic group over an
algebraically closed field of characteristic p, with Lie algebra L. We will
recall some of the structure of G and L (see [1, A] for more details).

There is a complex semisimple Lie algebra g and a Z-form g, of g such
that g, ® k=L. g, arises in the following way. Let ' be a Cartan sub-
algebra of g and let A={a,,...,a,} be a set of simple roots for the root
system ¢ of g, relative to h'. Let {X }ocs U{[X,,, X_oi]}sca De @ Chevalley
basis for g [1, A, 1.2]. This basis spans a Z-form g, of g. {{X.,, X_allaca
spans a Z-form h% of h'. Let h=h,® k. In L =g, ® k, denote X, ® 1 by
X, X_, ®1 by Y, and [X, Y]] by H,

We locate some objects inside G (see [1, A, 3.2, 3.3]). There are
1-parameter subgroups {X;(H)}cr, {Yi®her» i=1,...,n, and a maximal
torus T with the following properties:

(1) T normalizes each 1-parameter subgroup and operates on {X; ()} <«
(resp. {Yi(t)hex) by a character o, of T (resp. —a;), ie., for a€T,
aX(t)a ' = X;(es(a)t).

(2) There is a morphism from SI, to G that maps

() o w0

(9w o

and

The differential of the morphism maps

0 1 0 0
(0 0> toX; and (1 o>t°Yi'

(3) The Lie algebra of {X(¢t)},, is kX, and the Lie algebra of {Yi(¢)},< is
kY;, and the Lie algebra of T is h.

(4) The differential of the character o; of T is the root o; eh* of the line
kX, obtained from the root of X, by tensoring with k. We will denote both
the character and the root by «;.

5) {Xi(Okeri=1,...,nand T generate a Borel subgroup B of G.

There is the decomposition of g, =nz @ h, D nz, where the first factor is
the sum of the positive root spaces and the last is the sum of the negative
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root spaces. Let n* =n}; @k, and let n” =nz ® k. Then L has the decomposi-
tion L=n*@® h®n~, and b=n*@h is the Lie algebra of B.

We will assume that L is a Lie algebra such that m* is generated by
{X}Yi=1,...,n. L=sl,,, is such a Lie algebra in any characteristic.

Lemma. {oy}'—, generates a free abelian subgroup of the character group of
T with rank n.

Proof. This follows easily from the fact that G has finite center.

2.1. Let L be the Lie algebra of the simply connected, semisimple group
G and suppose that n* is generated by {X;}_,. Choose ordered bases for n*
and for m™ consisting of root vectors. Order L by placing some ordered basis
for h first, the ordered basis for m~ second, and that for n* last.

Fix some non-zero p-linear map f: L — k which is zero on n* +h. We
require some information about the 1-cocycle g: Uy — Hom (Uj, k) which
was associated with f in Section 1.1, (which was called g there).

(1) g@m*+h)=0. One may check that y(u)¥(l)—y(ul)=0 for len* +h,
using the fact that fm* +h)=0. Thus, gm*+h)=0.

(2) k- g(Y) is b-stable for each j. The cocycle condition for g and the
relations in L, [X,, Y;]1=0, for i#j, [X, Y]]=H, and [H, Y;]=—a;(H)Y;
lead to the equalities 0= X; - g(Y;), for i#j, 0=X; - g(Y;), and H, - g(Y)) =
—a;(H;)g(Y)). Since {X;}; generates n™ as a Lie algebra and since {H};
spans h, kg(Y)) is b-stable with weight —a;.

We proceed to produce some non-zero 1-cohomology classes for L with
values in irreducible modules. Let V denote the left-Uj-submodule of
Hom (Uy, k) generated by g(L)=g(m™). V may be generated by {g(Y)}i-1
since {Y}j-; generate m~ as a Lie algebra. Choose a maximal proper
submodule W of V. The 1-cocycle

G U>V—> VW

has values in an irreducible module; we will show that the cohomology class
of g is non-zero. We show in fact that the Lie algebra cocycle obtained by
restricting g to L represents a non-zero element of H'(L, V/W).

Let {o;}'-, be the basis for the root system of G relative to T that is given
in Section 2.0.

ProrositioN. HY(L, V/W) is non-zero if the characters {a;}'—, have dis-
tinct differentials.

This condition is satisfied when hNCenter (L) =0, for instance.

Proof of the proposition. There is an index j, for which g(Y;) does not lie
in W. Then k - g(Y; ) is a b-stable line of vectors in V/W of weight —a; . The
line of vectors in an irreducible L-module that is b-stable is unique and
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the h-weight of this line determines the module up to isomorphism [1, A,
§6]. Therefore, V/W is the irreducible L-module of highest weight —a,.

Since G is simply connected, there is a representation of G on V/W
whose differential is the given representation of L on V/W. Let [< V/W be
a B-stable line. Then [ is b-stable, and so [ = kg(Y;). Denote the T-weight
of g(Y;) by A.

We proceed to show that k- g is a B-stable line in Z*(L, V/W). We have
g(Y) =0 for i# j, since the unique b-stable line in V/W has weight —¢; and
since the weights {;}/—; are distinct elements of h* by the hypothesis. g is
determined up to scalar multiplication by the conditions gm*+h)=0 and
g(Y) =0 for i# jo.

The one parameter subgroups {X;(t)}.c, act trivially on g. Since [X,, Y;]=
0 for i#j, Y; commutes with X{"/m! in the Kostant Z-form U, of the
universal enveloping algebra of the complex Lie algebra g [1, A]. Conse-
quently, on the representation space of U, that gives rise to the simply
connected group G under reduction modulo p, the operator X;(t) commutes
with the operator coming from Y;. Therefore, Ad (Xi())(Y) =Y;, where Ad
is the adjoint representation of G on L. Since X(t) acts trivially on g(Y)),
X;(t)- g=g at Y, for i#j. Furthermore, we have

Ad (X;())(Y) = Y;+tH, — t2X;
by 2.0(2), and the corresponding computation for Sl, and sl,; hence,
X;(t)- g=g atY;. Since X;(t) - g and g are both zero on n* +h, we have that
Xi()-g=8

k- g is a T-stable line of weight A —(—a;). Since T stabilizes kY; and
n" +h under the adjoint representation, t - g is also zero at Y; for i# j, and
at m” +h, for te T. The value of ¢ - g at Y}, is (A—(—e;))(£)g(Y;,). Therefore,
g and ¢ - g differ by the scalar (A —(—a; ))(t), and the claim is established.

g is not a coboundary. In fact, V/W has no vector of T-weight A —(—a; ).
If A—(—a;) were a T-weight of V/W, then the character —a; =
A —(A —(—q;)) would be a linear combination of {e;}'_, with non-negative
integral coefficients. However, {;}/'-, generates a free abelian subgroup of
the character group T by the lemma in Section 2.0. This completes the
proof of the proposition.

2.2. THEOREM. Let {o;}'_, be the basis for the root system of G relative to
T. Suppose that these characters have distinct differentials. The 1-Lie algebra
cohomology H'(L, ) is non-zero at the irreducible L-modules {V}}., of
highest weights {—a;}—;.

Proof. Let fi: L—k be a p-linear map where f;(m™+h)=0, f;(Y)#0,
and f;(Y)=0 for i#j. Let g be the 1-cocycle with values in Hom (U7, k)
which is associated with f; in Section 1.2, and let V be the Uj-submodule
generated by g(L). If W is a maximal proper submodule of V, then
V/W=V, as L-modules and H'(L, V))= H'(L, V/W) # (0), by the proposi-
tion.
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The group cohomology H'(G, V) may very well be zero (see Section 3).
However:

CoroLLARY. Under the hypothesis of the theorem, the cohomology space
HY(G, V;Q(H'(L, V)))*) is non-zero.

Proof. Since V; is irreducible and non-trivial as an L-module, the canoni-
cal map V,—B!L, V) from V, to the space of one-coboundaries is an
isomorphism of G-modules. Therefore,

0— BY(L, V) = Z\(L, V) > H'(L, V) = 0 (*)

gives a G-module extension of H'(L,V) by V, This is a non-trivial
G-module extension since it is non-trivial as an L-module extension. In fact,
since H'(L, V)) is always trivial as an L-module, we have that, for any
fez(L, V)—BL, V), V,+k - f is an L-submodule of Z*(L, V}). The one
Lie cohomology class associated to the extension 0 —> V,—»> V,+k - f—>k —
0 is (f), which is non-zero. Since this L-extension is non-trivial, (*) is a
non-trivial L-extension. Therefore the space

HI(G, ‘/] ® (Hl(La ‘/]))*) = EXtG (HI(L’ ‘/])9 V])
is non-zero.

2.3. ExampLE. Sl and sl ,q .

Let h be the diagonal sub-Lie algebra of sl,,, and let o; € h* have the
value o;((h))=h;—h;,; at (h;), the diagonal matrix with entries
hy, ..., h,y. Let T be the diagonal subgroup of Sl,., and let o; be the
character on T with values o;((t,)) = it at the diagonal matrix with entries
iy e v o busre

Lemma. (a) The characters {o;};-, have distinct differentials for all sl .,
in all characteristics except for sly in characteristic 3.

(b) The characters {o;}{—; have linearly independent differentials if and
only if characteristic k ¥ n+1.

Proof. (a) This may be checked easily.
(b) Suppose that ¥, a;a; =0. At (h)[271,

0=Yaa((h)) and (a;+a)hi+ ) (& —a_;+a,)h=0
i i=2
for all (hy,..., h,)€ k™ Therefore the following relations hold:
a;+a,=0, a—a;_,+a,=0 for i=2,...,n (%)

The sum of these relations is (n+1)a, =0. If characteristic kK X n+1, then
a, =0, and furthermore, a; =0 for all i by (*).
Conversely, if characteristic k [n+1, then Y'_, (n—i+1)a; =0.
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Let {\;}/_; be the characters on T given by A;(()) =t, - - * ;. The character
—a; equals A;,,—2A;+A;_;, and as an Sl,.;-module, the sl,.,-module of
highest weight —a; has highest T-weight A =A;,;+(p—2)A; +A;_;. The line
spanned by the cohomology class of g in H'(sl,., V)) is B-stable of weight
p - A; (except possibly for sl; in characteristic 3). Consequently, H Yslys1s V)
has a G-composition factor of highest weight p - A;, and in particular,
H*(sl,.., V) has a composition factor isomorphic to the first Frobenius
power Id® (see [4]) of the identity representation Id of Sl,., on k"**. In the
next section, we show that if p X 3, then H'(sl;, V;) is isomorphic as an
Sl;-module to 1d®.

3. The one-cohomology of Si; and sl;

3.1. Lemma. Let G be an affine algebraic group with Lie algebra L, and
let T be a torus in G with Lie algebra h. Let V be a finite-dimensional
Ui -module and let V* be the space of L-invariants. Then the canonical image of
HYL, V) in H'(h, V) lies in the image of H'(h, V¥) in H'(h, V).

Proof. First we show that H'(h, V*)= H'(h, V).

Let G' be the kernel of the Frobenius morphism of G. Since V is a
unitary U, -module, V is a G'-module (see [4]). V is completely reducible
as an h-module, since h and T stabilize the same subspaces and T is a
diagonalizable group scheme. Let V, be the subspace of V of vectors of
h-weight A. Then H'(h, V)=H'h, V*)+Y, ., H'(h, V,), and we must show
that H'(h, V,) =0 for A#¥0. We may suppose that the dimension of V, is
one in giving the demonstration.

The kernel of any non-zero cocycle f with values in V, equals the kernel
of A. In fact, for any tekernel f and t'€h,

o=f[t,t'D=t-f(t)—t - f()=t- f(t)=A@®Of().

Therefore, teker (), and ker (f) =ker (A). Let teh—ker (f) and let 3° be
the zero-th coboundary operator for Lie algebra cohomology. f is the
coboundary 8°((1/A(£))f(2)).

Therefore, in proving the lemma, we may suppose that f: L — V is a
one-cocycle that maps h into V.

The diagonalizable group T' acts completely reducibly on L via the
adjoint representation; hence, so does h via the inner action ad. Let
L =Y, L, be the decomposition into weight spaces. For e L, and teh,
the application of f to the relation [t, I]=A(t)! gives the relation

(t=A@®) - fO)=1-f@. (*)

Let s be the A-component of f(I). Since f(¢) lies in V*®, I - f(¢) has weight A
and

@=r@)-s=1-f@).
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Therefore, [ - f(t)=0 and f(¢) lies in V*.

3.2. ProrosiTION.  Let sl,.,, be a special linear Lie algebra other than sl
in characteristic 3. Let V, be the irreducible s, ,-module of highest weight
—ay, and let V_, be the space of vectors in V, of weight —a,. If the
dimension of V_,, is one, then H'(sl,.,, V) is isomorphic as an Sl, .,-module
to the Frobenius power of the identity representation of Sl,., on k™*'.

Proof. H'(sl,.,, V,) has the composition factor Id® of dimension n+1,
by Section 2.3. It will suffice then to show that dim, H'(sl,.;, Vi)=n+1.
First we show that the kernel of the restriction mapping

ar: H'(sl,11, Vi) = H'(n™ +h, Vi)

has dimension <1. (This fact does not require the hypothesis.) Represent a
cohomology class in the kernel of o by a one-cocycle f: sl,,, — V; which is
0 on n” +h. The computation

0=f{Y, XD =Y:" f(X)~X; - f(Y)=Y:" f(X))

shows that f(X;) is a lowest weight vector in V;. The lowest weight of V, is
the image w - (—a;)=a, of the highest weight —a,; under the opposite
involution w in the Weyl group of sl ,,. Therefore, the weight of (X)) is a,;
at the same time, the weight of f(X]) is o; by the computation

fla;X)=f[t, X D=t f(X)-X; - f()=1-f(X;) for teh.

Thus, we see that f(X;) =0 for j# n, and that f is determined by its value at
X, alone. Since f(X,) lies in the space of lowest weight vectors, which has
dimension one, the dimension of the kernel of = is <1.

Second we show that H'(n~ +h, V,) has dimension <n. The Weyl group
of sl,., acts transitively on —A ={—aq;}_;. Therefore, there is an element of
W (realized as an element of SI,.,) that transforms V_, into V_, ; conse-
quently, each V_, has dimension 1. Since V; is an irreducible and non-
trivial sl,,;-module, V% =(0). By the lemma in Section 3.1, we may repres-
ent a cohomology class in H'(n™+h, V;) by a cocycle f which is 0 on h.
Therefore, f(Y)) is a vector of weight —a;, and f is determined by the family

{f(YDe V_ Y-
H'(n~+h, V,) has dimension =n, since each V_,, has dimension 1.

3.3. LemMa. Let V; be the irreducible sl;-module of highest weight —a;.
The dimension of V_,, is 1 if p#3.

Proof. Take the irreducible sl ,-module V of highest Sl -weight
Ajv1+(p—2)A; +Aj_; =pA; — ;. The opposite involution w, which maps (h;);
inh to (h,.,;);, transforms the highest weight pA; — ; into the lowest weight

w (PN — ) = i —DPAns1—j
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The difference (pA;—o;)—w - (DA — o) =p(\j+Apyy—y) — (o + @y 4q-) Te-
stricts the possible weights of V to a certain range. For j=1,

p(A;+A)—(a;+a,) =(p—1Da; +pa,+pas+- - - +po,_1+(p—Day,
limits the possible S, . ,-weights of V to those of the form

a=(pA—a)-— Z a;a;,

0=<a,<p, 0=q =p for 1<i<n, 0=a,<p, by [1, A, 5.3].

When n =2, the possible weights of a vector v in V have the form
a=(pA;—ay)—(a,0;+a,a,), 0=a,, a,=<p—1. Since the sl;-weights are
figured modulo p, v has sl;-weight —a, if and only if « and —a;, are congruent
modulo p, thatis, if a,a; + a,a, = 0asan sl;-weight. By thelemma of Section 2.3,
o, and «, are independent over k if p# 3. Thus, the only vectors of sl;-weight
—a, in V; are those in the one-dimensional highest Sl;-weight space. This
completes the proof of the lemma.

3.4. THEOREM. At the irreducible sl;-module V, of highest weight —a,
H(sl;, V) is isomorphic as an Sly-module to the Frobenius power of the
identity representation of Sl; on k* if the characteristic of k is not 3.

Proof. Proposition 3.2 and Lemma 3.3 establish this theorem.

3.5. Comparison of the cohomology of Sl; with that of sl;. The highest
Sly-weight of V; is A,+(p —2)A,.

CoROLLARY 1. The group cohomology H(Sl;, V) is zero if p# 3.

Proof. Let Sl be the kernel of the Frobenius morphism of Sl;. The exact
sequence of group schemes 1— Sl} — Sl;— SI,/SI3— 1 induces an exact
sequence of cohomology spaces

1— H'(SL/SI3, V§") — H'(SL, V) = H'(SI3, V)™, (*)
by [4, Lemma 5.1], once one adds to that lemma the fact that the canonical
map

H'(Sl;, V,) = H'(Sl3, V)
has its image in the Sl;-fixed part. The term H'(SL,/SI3, V=" is zero since
V' = Vi =(0). Once we show that the term H'(SI3, V)5 is (0), we will
know that H(Sl,, V,) is (0).

There is a canonical injection H(SI3, V;) & H(sl;, V,) which corres-
ponds to the map

EXtSl;1 (k’ Vl) - Ethl3 (k, Vl)

that takes an Sl3-extension to its underlying differential extension. This map
is a map of Sl;-modules, and so,

H'(Sl3, V1)*» & H'(sl3, V)™ = (Ad)™)*> = (0).
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CoroLLARY 2. H'(Sl;, V,®(Id®)*) is non-zero if the characteristic of k
is not 3.

Proof. Theorem 3.4 and the corollary to Theorem 2.2 establish this
corollary.

Remark. One can show that the dimension of H(Sl;, V; ® (Id®)*) is
one if p#3.

Remark. Theorem 3.4 holds with sl, in place of sl; if the characteristic

of k is not 2. In fact, Lemma 3.3 may be easily established for sl, when
pF2.

Remark. 1If the characteristic of k is 3, H'(sl5, V;) also has a composition
factor that is isomorphic to the trivial module k. This factor is the image of
the one-dimensional module H*(Sl;, V;) under the canonical map from
HY(SL, V,) to H'(sl5, V). (See [5, Table 4.5] for the fact that H*(SL;, V;)
has dimension one when the characteristic of k is 3.)

3.6. Questions. (a) Is H'(sl,.q, V;) isomorphic as an Sl ,-module to
the Frobenius power of the identity representation of the group if the
characteristic of k does not divide n+1?

(b) More generally, is H'(L,V) irreducible except possibly if
p | dim (h)+1? (V; is the module given in Theorem 2.2.)

(c) At which irreducible modules other than those produced in Theorem
2.2 does L have non-zero one cohomology?
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