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Introduction

In this paper we complete the proof of the main theorem stated in [13].
This involves proving that a certain subgroup, Go, of a group G is, in fact,
normal in G.
Throughout the paper we let G be a finite group having a standard

subgroup A such that IZ(A)I is odd, A/Z(A) is a group of Lie type of
Lie rank at least 3 and defined over a field of characteristic 2, and Co(A)
has cyclic Sylow 2-subgroups. Let be an involution in Co(A) and assume
tC:Z*(G). In [13] we showed that with the assumption of a certain
hypothesis (Hypothesis (.) in [13]) either ,-O+(8,2) and G
Aut (M(22)), or there exists a t-invariant semisimple subgroup Go- G such
that IZ(Go)I is odd and to Go/Z(Go) satisfies one of the following:

(i) to ft, x ft,, the components interchanged by t.
(ii) (o is a group of Lie type defined over a field of characteristic 2 and

acts on Go as an outer automorphism.

Our goal in the present paper is to show Go E(G). We remark that our
work here might be useful in the verification of Hypothesis (.) of [13]. In
that hypothesis we assumed results concerning standard subgroups of type
PSp(6, 2), PSU(6, 2), and 0+/-(8, 2)’. However, these assumptions are only
needed in establishing the existence of the group Go. Therefore, when one
considers standard subgroups of type PSp(6, 2), PSU(6, 2), or 0+/-(8, 2)’ it
will probably be sufficient to just construct an appropriate group Go. The
methods of this paper will yield Go---G once results analogous to those in
15 are verified.

It is in this part of the proof of the main theorem that we make use of the
B(G)-conjecture, and here it is only used for the "wreathed case" (type (i)).
With extra work and signalizer arguments it may be possible to work around
the B(G)-conjecture. In the "quasisimple case" (type (ii) we will use a
recent result of Holt [10].
Throughout the paper we keep the above notation. Also, we set 12=

{G: g G} and write a Go. Our goal is to show that 1 {a}. Notice that
Go, N,(Go). For X_< G, let A(X) denote the set of fixed points of X on A.

Received July 6, 1976.
) 1979 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

554



CHEVALLEY GROUPS AS STANDARD SUBGROUPS, III 555

The paper is organized as follows. In {}13 we prove a result on au-
tomorphisms of the Sylow 2-subgroups of Chevalley groups (normal or
twisted) in characteristic 2. This is based on a paper of Gibbs [6]. In 14 we
prove some results about the action of G on , under the assumption that
A(t) {a}. In 15 we verify that A(t)= {a} and apply the results of 14. Then
16 and 17 handle the wreathed case and the quasisimple case, respec-
tively.
We thank W. Kantor and M. O’Nan for helpful discussions concerning

some of the work in 14.

13. Preliminaries

In this section we reduce to the case O(G)= 1 and prove a result
concerning Aut (U), where U Syl2(G). This result is based on a result of
Gibbs [3].

(13.1) L(G)= E(G), so we may assume O(G)= 1.

Proof. A L(CG(t))<-L(G). The argument of (5.1) of [13] shows that
AG <-CG(O(G)). Since C6(A) is solvable, (A6)--L(G) and the result
follows.

From now ,on we assume O(G)= 1.

(13.2) Let G be a finite group o Lie type defined over a field Fq of
characteristic 2. Assume that G[Z(G) L4(q) and that G has Lie rank n >-3.
Let U Syl2(G) and UI,.. U,, the root subgroups of U, corresponding to a
root system E of G. Let o" be an automorphism of U and write Uo=
(U: a E+, a a compound root). Then Uo Ug and cr permutes the groups
UiUo, i= 1,..., n, the permutation given by a graph automorphism of the
Dynkin diagram of G.

Proof. The ideas here are similar to those in (6.2)A of Gibbs [6]. First we
show that Uo is r-invariant. By Lemma 4 of [12], Uo U’ except in the
cases G-PSp(2n, 2) and G---F4(2). In the latter cases label the Dynkin
diagram as follows:

Then it is easily checked using the commutator relations that

U’=(U,,,+o,,,_,I(1)U,,,+,,,_,(1),
U: aE+ compound, a

or

(U+(1)U:+(1), U=: aE+ compound, aa+a3,
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Certainly a normalizes U’. We get U= Uo by checking that Uo/3,a(U)
Z(Ul(u)).
We consider the action of r on U/Uo. As U/Uo is the direct product o

the groups U,Uo/UoU,/U’, (U,, may be non-abelian if G/Z(G)
PSU(2n + 1, q)), we may indicate elements of U/Uo by n-tuples, each entry
an element o lq (or possibly lrq, in twisted cases). Choose tl,..., t, with

t Fq# (or [’q#) and consider the elements U,(t) =I-I u,,(t) (mod Uo). We
claim that the matrix T= (t) is monomial with permutation given by a
graph automorphism of the Dynkin diagram. Identify U,(t) with
(t,,..., t,,).
Note that except for the case PSU(2n + 1, q) each U,, is abelian. In

the following we exclude the case PSU(2n + 1, q), but the arguments for
PSU(2n + 1, q) are only slightly different than those presented. It is never
the case that a, aE+ are short roots and a + aE+ is a long root.
Consequently, if a, a, a + a are all in E+, then [U,, U,] projects onto

U,,,+r Using this fact we easily see that given any i= 1,..., n, there do not
exist adjacent roots a and a with t 0 # t. For otherwise, U,(t) would
not be an involution.
We indicate the proof of the claim by considering an example, thereby

simplifying notation and case analysis. Say G -PSp(2n, q) n-> 4 and label
the Dynkin diagram as before. We begin by letting Uo=[Uo, U] and
checking that 1[ U,(t), U] 0o//)o[ q or qZ, depending on whether a is an
end node (i= 1 or n) or not. This fact, together with the adjacency
condition, above, and the Chevalley commutator relations implies the fol-
lowing"

(a) (t,..., t,) has at most 3 non-zero entries, equality possible only if
n 5 and (t,..., t,,)= (tl, O, t3, O, t),

(b) If i= 1 or n, then (tx,..., t,)=(tx, 0,..., 0) or (0,..., 0, t,).
(c) If (t,..., t,) has precisely two non-zero entries, then

(t,1, t,,)=(t,, O, t,3, 0, O),

(0,...,t,,,_2,0, t,,) or (tl, 0,...,0, t,,,).

Suppose tll 0, so (tl,..., tl,)= (t11, 0,..., 0) by (b). Since

[u(tl), u(tg] 0o,
we must have t22 0. As [U, U] 0, this and (b) imply that

(t,,,. ..,’t,,,)=(O,..., O, t,,,,).

By (a) and (c), t2i 0 for j 2 unless n 4 and

(t2x, t22, t23, t24)= (0, t22, 0, t24).

Suppose this occurs. By symmetry, (t3x,..., t34)= (t31, 0, t33 0) with t33 0.
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Now

[,Ual(), Uaz(t2), Ua3(t3), Ua2(t2)] 1,

whereas the image of this commutator under r is non-trivial. So t2j 0 for
j2.
Now consider t_,j. As above t._,_ 0 and t_, 0 for j # n- 1, unless

n 4 and j 1. In the latter case

(t,_l,1,..., t,_,,)= (taa, 0, t33, 0).

Computing 3,5(U), we have [U,,(ta), 3,5(U)]= 1, but [U,(t3)’, 3,s(U)]rs 1.
This is a contradiction. Thus, t,_, 0 for ]# n- 1.

Next, consider (t3 t3,). As [U,(t2), U,(t3)]rs 1, either taa or t33 is
non-zero. Suppose tal r 0 # t33. Since [ U,, U,.] [ U,,., U.] 1, we conclude
that t41 t42 t43 0. If n 5, then (c) yields t 0 for ]# 4. If n > 5, then
(a) and (c) imply ta 0, for ] > 3. Since [U,(t3), U.(t4)] 1, we must have
t44 # 0 in either case. From here we get a contradiction by looking at
[U,4(t4), U,,(ta), U(t2), U,(ta)]. This commutator is trivial, whereas its
image under tr is non-trivial. Therefore, t3a 0 or t33 0.
Suppose t33 0. As above, t4 t2 t43 0. Since

[Ua3(t3) Ua4(t4)] 1,

t3i 0 fOl" some j > 3. Then (c) implies that ] n. But then

[u(t), u._,(t._)Y[Uo, u],

and we conclude n- 1 4, n 5. The commutator relations imply that

[U,2(t2), U3(t3), U,(t4)] U2+3+,(t2t3t4),
whereas the image of the left side (under r) is in [Uo, U, U]. This is a
contradiction. We now have t31 =0 and t33 0. From here we conclude

t31 0 for g 3. Otherwise, (c) forces n 5 and j 5, and we get a contradic-
tion by considering the commutator of length 4 of the previous paragraph.

Similarly, we show t._2, 0 if j n- 2. First show that one, but not both
of t.-2,.-2 and t._2,, are non-zero. If t.-2,, g 0, argue, as before, that n 5
and t.-2,1 g 0. But we have shown that t._2,1 tal 0. Thus, t.-2,.-2 0,
t._2,. 0 and arguing as above, we show t.-2,j 0 for j# n-2.
At this stage it is easy to show that T (tj) is diagonal. The preceding

arguments allow us to assume n>5. If 3<i<n-2, then (a) implies
(61,..., 6.) has at most two non-zero entries. For i=4, (c) and JUan(t3),
U.(t4)]g 1 yield t4 =0 for j#4. Continue in this way to complete the
argument.

If tl =0, then t.1 g 0 and we argue, as above, that T is skew-diagonal.
But then

[[U(t), U(t2)],[U(t), U(t3)]] 1,
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whereas the image of this commutator under r is non-trivial. We have now
proved the claim for PSp(2n, q) and n -> 4.
For G -PSp(6, q) we use slightly different arguments. It is easy to see

that

(t11, t12, t13) (t11, O, t13), (t21 t22 t23 (0, t22 0),

and

(t31, t32, t33)= (t31, 0, t33).

Next, check that [ Ul(tl), Uo] covers o/[o, U] (a group of order q2), while
[ U3(t3), Uo]o/o has order q. Comparing ith the images of these groups
under tr, we have t31 =0. If t13 0, then [U(h), U(t.)] is an involution,
while the image of this element under r is not an involution. Therefore,
t13 "-0 and the claim holds in this case.
For the other Chevalley groups use similar arguments. When the Dykin

diagram has more than two end nodes, the arguments are simpler. For the
cases 0 F4(q) or 2E6(q) reason as follows. Label the Dynkin diagram

1 2 3 4

and let n, I[U,(ti), U]Uo/Uol. Then

(/1, /’2, /’3, /’4)"-" (q, q2, q2, q) or (q, q3, q3, q2),

according to 0 F4(q) or 2E6(q). An easy check gives tlj 0 if ]# 1, t4j
if ]#4,

(t2t, t22, t23, t24)= (0, t22, O, t24)
and

(t3x, t32, t33, t34)= (t3, O, t33, 0).

=0

To conclude that t24 0 t3a, compare the action of U,(t2) and U,,3(t3) on
0o/[o, U] with the action of their images under tr. The claim follows.
We can now complete the proof of (13.2). Choose t.q (or [’q#,.) for

i= 1,..., n, and consider the images of U,(ti), U,(g), and U,,(ti + g) under
tr. By the claim, each of the corresponding matrices is monomial. This forces
each to have the same underlying permutation matrix, and the result
follows.

(13.3) Let G, U, cr be as in (13.2). Then there exist graph, diagonal, and
field automorphisms g, d, f, respectively, such that tr and gdf induce the same
automorphism on UUo.

Proof. This follows from (13.2) as in the proof of (6.,5) of [6].
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14. The embedding of Go in G.

In this section we prove results in a more general situation than actually
needed for the proof, of the main theorem. This is done so that the results
will be helpful in the verification of Hypothesis (,). We let A be quasisimple
such that A is a group of Lie type having Lie rank at least 2 and defined
over a field of characteristic 2. Assume fiLa(2), Sp(4, 2)’ and that G
contains a t-invariant semi-simple subgroup Go>A such that either

(i) to is a group of Lie type in characteristic 2, with inducing an outer

automor,phism of Go; or
(ii) Go-fi x fi, with interchanging the components of 0o.
We assume that fixes a .unique point of f={G: g G}, namely Go.

Note that C(Go) -< C(A) implies that [C(Go)I is odd. Moreover, is
odd.

(14.1) Assume that (i) holds and (.4, to)(F(q)’, F(q)), (PSp(n, q),
O/(n + 2, q)’) with 4 n + 2, or (O-(n, q)’, O/(n, q2),) with 41 n. Then
No(Go) controls usion o its involutions.

Proo] To prove this it is first necessary to check that with the exception
of the cases listed centralizes a Go conjugate of each involution in
No(Go). For this we use the results of [3]. First use 8 and 19 of [3] to
determine the possible action of on Go, and then check that each class of
involutions in Go has a representative centralized by a conjugate of t. This is
easy using the results of [3], although a case analysis is required.
Now consider G acting as a transitive permutation group on 2. Fix an

involution z N(Go). If/3 is any point of l fixed by z, then by the previous
paragraph z is centralized by a conjugate of fixing /3. It follows (by
Gleason’s lemma) that Co(z) is transitive on the set of fixed points of z on
f. But now the converse of Witt’s theorem gives the result. Indeed, suppose
zg N(Go). Then z fixes Go, G and so for some c C(z), G-= G.
But then cg N(Go) and zg z g.

(14.2) Each pair o[ points in t2 is interchanged by a conjugate o]’ t.

Proo]’. Let /3 3’ be points in f, t fq G and t2 CI Gv. Consider
D (tl, t2) and E O2(D). We claim that (tl)E fixes/3. Suppose ((tl)E)a <
(tx)E. Since tl fixes just/3, (t)Ea fixes just/3, and hence N(((t)E)a)fq(tl)E
must also fix /3. This is a contradiction.
Now (t)E,(t2)E by an element d(tt2). So txd is an involution inter-

changing/3 and 7. As tld is conjugate to tl or t2 we have the result.

For the remainder of this section we assume that condition (ii) holds. Set
ct Go f. Let G, G2 be the components of Go. Let Sx Syl2(G), S2 S,
So S $2, and So<-S Syl2(N(Go)). We assume S. Let S be the weak



560 hgc M. SEITZ

closure of So in S, with respect to G, and for ] 1., 2 write 0j CG(Gi),
where {i, ]} {1, 2}. Let i S N i.

(14.3) S Slx S2 or S(d) x S2(d2), where for 1, 2, di is an involution
inducing a graph automorphism of Gi and centralizing Z(S). Also, S
Syl2(G). In particular, g= (g f3 ) (g f 2).

Proof. As fixes just one point of , 11 is odd and S Sy/2(G). Suppose
S > So and So S__. S. If x S, then

Ic(x) n s,l Isl Is" sl > ICs(y)l

for any yS-(N(SOI"IN(S2)). So xN(S)f’lN(Sz). Letting x vary and
using symmetry we have S -< N(S1) fq N(S).
Regard (N(GI)thN(G2))/Z(Go) as a subgroup of Aut(G)xAut(G).

Since S/(S)’ is elementary abelian, we have SSo/So elementary of order at
most 24, and of order at most 22 unless 0 PSL(n, q), O/(n, q)’ or E6(q).
If (i PSU(n, q), O-(n, q)’, 2E6(q), or 2F4(q)’, then Z(g)= Z(So), as Z(S)
is centralized by all involutions in a Sylow 2-subgroup of Aut (0), for
i=1, 2.
Suppose 0 PSL(n, q) for n -> 4, O/(n, q)’ for n -> 8, E6(q), ET(q),

Es(q), G2(q), or 3D4(q). Then IZ(S)[=q and we are done if q= 2. So
suppose q > 2 and let I= 02(C(Z(S))). Then Z(I)= Z(S1), I is special,
and for L maximal in Z(I), I/L is extraspecial of order at least 2q. These
facts follow from the Chevalley commutator relations (for the groups E6(q)
ET(q), and E(q) a reference is (4.4) of [5]). If L can be chosen such that
S fq Z(S) -< L, then S fq I maps to an abelian subgroup of I/L not contain-
ing Z(I/L). This contradicts II: SOI[<-24. Therefore, S>-Z(S). If x
Z(S), then [S: Cs(X)[-<2, so the commutator relations imply that x
Z(S). So Z(S)<_ Z(S), and by symmetry we have Z(So)= Z(S).
We claim that Z(So) Z(S) in all cases. We are left with G1-L3(q),

F(q), or PSp(n, q). In the first case note that each involution in S is
contained in an elementary abelian subgroup of order q4, and, recall, q > 2
here. From S 1/(S) we see that S= So. For the other cases [SSo/So[ <-
4, and so Li S S is of index at most 4 in S, for 1, 2. If q > 2, argue as
follows. From (19.5) of [3] we easily have Z(S)-<So Choose a
Z(S)-Z(So) with a=aa and aSi, for i=1,2. We may assume
aZ(S). Then IS1" Cs(a)[ >- q, while L<-Cs(aO. So q=4 and L=
Cs(al)>-Z(S). As before, Z(SO <S implies Z(S)-< Z(S). But this forces
S<-S2 and ISSo/So[ <- 2.. In turn [S1" LI---2, contradicting L=Cs(a).
So we must have q 2. We may assume G F(2), for otherwise S So.
Here we show, directly, that $ So. Let U SyI2(A), write U as a product
of root subgroups U, for a +, and set

A {01, 122, 03, 04, 122 q- a3, 02 "" 2C3}"
From the commutator relations U (U’, U" a A). For each a A a check
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of the commutator relations shows that [Ct(Uo)[ >- 216. Assuming U Cso(t)
and letting Sio be the projection of Uo to Si, we then have ]Sf)C(So)[ >
24. But, if x N(Go)-Go is an involution, then Syl0w 2-subgroups of
Co,(x) have order strictly less than 240 (see (19.5) of [3]). So So<-So for
each i= 1, 2 and a cA. This gives S= So and we have proved the claim.
Therefore, Z(S)= Z(So).
Regard g-< Aut (1) X Aut (2)" We may think Of g--< Sl(dl) x Sz(d2),

where di is a graph automorphism of G, centralizing .G and Z(Si). Of
course it may happen that d. Go, although we will show that this does not
occur. As S is t-invariant, S is as desired or S So(dd}. Suppose the latter
holds and set (a)g-1=/3. Then S_< Go implies So -< Go. By (14.2) there is a
conjugate, tl of t, such that tl interchanges a and /3 and tl normalizes
S f’l Goo. If tl normalizes So, then S Sg. But tlg_ Go, so S,g<- G1 x (2, a
contradiction. Therefore S # So. So (So, S} S So(did2}. However, if
x e $1, then _C(x.)_> Cs(x)x $2 as a subgroup of index at most 2, while no
element in S-So has such a centralizer. Therefore, S -< So and, similarly,
S-< So. But then So S, a contradiction.

(14.4) If G<- G,, then Gg {G1, G2}.

Proof. Say G -< Go. As G( Go, G -< Go G1G2. Assume
G{G1, G2}. Then Gfq G1 and Gf3 G2 are both contained in Z(Go).
Let X Z(S)NS, for i= 1, 2. We may assume S<-S1 x $2. Then con-

sidering the image of G in Go/G for i= 1, 2 we have

xl -< z(s) x z(s).

However, XI f3 Z(S1) XI f3 Z(S2) 1.
By (14.3) S, Sg <- C(XI). As S SylE(G) and S is weakly closed in S, there

is an element h C(XI) such that g= ggh. By (14.3), g is a direct product
g---gl X S-2 where g S or S(d), for i= 1, 2.
Apply the Krull-Schmidt theorem to get

g=glXgl or g=glXg".
Then

z(g) x S- C(g) >_ gla or g.
So X= Z(C(g))fq C(gl)’= XIh or Xh, respectively. From the remarks in
the second paragraph we conclude that Xz Xh. Repeat this argument
starting with g S x gl or g S- x gh and conclude that X1 XI" or Xh.
Since X.a=X we must have X1 XIh, which is a contradiction. This
completes the proof of (14.4).

(14.5) For i= 1, 2, Gi fixes precisely one point o]’ lI, namely .
Proof. Let f(G) be the set of fixed points of Gi on II, and assume that

c/3eli(G1). By (14.2) there is a conjugate, t of t, with c’,=/3. Then
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alI(Gl), so G}<--G,, and by (14.4), G}=G or GI=G2. If GI= Gz,
then O(GI0=II(G:), forcing {a,/3}O(G)CO(G). But then Go fixes
and , which is impossible. Therefore, GI
Now t normalizes a Sylow 2-subgroup, V, of C(G). Conjugating by an

element of N(G), we .may assume t N(S) (although we may no longer
have a’= ). Write g= g x S, where for i= 1, 2 S g S, or
Also, t N(S G) N(S).
Apply the Krull-Schmidt theorem to S S x S, and conclude that the

pair {gz(g), Sz(g)} is determined uniquely by the abstract structure of
Let J=N(S)N(SZ(S)). Then J(t)=N(S) and SeSyl2(J(t)). Since
N(S) we must have t e J and hence S contains a conjugate, t2, of t,
normalizing SIZ(S). But then tz fixes a, so and tz are conjugate in G,. The
contradiction is that t2 normalizing SZ(S) forces t2eN(G) and N.(G)
N.(G)N.(G2) G. We have now proved (14.5).

(14.6) Suppose N()G. Then there is a point a fixed by and a
conjugate t of t, such that t interchanges a and , and tt e N(), for
i= 1,2.

Proof. We have G2 C(). If G: C(), then by (14.5) C(x) fixes just
the point a, and since C()N() we also have N() G,, against the
hypothesis. So G2C(), and we choose g e C() with G# G2. Let

Then 1 X G G N(GIG), and so all. Also, S G implies
G. Let t be a conjugate of with t interchanging a and . Then

G G, so G, GI or G. Say G GI S. Then (S, S} Gx and so

S e Syl2((S, S)). Since t normalizes (S, S,), t normalizes a Sylow 2-
subgroup of (S, S,), and we may assume t e N(S). We then get a conju-
gate of tl e N(S) N(S). The argument of (14.5) gives a contradiction.

Therefore, G, G and G G’,. By (14.5), gt e G. and so

x x e

Replace by a G2-conjugate ol t, if necessary, so that 2 . Then
tt N(). But also, S G implies S G2 and so SG. So S
G S and t N(S). Consequently, tt (tl t)- N(S) and so S=

S’= S $2. Similarly, tt N(2), proving the result.

We now prove our main result concerning groups satisfying (ii).
(14.7) Assume that:
(a) N(i)<- G,,, [or i= 1,2.
(b) I" I G2 is a standard subgroup of a proper section, W of G, with

m2((Cw(I))= 1, then E(I;V) is a Chevalley group defined over a field o[
characteristic 2, E(VV) x (, or IO(W) - W.

(c) If 1 X- 1 and .O(N(X))G2" N(X), then G2 - N(X).
Then 1; that is Go- G.
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Remarks. We see from (14.6) that if (a) fails then $1 2 fixes more
than one point of f. In classifying groups having a standard subgroup A
with fi 02, condition (b) will hold in a minimal counterexample. Condi-
tion (c) will be a consequence of the B-conjecture. So onlycondition (a)
needs checking in a given problem.

Proof. Let 1 <X-<I. We claim that N(X)-<Nc(G2). If X=I, this is
(a). Assuming the claim false choose X as a maximal counterexample. Let
Y= N(X) and consider the group N= N(X)/X.
By our choice of X, " Sy/2(Cr((2)). Using the maximality of X and the

fact that G2 fixes just a, we see that G2 is a standard subgroup of N. So by
(b), the main theorem in [4], and Corollary Ii in [2], the structure of NG(X)
is known. Let P/X=E(I) and Po=(G2P). Then Po-<Ca(X) and Po is
semi-simple. By (c) we may assume Po > G2. Let Xo X f3 Po.
Assume that m(Y/X)= 1. Then from (b) we see that [Y/X[= 2 and that

the involution in Y/X induces an outer automorphism on Po. Also 2 f3 Po
$2. Choose z Npo(2Xo)-2Xo and such that zZ zXo. Then z normalizes

S2. From (3.1) and the fact that Z(G2) has odd order we conclude
that either IXol--<4 or that /50 L3(4)x La(4) and IXol-< 16. We claim that
wl->1/4 I =1. This is clear except in the latter situation. So suppose /5o
L3(4) L3(4). Then $2 1(2)-< C(Xo) and Xo is an image of Z4 Z4 (the
Sylow 2-subgroup of the multiplier of L3(4)). For j an involution in 2 we
have j an involution in 2Xo--2Xo, SO jz 2-1(Xo)" Thus g-<

l(Xo) and the claim follows.
If [V > IXI, then by the maximality of X and symmetry we have G1-

N(V). But then (14.5) implies that z N(G2), which is not the case.
Therefore IV[ -<IX[. Let r be the order of a Sylow 2-subgroup of /5o. A
Sylow 2-subgroup, /, of Po2Y has order at least

YI l/Slr= 2 IX[ [2/S2[r 1/2 12[ [2/S21 r= 1/2 IS2[ I/sl r.

However, it is easy to check that then III > IsI, whereas S Syl2(G). This is a
contradiction and so m2(Y/X) > 1.
By the main theorem in [4] the only possibilities for fi are La(4) and

G2(4). Also Y/X is a Klein group. If fi -t2 L3(4), then [’o=-Sz. By
Theorem 6 of [15], IX0[_<2, and from here we can argue as in the preceding
paragraph. Suppose fiG2(4) and set Z/X=Z(S2/X). Then Z/X is
elementary of order 16 and contains 4 conjugates of Y/X (see (3.5) of [4]).
Also, Npo(Z is 2-transitive on these conjugates of Y/X. Choose g Npo(Z
with Y’g # Y. By (18.2)(i) of [3] we have I/X (C(Z/X) f’l Po/X)( contained
in G2X/X and S2X/X Syl(I/X). As G2X G2 x X we have S2 Sy/2(I’)
and we may choose ge N(S2). We now argue as in the above paragraph to
get IX[-> 1S21. However, this is impossible as Y-< 1, [gl[ -<2 [$11 and [Y/X[
4. We have now proved the claim.

In particular, if x, x g are 2-elements centralizing G and G, respectively,
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then Gi CG(x) and Gj CG(xg). By (14.5), C(x) and CG(xg) each fix
and ct is the unique point of f fixed by CG(x). It follows that g c G. Now
apply Theorem 5 of Aschbacher [1] and conclude Go-G.

15.

In this section we consider the action of G on f. Notation will be as in
[13]. In particular, Go is the group constructed in Sections 8-12 of [13]. We
will show, among other things, that fixes a unique point of fL This will put
us in a position to apply the results of {}14.

Suppose that fi is defined over the field Fq.
(15.1) NG(A) -< NG(Go) G. In particular, CG(t) ----- G.Proof. Let goNG(A). Assume, for the moment, that fi:O+/-(8,q)’.

Then Go (A, E), where E E(CG(J)) (see (7.3) of [14] for the definition
of J). Consider the group J. If Jg J .for some a c A, then G (A, E)
Gg= Go. So, suppose ]g] for any a c A. Then Fa(q) and the au-
tomorphism induced by g on A is not contained in the subgroup of Aut (A)
generated by inner automorphisms and field automorphisms.
Let

be the labeling of the Dynkin diagram of A. Then

r 2al + 3a2 + 4Ct3 + 20t4.
Let

$ cz + 2a3 + 2c4, c c1 + 2a2 + 3c3 + 2c4 and /3 ax + ctz + c3.

Then (J, J,)= J x J, and (J, J)g (J,,, j)x for some x c A. Choose I to be a
(q + 1)-Hall subgroup of J x Js. Using (7.12) of [14] we see that there is an
element y cA with Igr = L So gy normalizes OZ’(C(I)) Oz’(CE(J,)) (see
(7.11) of [14]). One now checks that Go =(A, Oz’(C(I))), so gy, and hence
g, is in N(Go) G.

Finally, assume fi O(8, q)’. Recall that q > 2 here. Then for some
x cA, gx normalizes J. Therefore, gx normalizes O2’(C(J,)) and Ca(L).
Now

OZ’(CA(L))= L(q) x L2(q) x L(q) or Lz(q) x L(q),

depending on whether fi 0+(8, q)’ or 0-(8, q)’. Also, O2’(Go) is isomor-
phic to one of the groups . fi or 0+(8, q2),. In any case it follows that the
Sylow 2-subgroups of O2’(Co(J)) are elementary abelian of order q6. Let
c X c SyI2(CG (J)), Xo X CI Go, and

X <- Yc Syl2(C(J,)).
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Then Xo is elementary of order q6 and a free F2[(t)]-module. So tf3
Xot =txo. It is easy to see that Xo is weakly closed in X. This, and
consideration of the action of X on Xo shows that N.(X)=
X(N.(X) f3 C(t))= X. So X Syl2(Co(J)). Now, as Xo is weakly closed in X
we can apply Corollary 4 of Go!dschmidt [8] to get Xo strongly closed in X
(with respect to C(J,)). The main theorem of [8] shows that Xo Syl2(C),
where C <Xo%(J.)), so we know the structure of C/O(C). As 02’(Cc(t)) <_

CA (J) we must have C O(C)02’(Coo(J)).
Let y be an involution in Cxo(t). Then there exists v eXo with v= ty.

Write O O(C) and O Co(t)Co(ty)Co(y). Now Co(t)<-N(A), so

[Co(t), CA(J)]<--Co(t)tqCA(J) 1 and Co(t)<-O(C6(A)).

Similarly, Co(ty)<-O(Co(AV)). Therefore, Co(t), Co(ty)-<Co(y)and
[y, 0]= 1. As q>2, if we let y range over Cxo(t) we conclude that O<_Z(C)
and, finally, that

c= o-’(Co())= o’(c(z)).

Therefore, gx eN(Oz(Coo(J))) and hence gx normalizes

(A, Oz(Cco(J,))) Go.
As x cA _< Go, g e N(Go). This completes the proof of (15.1).

(15.2) a is the unique point in fixed by t. In particular, [121 is odd and
G No(Go) contains a Sylow 2-subgroup of G.

Proof. Suppose fixes /3# a and write /3= G= G1. Then
No(A), so Co,(t)()<-A and divides IAI. If then
A E(Col(t)) and t---tg by an element of G1 (see 19 of [3]). Say gy

with yeG1. Then gyeC(t)<_Go (by (15.1)), and so G,=Ggy=Go, a
contradiction. Therefore E(Co(t)) fi. In case (, ft, x ft. we write G,
G,,G12, where Gll and G12 are the components of G,.

First assume that C6,(t) is not 2-constrained. If G, is quasisimple, then we
may choose g so that [t, t*]= 1 (19 of [3]). Consider A E(Co,(t)) and the
groups A f’)A g <A1 <A. Since g acts on each of these groups we con-
tradict (5.3) of [14]. Say G GG2. Then stabilizes Gll and G2, so
write Xi C6,(t)). We may assume that X=E(X). Now XX2A. Let
P Syl2(X2) and consider CA(P). Using the results of [3] we see that in no
case is .,1 a section of CA(P). Therefore, we have a contradiction here as
well.

For the remainder of the proof we assume that Co,(t) is 2-constrained.
We have tC.N(A))= A, so tO: Co,(t)). Also Ic,(t)l must divide IN(A)I.
Using the results of [3] it is fairly easy to show that either

(A, o) (Sp(n, q), O+(n + 2, q)’);
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or t G1 and

(A, do)= (Sp(n, q), PSL(n, q)), (Sp(n, q), PSU(n, q)),
(F4(q), E6(q)), or (Fa(q), 2E6(q)).

(For the exceptional groups the number IC,(t)l is available from the work
in 13-17 of [3]. For the classical groups, this number is not presented
explicitly, although it is fairly easy to calculate it. One way is to embed the
centralizer in a parabolic subgroup of G1 and look at the 2-part of the
index).
Suppose t G1 and (A, do) (Sp(n, q), PSL(n, q)), (Sp(n, q), PSU(n, q)),

(F4(q), E6(q)), or (f4(q), 2E6(q)). By (19.9) of [3], tGltg and Gltg

contains two Gl-classes of involutions. In fact, setting x ttg we have

oz(c,(t)) o’(c,(t) n c,(x))= oz(c,,,(x))
and x is in a long root subgroup of A g. We may choose g so that g
normalizes (t, tg)=(x) (t). Then g normalizes

02’(Co((t, tg)))= Oz(CA(x)) C.

Let X be a (q + 1)-Hall subgroup of J, as defined in (4.1) of [13]. We may
assume X-< C (otherwise, replace X by a conjugate), and since C C we
can assume that X Xg. But

JO A, E(CG(X))) (C, E(CG(X))) C13 01.
This is a contradiction.
Now we assume (ft., 0o) (Sp(n, q), O+(n + 2, q)’). If 61, then is of

type at or c (in the notation of 8 of [3]), and we claim e Co,(t)’. If is of
type c, then this was checked in the middle of Case 2, in the proof of (3.5)
of [13]. If is of type a, then argue by direct computation using the results
of 8 of [3], or pass to the Lie notation and use the Chevalley commutator
relations within a parabolic subgroup of A. Since C,(t)<-N(A) and
t N(A)’, we conclude that t G1. So induces an involution on G1 of type
b, where > 1.
Assume n+2>8 and 21<_n-4. We may assume that [t, Jg] 1, for

otherwise replace g by ggl for some gl G. Then It, Xg] 1, where X is a
(q+ D-Hall subgroup of J (as in (4.1) of [13]). Now normalizes E*
E(C(Xg)) and Eg --< Gog= ax. Also,/g O+/-(n, q)’. Since t Eg(t*), either
C,(t) is 2-constrained or Cn,(t)-Sp(n-2, q). However, considering C,(t)
we see that the latter is impossible. Therefore Cn,(t) contains a proper
normal 2-subgroup, as does C(X*)V1Co(t). View C(X*)OC(t) as a
subgroup of N(A). Since X <-.g <- C(t)<_ N(A), we have Xg <-AO(C(A)).
Arguments with classical groups or (B, N)-pairs show that Ca(Xg) does not
contain a proper normal 2-subgroup. This is a contradiction. Therefore,
induces, on ax, an involution of type b, for l= 1/2(n + 2) or 1/2n, depending on
whether 4In or 4’ n.
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If n + 2 8, then induces, on G1, an involution of type ba, and we can
argue, as before, that Go G1. So suppose n + 2> 8. Write t= xy, where
x G is a transvection, y Gx is of type a_, and Ix, y] 1. Conjugating,
within G, if necessary, we may assume x g. Then tg No(Go) and, by
symmetry, g induces, on Go, an involution of type bz. We have y C(t), and
it follows that yeA is an at_l involution in A. Let Q=O2(CA(y))
02(CA(tg)) and Qo Q(t). Then fqQo Qt and NA(Qo) is transitive on
(t fqQo)-{t}. Considering NAg(Qo) and Y=(NA,(Qo), NA(Qo)), we get a
contradiction (as in Case 1 of (3.5) of [13]) by using (2.1) of [13].

(15.3) Suppose Go is quasisimple and

(fi, Jo) (O-(n, q)’, O/(n, q2),) or (PSp(n- 2, q), O/(n, q)’),

with 4In. Then G,, controls G-fusion of its involutions.

Proof. This follows from (15.2) and (14.1).

(15.4) Suppose

(A, o)=-(O-(n, q)’, O/(n, q2),) or (Sp(n- 2, q), O/(n, q)’),

with 4 n. Let c Go be a root involution in Go. Then c

Proof. Since co c- it suffices to show that c fq G,, c. Consider
the argument used to prove (14.1). As mentioned in the proof of (8.12) of
[3], centralizes a representative of every class of involutions of Aut
with the one exception of involutions of type a,/2. Say c e G0. If c does not
correspond to an involution of type an/2 in E(Go), then Co(c) contains a
conjugate of t, fixing just/3. So, if this is true for all/3 e h(c), then Gleason’s
lemma [7] implies that Co(c) is transitive on h(c), and Witt’s theorem yields
the result.

Suppose, now, that A(c) A U A2, where A2 @ consists of those/3 A(c)
such that c eE(Go) is of type a,,/2 and A A(c)-A2. Then Co(c) acts on
and the above argument shows that Co(c) is transitive on A. It follows that
if cge G, and if it is not the case that cge Go is of type an/2, then cg c-,
and hence cg is of type a2.

Also, we are assuming that for some g e G, cg Go and is of type a,,/2. It
now follows that c f3 G consists of all involutions in Go of type a2 or an/2.
If d G is not of type a2 or an then d c and the argument of the first
paragraph implies that df3 G, d-.
Choose a g =/3 A(c) such that c Go is of type an/2. Let G1 G(tg) and

consider G acting as O/(n, q) on its usual Fq-module, M. There is a
decomposition M M +/-... +/- Mn/4 with each a non-degenerate 4-space
of index 2. Then O/(n, q) contains the direct product X x... x X,,/4, where
Xi O/(4, q), for i--1,..., n/4, and Xi is trivial on M if i# ]. We may
assume that c stabilizes each M and so we write c Xl"" xn/4 with x, e M
an involution of type a2, for 1,..., n/4. For each i= 1,..., n/4, choose
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gi X such that (x, gi) D8 and zi xix, is of type c2. Let

I (x, z" = 1,..., n/4).

Since c is 2-central in G and IG" GI is odd, we may choose b Co(c) such
that Ib <- G.
We need an observation about orthogonal groups. Suppose is an a2

involution, k is an a= (respectively c) involution and [, kl= 1. Let W be
the natural orthogonal space and suppose dim ([W, ]k])>_ 4. Setting Wo
[W, ]] + [W, k] we have (], k) centralizing W/Wo, so Wo [W, ]k]. Now
(Wo, Wo)=0 (see 8 of [1]), hence Wo=[W, ]].I_[W, k], and Wo is totally
singular if and only if [W, k] is. We conclude that ]k has type a4 (respec-
tively c4).
Now c is of type a2 in Go and (czl) cs, is of type a= or a,/2 in Go. But

c(czl) z is of type c2. Writing this as cz (cz) and using the above we
see that (cz) must be of type a2. This can be repeated. Using (cz) of type
a2 in Go and CZlZ.= cg,g, we conclude that (czz2) is of type a2 in Go.
Eventually, we obtain (czl... z,/4) of type a2. But then c(cz.., z,/4)=
(z... z,/4)" has type c,/2, a contradiction. This completes the proof of
(15.4).

(15.5) Suppose Go is quasisimple and c Go is a root involution in Go.
Then C(c) is transitive on A(c).

Proof. This is immediate from (15.4), (15.5), Gleason’s lemma [7], and
Witt’s theorem.

16. The wreathed case

Throughout this section we assume that 0o fi x . Write Go (1(2
with [G, G2] 1, G2 G, G quasisimple, and (1 02 . Notation
follows that in 14. Choose SSyl2(G) and set $2 S. For i= 1,2 we
define subgroups and , as in the paragraph preceding (14.3).

Recall that f {G’x G}, a Go, and O(G)= 1. We will be assuming
the following case of the B(G)-conjecture.

Hypothesis (16.1). If 1#X_<$ and O(N(X))G2-N(X), then G2---
N(X).

(16.2) Assume that Hypothesis (16.1) holds. Then Go G.

Proof. Suppose the result false and apply (14.7). Inductively, we have
N()g G, j 1, 2. Then (14.6) implies that there is a point a #/3 fixed
by and a conjugate, h of t, such that h interchanges a and/3 and g th is
in N(S)t3N() for i= 1, 2. As in the proof of (14.2), O2((g))
Replacing g by a generator of O((g)) we may assume that [g[ is odd.

Consider X=(g)C(S)S/S. This group contains G2Sx/SI and using
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(14.3) we check that 2S1/SISyI2(X). Let HE be a 2-complement in
N2($2), U= $2S1/$1, and Y= Nx(U). The Sylow 2-subgroups of Y/U are
abelian of rank at most 2. We claim that Y/U has a normal 2-complement.
Otherwise, a Sylow 2-subgroup,/, of Y/U has rank 2 and 1(I)# is fused in
N(I). But the involutions in I correspond to involutions in 2S1-$2S1, and
we get a contradiction by using 19 of [3] and checking centralizers. So the
claim holds, and we let Z/U be the normal 2-complement of Y. Since
H2S1/S <-X we have H2S1/S1 and (g>S1/S1 contained in Z.
Let Uo ($2)oS1/$1, where ($2)o is as in (13.2). Then by (13.3) we see that

Y acts on U/Uo, inducing a subgroup of the group of automorphisms
induced by graph, diagonal and field automorphisms of G2. In particular, if
C/U= Cv/u(U/Uo), then H2C/U Y. Notice that as 2S1/$1 Syl2(X), C/U
has odd order. Therefore, replacing H2 by an S2-conjugate of H2, if
necessary, we may assume that H2 and g are in a common 2-complement,
say L, of H2C(g).
Now U is generated by root subgroups, Us, each normalized by HE. We

show:

(16.3) If t2 0+(8, q)’, then, for suitable choice of ,, g normalizes each
root subgroup of U.

Proof. Suppose t2-PSp(n, 2) or F4(2). Then [Uo" U’]= 2. Also, each
root group has order 2, so g centralizes U/Uo and Uo/U’. As Ig[ is odd, g
centralizes U/U’ and hence g e C(U). So we may assume G2 PSp(n, 2) or
F4(2). Similarly, (16.3) holds if 2 is an untwisted group defined over the
field of 2 elements.
As noted in the proof of (13.2), Uo- U’ in the remaining cases. Conse-

quently, Lo Cry(U/Uo)= Cr.(U). Also, LoH2-L. So (H2Lo)g= H2Lo. If
a e E and Us a root subgroup of U, then H2 normalizes ugh. If q-> 8, then
we can apply Lemma 3 of [9] and conclude that ug is also a root group of
U. Since we are dealing with groups of rank at least 3 we can use the proof
of Lemma 3 of [12] and conclude ug is a root group, even if q 4. What is
needed in that proof is that H2 acts irreducibly on U/(U) for each a eE+
and that if a/3 are in +, then C_(U) Cr(U). But these can be
checked directly. Therefore g permutes the root subgroups. Since we have
excluded the case 0+(8, q)’, g must induce the trivial permutation.
To prove (16.3) we may now assume that q=2 and that 2-2E6(2),

O-(n, 2)’, or PSU(n, 2). Moreover, in the latter case we may assume n is
even, for otherwise argue as above. So for a,E, Us Z2 or Z2 x Z2. But
then L induces only diagonal automorphisms on U. In the case of 02
O-(n, 2)’ this implies that L HELo and the claim is immediate. In the other
cases IL" H2Lo[<-3. Suppose equality holds. By (2.2) Aut (U) contains a
normal 2-subgroup I (the centralizer of U! U’= U/Uo, in this case) such that
Aut (U)=//1, where 11 is the group induced by diagonal, field, and graph
automorphisms of the corresponding Chevalley group. Therefore, L induces
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a group of automorphisms conjugate in Aut (U) to the group of diagonal
automorphisms. It follows that Ctr(H2)= Cry(L), and this is the product of
all root subgroups U,,, for c 2;/ and c short.
I 2PSU(n, 2) for n >6, the argument in Lemma 3 of [12] can be

modified to show that any H2-invariant subgroup Q of U is generated by
certain root subgroups U for c 2;/, together with Co(H2). It follows that
a ;/ implies ug is a root subgroup.

If 2 PSU(6, 2) or 2E6(2) we use the following method. It will suffice to
show that for each ai, U, U,. For once we have this it will follow rom the
commutator relations that ug U for all a ;/. If U,,,I 2, then U,,,-<
Ctr(H2) Ctr(L), so we need only consider the case where U,---Z2 x Z2.
Let Ui be the subgroup of U generated by root subgroups U tor c 2;/ ot
height at least i. Then Uo U2, and for each i, Ui is the ith term in the
lower central series of U. We know that Ug,,,-< U,,, U2 f.or each i. The idea is
to show that in fact Ugh,-< U,U for ] 2, 3, Choosing ] with U 1 we
have the result.

Let V U2/U3. We will indicate the proof that Ugh,-< U,,,,U3. The rest is
similar. Take the more difficult case of 2E6(2). Here

V (Uo,,+<,, UlU) x (U<,+,, UlU) x (U<,,+<,,, U31 U3) V x V: x V3.
We know that g centralizes U,,,, and U2 so consider U3. The group H2 acts
on the abelian group V(Uo,3 U3/U3) and

uo,, u31u3 <- [ v( u,,, U31U3), H:d U<,:+<,, U,,+,,, U<,, U31U3.
So ug -< U2+U,,+,UU3 and projects onto Uo,3 U31U3: Since [ U,, U]
1, Ug must project trivially to U/,. Using (14.2) and induction we see

gthat if ace+ has height i, then UUi+I U,U+I. Therefore, U+<
U,,+3 U3. Suppose that Ug, Ua # U, U3. Then ug projects onto
Let 8 a + 2a2 + 3Ct3 + 19/4, Then Ug-< UU8. Suppose Ug3 U3 # UU3.
Then ug projects onto U,,/. Now [U, U]= 1, but consideration of
[ugly, U] shows that this commutator is non-trivial. This is impossible, so
U-< U,3 U3. Similarly, using the fact that [ U,, U,] [U, U,] 1, we
easily see that ug- UU4 and ugh, <- U4 U4. Continuing we get the result.

(16.4) A 0+(8, q)’.

Proof. Suppose fi, 0+(8, q)’. By (16.3), g normalizes each root sub-
group of U= SS/S., and we know that gN(S,.). So with appropriate
choice of root subgroups we may assume that g normalizes each root
subgroup of S. Since (g)’= (g), we have g normalizing the corresponding
root subgroups in Sx.

Let r be the root of highest height in 2;+. For c 2;+, Let Z
where, 2 is the corresponding root subgroup of Sx. Similarly, we have the
groups and Y of S. If A is an orthogonal group, let 2 Z, x Z, and
’r Yr X Yal. Otherwise, set 2, Z,, ’, Y,. Let O1 02(Ct3,(2r)). If . is
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not an orthogonal group, then Q1 O2(I1), for 11 a maximal parabolic
subgroup of G1. If fi is an orthogonal group, then 11- N61(Q1) is a
parabolic subgroup of G1. In either case, set 01 O2(11). Similarly, we have
subgroups Q2, 02 of G2. Set Q 0102. Let L1 be a Levi factor of 11 such
that L1 tq $1 SylE(L1) and L1N S is the product of root subgroups, J, of
S. Set L2 L and L= C(t)fqL1L2.
Consider D-N6(Q) and let bars denote images in D/Q. Then L is a

standard subgroup of D and (t) SylE(Co(L)). It follows by induction that
L X L2 O. In particular, g normalizes L L2. Unless A PSp(6, 2), Li-
/_7.) for i= 1, 2, and so g normalizes (LiQ)() OiLi for i= 1, 2. If fi-
PSp(6, 2), then, by (16.3), g is trivial on L1 and on L2. Since g must also
centralize 01 and 02, g C6(QLL2).
Assume fi PSp(6, 2). By the above, g normalizes (iLi, for 1, 2. Since

g normalizes each root subgroup of S1 and $2 we conclude that the action of
g on Lit)i0i Li is given by the product of a diagonal and field automorph-
ism of Li. For C<-A and i= 1 or 2, let Ci denote the projection of C to Gi.
Assume that fi- 0-(8, 2)’.

Let s be the root of highest height in the root system, A, of L L1 L2.
Let J J (U+/-) if L is not an orthogonal group and J J J3, other-
wise. Then

Jl J2 SL(2, q)

(.or_ SL(2, q)xSL(2, q) if fi is an orthogonal group). Also,. g normalizes
QiJi for i= 1, 2. There are elements hi ]1 such that ghlh2 induces a field
automorphism of odd order on each of JiQi/Qi. Also, ghlh2 has odd order
in QLL2(g). There is a (q+ 1)-Hall subgroup Xs-<]1]2 such that ghlh2
normalizes XQ. Conjugating by an element,, q Q, we have (ghlh2)q
Nc(X). Note that by previous remarks this also holds of fi PSp(6, 2).

Therefore, (ghlh2)q Nc(E(Cc(X))). In the notation of (4.1) of [13], X
contains a Go-conjugate of X, say Xb, for b Go. Also, from the structure of
Go we have E(C,(Xb)) E(C6(Xs)), so

E(C(X,)) E(C(X))-’ E-.
Now Go (E, Ew) for some w G, so E(Co(Xs)) <-- Go. Moreover,

Go (E(Co(X)), QLL2)

and it follows that (ghlh2)q N(Go). So g N(Go), whereas a g =/3 a. This
is a contradiction.
Suppose ft, 0-(8, 2). With s as above, J SL(2, q2) and let Xs be a

(q- 1)-Hall subgroup with ghlh2 normalizing XsQ. Argue as above, only use
X >-Ib, where I is defined in the paragraph just before (8.4) of [13].

(16.5) fi: 0+(8, q)’.
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Proof. Suppose / 0+(8, q)’. Label the Dynkin diagram of A

For a X, let Za, Ya be the corresponding root subgroups of G1, G2,
respectively. Then S (Za’a /, a a compound root) and it is easy to
check from the commutator relations that

zs’ c(s’/’r4(s)).

Set Q1 Za2S’. Similarly, set Q2 YaS, and Q QQ2. Then g normalizes
Q, Q2, and Q.
Let D N(Q) fq N(Q2). Then

02’(D t3 Go/Q) YQ,

where Y= Q(LxL2), L =JaXJiaXJu for i= 1,2, and where J.,
(Za,, Z_a,), and JE,a, (Ya,, Y-a,). We claim that g normalizes Y/Q. Suppose
q > 2. First we note that SSE/Q is elementary of order q6. Since [G" N(Go)I
is odd (see (15.2)), we apply Corollary 4 of Goldschmidt [8] and conclude
that S1S2/Q is strongly closed in a Sylow 2-subgroup of D. Using the main
theorem of [8] we conclude that if I/Q O(D!Q), then YI/Q - D!Q. For
each a (Va Va Va)# there is an element xQ $1S2/Q with ta. Writing

I/Q Cz/o(t)Cz/o(ta)C/o(a),
noting that C/o(t)= C(t)Q/Q, and arguing as in (5.1) of [14] we see that a
centralizes I/Q. As a was arbitrary,

YO- (( Va Va Va)’O)/O <- C(I/O),

proving that Y/Q- E(D/Q). So the claim holds in this case.
Suppose q 2. Then for 1, 2 g must centralize /5(S) and /(S), since

these groups have order 2 and 4, respectively. So consider gD0
Co(v4(SI)v4(S2))f3No(S’S’2). For i= 1, 2, the group Do acts on the elemen-
tary abelian groups S//4(S) as a subgroup of GL(6, 2). Let i= 1. Then L1
acts on S’//(S) as $3$3S, corresponding to a decomposition of
S’/v4(SI) into a sum of 3 2-dimensional subspaces. Let Y/Q= O3(L)Q/Q.
It will suffice to show that g normalizes Y and Y2.
Let i-1 or 2. By (13.2) g acts on S/S as the graph automorphism of

order 3 or as the identity. Then consideration of commutators leads to the
fact that g acts on S/7(S) as does the graph automorphism of order 3 or as
the identity. In either case g normalizes Y/Q in the action on S//4(S).
Therefore,

g N6(QYY2)Coo(S’S/3,(SS)).
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Now S’S is a Sylow group CDo(StlS/’)14(S1S2)), and since Do centralizes
/4($1S2) we conclude that Coo(S’S//4($1S2)) contains a normal 2-
complement, P. Argue as in the previous paragraph to conclude that

VolX Vo3x Vo. < C(P). Since P centralizes Qi/S for i= 1, 2 we conclude that
P<-C(Q) and C(Q) covers Y/Q. It follows that Coo(S’S.//4(S$2)) <
N(QYIY2) and the claim holds in this case also.
We have g normalizing Y QLL2. Say q > 2. Since g normalizes SS2/Q

we conclude that g normalizes a (q-1)-Hall subgroup I/Q of QLL2. Then
conjugating by an element of Q we may assume that g normalizes a
(q-1)-Hall subgroup, Io, of L L2. Now we check that Jr is standard in
C(Io) and

(t)e Syl2(C6(Io) fq C(J)).

Using the main theorem of [10] together with the fact that

E(C,o(Io)) L2(q) x L2(q),

we conclude that E(Co(Io)) E(Cc(Io)). But then g normalizes

(Y, (Co(O))) Go,
a contradiction.

Finally, consider the ,case q 2. Then g normalizes Yo/Q O3(Y/Q), so
conjugating by an element of Q we may assume that g normalizes 03(LI x
L2) Io. Then g normalizes Co(Io). Now CA(Io)=Jr and S Coo(Io)
(Z, Z_r) x (Y, Y-r) $3 x $3. Also, normalizes Coo(Io), although
t Coo(Io). Moreover, tofq Go , since tg Go implies that g fixes just c
and g Go. By the Thompson transfer lemma we conclude that t G’. Using
this we conclude that

ZrYr(t) Syl2(C(Io)(t)).

Let O=O(C(Io)); (a)=V, and (x)=Zr. Then tX=ta and O=
Co(t)Co(ta)Co(a); Now J 02’(CA(Io)), so Co(t) normalizes J. In particu-
lar [Co(t), (a)] < O3(J), so that

[Co(t), (a)]= 1 or [Co(t), (a)]= O3(J)-<0.

Similarly,

[Co(ta),(a)]= 1 or [Co(m),(a)]= O3(J)<-0.

Suppose O3(S);g0. Since O3(S) O3(J)x 03(J7) the above implies that
a C(O).. In this situation C6(Io) cannot be solvable. Considering the
structure of Co(Io)’ (which has klein groups as Sylow 2-subgroups) we see
that E(C(Io)) L2(q), some q. But E(C(Io)) cannot then contain S. This is
a contradiction. Therefore 03(S)<-0. Also, considering ZrYr(t)-invariant
Sylow subgroups of O for primes other than 3 we see that a centralizes each
3’-chief factor of C6(Io). Consequently (aco(!o)) centralizes each such factor.
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In particular Oa(S) centralizes each 3’-chief factor of C(Io) contained in O.
This implies that

o(s)<_ o(o)= o(co(0)).
Consider the group P [O3(O), (a)]. This group is stabilized by

Z,Y,(g)(t), and P contains O3(S). In view of this and previous remarks it
follows that P/(P)-O3(S) and P= 03(S)(P). But then P= O3(S) and
g No(03(S)). Consequently, g No(S). But then g No((S, Y)) Go, a
contradiction.

This completes the proof of (16.5) and hence the proof of (16.2).

17. The quasisimple case

In view of the results in 16 we may now assume that Go is quasisimple.
Let ( be a t-invariant root subgroup of Go and set C 1((). Choose ?
such that Ca consists of root involutions. The only ambiguity in this choice
is when Go PSp(2n, qO for some q. Here the Dynkin diagram has type
C,, and we take C to correspond to a long root. Let IcI-q, and fix
lceC.
Except for the case (/i, Jo)(PSp(n-2, q), O-(n, q)’) we may assume

that V, Cc(t). By (15.3), Go controls fusion of its involutions, except,
possibly, when

(fi*, o)= (PSp(n-2, q), O/(n, q)’) or (O-(n, q)’, O/(n, q2),),
with 4In. However, by (15.4) we have cGf3 Go cG in all cases.

(17.1) Assume (fi, o)(PSp(6, q), 0+(8, q)’). I cg e Ca (c), then there
exists a conjugate of contained in C.(c) and centralizing c g.

Proof. As G,, controls G-fusion of c6f3 G, we may take g e Go. Sup-
pose that it is not the case that (, 0o)(F4(q), F4(q2)). Then Go <-
GoC6 (c) and we may assume g Go. The action of Go on the conjugates of
C is described in (12.1) of [3]. Go acts as a permutation group of low rank
on C6o, the stabilizer of C being the unique parabolic subgroup of Go
containing CGo(C).
Now (C, Cg) is abelian, isomorphic to $L(2, q), or isomorphic to the

Sylow 2-subgroups of SL(3, qO. So cg e Co (c) forces [C, Cg] 1 and then
Cg <-C6o(C). At this point we check the orbits of .C60(c) on Co f3 C6o(C to
see that except for the case ft, PSp(6, q) and Go---0/(8, q)’ there exists
x CGo(C) with C** t-invariant. As (C**)# is fused we have the result.

Suppose.(fi,, 0o)= (F4(q), Fa(q2)). The above argument works unless there
is an element v Go with v inducing a graph automorphism on Go. Here, an
easy argument shows that we may assume c C(c), and we then apply the
above argument to get the result.
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(17.2) Assume

(fi, to) (PSp(6, q), 0/(8, q)’).

Let cl co fq Coo(C). Then

co( c Co(c) cOo(.

Proof. The proof is the same as that used to prove G controls fusion of
its involutions. By (17.1) and Gleason’s lemma [7], Co(c)fq Co(cl) is transi-
tive on A(c)f3A(cx), so the result follows from the converse of Witt’s
theorem.

(17.3) Assume (,, o)(VSp(6, q), O/(8, q)’). Then A(c)=Z(C) and
[o(c(c)), o(Co(C))]= 1.

Proof. Let O O(Co(c)) and Q O=(Coo(C)). Let. L 02’(L) be a Levi
factor of Coo(c) and choose x such that x is an involution in L and tx (in
Go). Write O= Co(t)Co(tx)Co(x). Then by (15.1), Co(t) and Co(tX) are in
G. It follows that Co(t), Co(tX)<-C(Go)<-C(x). Therefore, x
C(O) f’l Coo(C)"_ Co(C). It follows that

O <_ (xCo(c) <_ C(O) fq Coo(C),
so [O, O] 1, as asserted.

Next, use (17.2) and the fact that C= Z(Co(C)) to conclude that C is
strongly closed in a Sylow 2-subgroup of Co(c) (with respect to Co(c)).
Then by Goldschmidt [8] and the above, we have C<-Co(c). By (15.5),
C(c) is transitive on A(c). Since IA(c)l is odd and C’-Co(c), we have
A(c)_ A(C), which proves A(c)= A(C).

(17.4) Assume that (fi, (o) (Sp(6, q), O+(8, q)’) and o PSp(n, q) or
PSU(n, q). Then Q<-Co(c), where Q 02(Coo(C)).

Proof. By (17.3), A(c)= A(C), so if K is the kernel of the action of Co(c)
on A(c), then C<_K<_G. By (17.2) we have C-Co(c). Let L Co(C).
Suppose, for the moment, that 0o F4(q). Using the results in 3 and 4 of
[5] we know that Coo(C) acts irreducibly on Q/C. Let dc be an
involution in the root group of Go for the positive long root of next highest
height to the root giving rise to C. Then as toPSp(n, q) or PSU(n, q),
d Q. Also, one checks from the commutator relations that dC is 2-central
in a Sylow 2-subgroup of Co(c)/C. Since Q/C is abelian and d c(c)

_
Q, we

can apply (17.2) and Corollary 2 of [8] to conclude Q/C_ Co(c)/C, where
bars denote images in Co(c)/C modulo its core.
Now O(L/C)= O(L)C/C and by (17.3) O(L)<-O(Co(c))<_C(Q). There-

fore, Q -< O2(L). Clearly, O2(K) -< O:z(Co (c)) Q, so

O 02(L) f"l K, Co(c),

giving the desired result.
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Suppose GoF4(q). Here the argument is only slightly different. As
above Q/C is abelian and we have the involution d. However, C6o(C) does
not act irreducibly on Q/C. Nevertheless we can use the results in (4.5) of
[5] to see that

(dc O.
Now argue as before.

(17.5) Suppose (fi,,o)(Sp(6, q), O+(8, q)’) and oPSp(n,q) or
PSU(n, q). Then Go - G. That is, Ifl 1.

Proof. By (17.4), Q C(c). As C(c) is transitive on A(c) we conclude
that A(Q)= A(c). Choose c, c2 ca such (c2, c)D8, (c)= Z((c2, c)) and
c2, c are in 02(Co(Cl)). That this is possible is evident by symmetry and the
structure of Q. Then A(c)= A(cx)= A(c2) (again by symmetry). But consider

I= (c.: g Co(C)).
Since Co(C) stabilizes A(c), A(I)=A(c), and so (Co(C),I)= Go stabilizes
A(c). However, Go is quasisimple and c is trivial on A(c), forcing A(c)=
A(Go) {a}. At this point we can apply a result of Holt [11] to get the result
(in the case (o F4(q), first apply the Thompson transfer lemma in order to
get a group in which c is 2-central).

(17.6) Suppose o PSp(n, q) or PSU(n, q). Then Go - G.

Proo]’. We first claim that Q-C(c), Let L be the Levi factor of Co(C)
that is generated by root subgroups of the root system of Go. Then L acts
irreducibly on Q/C. Let K be the kernel of C(c) on A(c). By (17.3),
O2(K) C or Q. So suppose O2(K)= C.
Either PSp(n, /-), or fi, PSp(n, q) or PSp(n- 1, q), depending on

whether (o PSp(n, q) or PSU(n, q) (and whether or not n is even). The
action of L on V is described in 3 of [5]. Namely, L acts on V as on the
natural module for L Sp(n- 2, q) or SU(n- 2, q), and isotropic 1-spaces
of V are images of root subgroups of Go, for short roots (we view the root
system of Go to be of type Ct, for l= [n/2]). Let d e V# be isotropic. Then d
is a 2-central involution in C(c)/C. Say x C(c)/C and d C,(c)/C.

Since we already know that G controls G-fusion of its involutions (see
(15.3)), we have d Co(c)/C and hence d V(LC/C). Suppose d V. As
G controls G-fusion of its involutions, d is isotropic. Therefore, cen-
tralizes a Co(C)/C conjugate of d. Next suppose that d V. Write d=
YlY2 with y V and yE(LC/C)#. Choose a basis for V so that Y2 is in
Suzuki form (see 6 and 7 of [3]). Since d has Jordan rank 2 on the usual
module for Sp(n, q) or SU(n, q), Y2 is necessarily of type j, j2, a2, b, or c2.
As centralizes a conjugate of Y2 in LC/C (again by [3]) we conjugate, if
necessary, so that y Y2. As d and Y2 are involutions, y is in Cv(y2). NOW
Cv(y2) Vl-l-V2, with VI=[V, Y2] isotropic and V2 non-degenerate of
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dimension dim (V) 2 dim (V1). Also V (Vl9 (zl) _L V2 where [ (z, Y2]
V1.
Conjugating Y2 by an element of (z we have dx- y2v2, with v2 V2. If v2

is isotropic then since CL(y2) contains a subgroup transitive on the non-zero
isotropic vectors in V2, we easily check that d is centralized by a Coo(C)-
conjugate of t. So suppose v2 is anisotropic. Then O0 is a unitary group and
v2 corresponds to an element of order 4 in Coo(C). Taking preimages of Y2
and v2 we see that y2 =aC and v2 =bC for a an involution, ab an
involution, and Ibl- 4. So a inverts b. However, another check shows that
Cv(aC) Co(a)C/C. This is a contradiction. So in all cases d is centralized
by a Co(c)/C conjugate of t.
As in the proo of (14.1) we have Co(c) transitive on A(c). The usual

arguments now show (Co(c)/C)f3 C(d) is transitive on A(c)tqA(d) and then
that Co(c)/C controls (Co(c)/C)-fusion of conjugates o d. Therefore,
Corollary 4 of Goldschmidt [8] gives Q-Co(c), as in (17.4). This proves
the claim.
To complete the proof, consider the group Co(c)/Q. As c is 2-central in

G it is easy to see that (Co(c)fq Co(t))Q/Q is standard in Co(c)/Q and that
the hypotheses of the Main Theorem in [13] hold. By that theorem and the
minimality of Go[ we have

oz(Co(C))/c
_
C(c)/C.

Then A(c)=A(Coo(C)). Let P=(C, C) be such that P-SL(2, q). Then
C6o(C) contains conjugates of P, so that A(c)= A(p). Now Coo(C) is transitive
on the set of all such Cg. Therefore, A(I)=A(c), where I=
(Cg" (C, cg) SL(2, q)). Since Go (Coo(C), I), Go fixes A(c) and so A(c)
{a}. Once again we use Holt [11] to obtain the result.

We now consider the case (fi, 0o)-(PSp(6, q), 0+(8, q)’).

(17.7) Suppose (fi, Jo)(PSp(6, q), 0+(8, q)’). Then Go’G.
Proof. Let c de Q with d.-c. We first show that if xC6(c) and

d d Co (c), then d Q. Suppose false. We know d do. If d dg, with
g Go, then as in (17.1) Cg -< Co(c). Conjugating by an element of Coo(C)
we may assume that Cg -< L, where L is the Levi factor generated by root
subgroups in the root system of Go. Consider the action of Go on its usual
8-dimensional vector space. Then d is an involution of type a2 (in the
notation of 8 of [3]). Also, from the structure of Q (again see 8 of [1])
d-- dc. However, this implies that d---(dc)= d’c dgc, whereas a straight
forward check shows that either IV, dgc] has dimension 4 or dgc is of type
c2. This is a contradiction.
Given the above we can argue that if d Q, d--- c, and d Co(c), then d

is centralized by a Co(c)-conjugate of t. Now Gleason’s lemma allows us to
conclude that C6 (c) controls Co(c)-fusion of conjugates of d. Now argue as
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in (17.3) to get A(c)= A(C) and O(C(c))<_ C(Q). From here the proof of
(17.4) gives Q -C(c). To complete the proof use the argument of (17.5).

We have now proved the Main Theorem.
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