ON A PROBLEM SUGGESTED BY OLGA TAUSKY-TODD

BY

MORRIS NEWMAN

Abstract

The problem considered is to characterize those integers m such that $m = \det(C)$, C an integral $n \times n$ circulant. It is shown that if $(m, n) = 1$ then such circulants always exist, and if $(m, n) > 1$ and p is a prime dividing (m, n) such that $p|n$, then $p^{t+1}|m$. This implies for example, that n never occurs as the determinant of an integral $n \times n$ circulant, if $n > 1$.

The problem considered here was suggested by Olga Taussky-Todd at the meeting of the American Mathematical Society in Hayward, California (April, 1977): namely, to characterize the integers which can occur as the determinant of an integral circulant.

Let P be the $n \times n$ full cycle

$$
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
& & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{bmatrix}
$$

Let J be the $n \times n$ matrix all of whose entries are 1, so that

$$
J = I + P + P^2 + \cdots + P^{n-1}.
$$

Let $a_0, a_1, \ldots, a_{n-1}$ be integers, and let C be the circulant

$$
a_0 I + a_1 P + \cdots + a_{n-1} P^{n-1}.
$$

Let $f(x)$ be the polynomial $a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$. Then the eigenvalues of C are $f(\zeta_n^k), 1 \leq k \leq n, \zeta_n = \exp(2\pi i/n)$. Hence the determinant of C is given by

$$
\det(C) = \prod_{k=1}^{n} f(\zeta_n^k).
$$

The set of numbers $\{k\}$ coincides with the set $\{n\mu/d\}$. Here k runs over the integers $1, 2, \ldots, n, d$ over the divisors of n (written $d|n$), and μ over the integers less than or equal to d and relatively prime to d (written $\mu:d$). It follows that

$$
\det(C) = \prod_{d|n} \prod_{\mu:d} f(\zeta_n^{n\mu/d}) = \prod_{d|n} \prod_{\mu:d} f(\zeta_d^\mu) = \prod_{d|n} Nf(\zeta_d^\mu),
$$

1 This work was supported by a National Science Foundation grant, the Institute for Interdisciplinary Applications of Algebra and Combinatorics, and the Department of Mathematics of the University of California, Santa Barbara.

Received March 9, 1978.
where \(Nf(\zeta_d) \) is the norm of \(f(\zeta_d) \) in the cyclotomic field \(\mathbb{Q}(\zeta_d) \), and hence a rational integer. Thus we have a factorization of the determinant of \(C \) into \(\sigma_0(n) \) rational integers. Some of these, of course, may be \(\pm 1 \).

We are interested in those \(m \) such that an integral \(n \times n \) circulant \(C \) exists for which

\[
\text{det} \ (C) = m.
\]

We may assume that \(m > 0 \), since \(\text{det} (-P) = -1 \), so that \(\text{det} \ (C) = m \) if and only if \(\text{det} (-PC) = -m \). We may also assume that \(n > 1 \).

We first prove:

Theorem 1. Suppose that \((m, n) = 1 \). Then equation (1) always has solutions.

Proof. Write \(m = nq + r, 0 \leq r \leq n - 1 \). Then also \((n, r) = 1 \). Put

\[
C = qJ + I + P + \cdots + P^{r-1}.
\]

Then the eigenvalues of \(C \) are

\[
nq + r = m, \quad 1 + \zeta_n^k + \zeta_n^{2k} + \cdots + \zeta_n^{(r-1)k}, \quad 1 \leq k \leq n - 1.
\]

It follows that the determinant of \(C \) is given by

\[
\text{det} \ (C) = m \prod_{k=1}^{n-1} \frac{1 - \zeta_n^{rk}}{1 - \zeta_n^k}.
\]

Now \(\zeta_n^k \) and \(\zeta_n^{rk} \) simultaneously run over all \(n \)th roots of unity other than \(1 \), since \((r, n) = 1 \). Thus \(\prod_{k=1}^{n-1} (1 - \zeta_n^{rk}) = \prod_{k=1}^{n-1} (1 - \zeta_n^k) = n \), and so \(\text{det} \ (C) = m \). This concludes the proof.

The next result provides a characterization of those numbers \(m \) for which (1) may have a solution, in the remaining case when \((m, n) > 1 \).

Let \(q = p^t, p \) prime, \(t \geq 1 \). Then the number \(1 - \zeta_q \) is a prime in \(\mathbb{Q}(\zeta_q) \) of norm \(p \). We shall now prove:

Theorem 2. Suppose that \((m, n) > 1 \). Let \(p \) be a prime which divides \((m, n) \), and let \(p^t \parallel n \) (i.e., \(p^t \) is the exact power of \(p \) dividing \(n \)). Then if (1) has solutions, \(p^{t+1} \mid m \).

Proof. Write \(n = qk, q = p^t, (k, p) = 1 \), and suppose that (1) has solutions. We have

\[
m = \text{det} \ (C) = \prod_{d \mid n} Nf(\zeta_d) = \prod_{d \mid k} \prod_{s=0}^{t} Nf(\zeta_{p^s\delta}) = \prod_{d \mid k} \prod_{s=0}^{t} Nf(\zeta_{p^s\delta}),
\]

since the divisors of \(n \) coincide with the numbers \(p^s\delta, 0 \leq s \leq t, \delta \mid k \).
Since \((\delta + p^s, p^s\delta) = 1\), \(Nf(\zeta_{p^s\delta}) = Nf(\zeta_p^{\delta + p^s}) = Nf(\zeta_{p^s\delta})\). Also \(\zeta_{p^s} = \zeta_{q^{s-1}} \equiv 1 \mod 1 - \zeta_q\). It follows that

\[
Nf(\zeta_{p^s\delta}) = \prod_{\mu \geq 1 : \mu \equiv 1 \mod p} f((\zeta_{p^s\delta}^{\mu})^p)
= \prod_{\mu_1 \equiv 1 \mod p, \mu_2 \equiv 0 \mod 1 - \zeta_q} f((\zeta_{p^s\delta})^{\mu_1 + p^s\mu_2}) \equiv \prod_{\mu_1 \equiv 1 \mod p, \mu_2 \equiv 0 \mod 1 - \zeta_q} f((\zeta_{p^s\delta}^{p^s\mu_2}) \mod 1 - \zeta_q)
\]

(3)

\[Nf(\zeta_{p^s\delta}) \equiv Nf(\zeta_{\delta}^{\phi(p^s)}) \mod 1 - \zeta_q.\]

In the above, \(\mu = \delta \mu_1 + p^s \mu_2\), where \(\mu_1\) runs over a reduced set of residues modulo \(p^s\), and \(\mu_2\) over a reduced set of residues modulo \(\delta\). This is possible, of course, because \((\delta, p^s) = 1\).

Now both sides of (3) are rational integers, and \(N(1 - \zeta_q) = p\). It follows that

\[Nf(\zeta_{p^s\delta}) \equiv Nf(\zeta_{\delta}^{\phi(p^s)}) \mod p.\]

Now suppose that for every \(\delta \mid k\), \(Nf(\zeta_{\delta}) \not\equiv 0 \mod p\). Then (2) and (4) would imply that \(m \not\equiv 0 \mod p\), a contradiction. Hence for some divisor \(\delta\) of \(k\), \(Nf(\zeta_{\delta}) \equiv 0 \mod p\). But then (4) implies that \(Nf(\zeta_{p^s\delta}) \equiv 0 \mod p\) for all \(s\) with \(0 \leq s \leq t\), which in turn implies that \(m \equiv 0 \mod p^{t+1}\), by (2). This completes the proof.

As a corollary, we obtain the answer to one of the problems suggested by Olga Taussky-Todd:

Theorem 3. Suppose that \(n > 1\). Then there is no integral \(n \times n\) circulant of determinant \(n\).

This result raises the following question: although \(n\) does not occur as the determinant of an integral \(n \times n\) circulant, will some power of \(n\) occur as such a determinant? The answer to this is supplied by the theorem that follows.

Theorem 4. There is an integral \(n \times n\) circulant of determinant \(qn^2\), where \(q\) is any integer.

Proof. Put \(C = I - P + qJ\). Then the eigenvalues of \(C\) are \(qn, 1 - \zeta_n^k (1 \leq k \leq n - 1)\). Since \[\prod_{k=1}^{n-1} (1 - \zeta_n^k) = n, \det (C) = qn^2\] and the result follows.

It is easy to show by examples that the conditions on \(m\) and \(n\) imposed by Theorem 2 are only necessary, but not sufficient, to guarantee the existence of an integral \(n \times n\) circulant of determinant \(m\) when \((m, n) > 1\). The general question remains open. However, we _have_ determined necessary and sufficient conditions in the case when \(n\) is prime. We have:

Theorem 5. Suppose that \(n\) is prime and that \((m, n) > 1\). Then in order for \(m = \det (C)\) to have solutions, it is necessary and sufficient that \(n^2 \mid m\).

Proof. The necessity is a consequence of Theorem 2, and the sufficiency of Theorem 4.