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MULTIPLIERS OF THE DIRICHLET SPACE

BY

DAVID A. STEGENGA1

Introduction

This paper deals with the space of analytic functions on the unit disc in the
complex plane for which nlal" is finite, where {an} represent the Taylor
coefficients and is a real number. For 1 this space can alternately be
described by demanding that the Dirichlet integral If’ 12 dx dy be finite. We
also consider real variable analogs of these spaces on the circle and on
Euclidean space. In Rn, these are the fractional Sobolev space L.
Our principal result is a characterization ofthe pointwise multipliers of these

spaces. Various authors have studied properties of these multipliers and
determined sufficient conditions, see [24], [5], [14], [15], [16], and in the com-
plex case [20], [25].
Denote by D the space of analytic functions for which the norm

is finite.

THEOREM A. An analyticfunctionf(z) multiplies D (0 < < 1/2) ifand only if
f is bounded on z[ < 1 and there is a constant A such that

ff If’ 12( 1 z I)-2 dx dy < A Cap (w I)
s()

for all finite disjoint collections of subarc {I} on the circle.

Here S(I) denotes the "square" in the disc with side ! and Cap (.) denotes an
appropriate (Bessel) capacity depending on . For { (Dirichlet space) the
classical logarithmic capacity may be used.
For multipliers of L(Rn) and also a boundary characterization on D we

have the following result:
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114 DAVID A. STEGENGA

THEOREM B. Afunctionfmultiplies LP(R)for 0 < < 1, ap <_ n, and p >_ 2 if
and only iff is in L and there is a constant A such that

[y + 2 dy dx <_ A Cap,,(E)

for all Borel subsets E. Here Cap,, is the , p-Bessel capacity on R.
The idea used in proving these results is a generalization of the Carleson

measures used in the study of the Hardy spaces combined with the strong type
capacity inequality of V. G. Maz’ya and D. R. Adams. In Section 1 we develop
the connection with Carleson measures and in Section 2 we prove our principal
results. In Section 3 we investigate a connection between the multipliers of the
Hardy space H2 into the Bergman space B2 and the functions of bounded mean
oscillation, BMO, of John and Nirenburg. Finally, in Section 4 we show by
means of a counterexample that the sets used in Theorem A and Theorem B
can not simply be intervals.
The author would like to express thanks to Allen Shields and David Adams

for many helpful conversations.

1. Carleson measures on D
Denote by Ilfll the norm {Z’=o(l+n2)lanl2}/ of a function

f(z) a. z" in D. Using Parseval’s relation it is easy to show that for < 0
(see [25, Lemma 2]),

Izl<l

If(z)l(1 Izl) d dy

is equivalent to f Also, it is obvious thatfis in D if and only iff’ is in D_ 1.

As a result, f is in D for < 1 if and only if

tzl <
f’(z)IZ(1 z l)- dx dy

is finite. Also, tlfll is equivalent to the above plus f(0)l2.
Thus we see three spaces of particular interest, namely, -- is the Berg-

man space of analytic functions in L2(dx dy) of the unit disc, ---[ is the
Dirichlet space of analytic functions with If’ z dx dy finite, and g 0 is the
Hardy space H2.

Let M(D, Da) be the collection of all functionsfwhich multiply, D into Da,
i.e., f# is in Da for all in D. In [25], M(D, Da) is characterized for certain
ranges of and ft. The known cases are as follows:

(i) fl _< g < 0. Then M(D, Da) consists of all analytic functions (in
z < 1) which satisfy the growth condition If(z) 0(1 r)-.
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(ii) 0 > 1/2 and fl < 0. Then M(D, Da) Da.
(iii) fl > . Then M(D, Da) contains only the zero function.

The difficulty with the range 0 < 0 < 1/2 is that the derivative enters into the
definition of the norm and that the functions in D are not in general bounded.
For > 1/2, the functions in Dare bounded (an easy calculation)which partially
explains why D is an algebra in this case. A natural candidate for M(D)=
M(D, D) for 0 < t < 1/2 is simply the space of bounded functions in D. This is
shown to be false in [25].

DEFINITION. A positive Borel measure on the open unit disc is an
Carleson measure provided there is a constant c satisfying Igl d
for all g in D.
For t 0 (Do H2), Carleson [3] characterized these measures and applied

them in the solution of the Corona Theorem. Carleson measures were also
important in Fefferman and. Stein’s duality theory for H (see [8]).

THEOREM 1.1. (a) f M(D, Da) for fl < 0 if and only iff is analytic and

[f [2(1- [Z[)-1-2fl dx dy
is an -Carleson measure.

(b) f M(D, Da) for 0 <_ fl < <_ 1/2 if and only iff is analytic and

[f’lz(1- [z[)-’a dx dy
is an -Carleson measure.

(c) f M(D)for 0 < < 1/2 if and only iff is bounded, analytic, and

If’l(1 Izl)*- dx dy
is an -Carleson measure.

(d) M(D, Da)= Dafor <_ and > 1/2.

Proof By Lemma 3 [25], f is in M(D, Do) if and only if the corresponding
multiplication operator is bounded. Using this and the equivalent norm for Da
yields (a).
For (b) we takefin M(D, Da) and g in D then we must bound [If’oil a- by

a multiple of I111" By Schwarz’s inequality we have

IIf’lla- <- [l(f)’lla- + IIflla-,
The first term is dominated by fg [la which can be replaced by g 11 sincefis a
bounded multiplication operator. By the obvious inclusion relation I111-<
IIll. For the second term we use the fact that f(z).= O(1- zl)a-, see
Theorem 1 [25], to show that this term is also dominated by IIll-x or
To prove the converse we use Corollary 1.5 which we prove later. As a result,

iff gives rise to an -Carleson measure then

[f(z)l <_ If(o)l + c(1- Izl)a-
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for some constant c. By a similar argument to the above we show that [[fg[[ is
dominated by [[[[ and hence f is in M(D, D).
The proof of (c) is the same as (b) except we can not concludefis bounded as

a consequence of the -Carleson measure property.
To prove (d) we use the fact that M(D) is contained in M(D) whenever

0 _> fl, see Theorem 3 [25]. Now it suffices to prove M(D) D for > -. This
follows since D. D M(D) D M(D) D D and hence

Da M(D,, Da) by the inclusion relation whenever 0 > fl and 0 > -. Since the
function 1 is in all the D, spaces we trivially obtain the opposite inclusion
M(D,Da)Da.
We first note the obvious fact that H (the space of bounded analytic func-

tions in ]z < 1) is contained inM(D)for <O. If1/2<<l andf,#D
then II(f0)’ll - -< [If’0ll - + Ilfgll - is finite sincefand ff are both bounded.
For > 1, we assume by induction that the result holds for 1/2 < _< n and that
n < _< n + 1. Letf, D then D, M(D,) M(D_ ) so gf’ is in D_ .
Similarly, fff is in D_ and hencef# is in D. Thus, D M(D) for > and
the proof is complete.

Although the result (d) is known we included its proof since it used the same
ideas as the other parts. We also remark that 0-Carleson measures played no
role for > 1/2 since in this case they are trivially characterized as finite
measures.
With regard to the norm of the multiplication operators in the above

theorem it is not difficult to determine that the norm in part (a) is comparable
to the smallest possible constant in the definition of 0-Carleson measures. The
same thing holds for the other ranges of and fl provided we add f(0)l in
case (b)and f l[oo in case (c).
The preceding theorem shows that a characterization of 0-Carleson meas-

ures is needed. We start with Carleson’s well known characterization for H2 or
in our case Do. Let I be a subarc on the unit circle and define

S(I)= (z: z/Izl + I, 1-III-< Izl < 1}

where III denotes the normalized arc length of I. A positive measure/ on
[z < 1 is a 0-Carleson measure if and only it z(s(I))= o(Iz I).
We remark that Theorem 1.1 applied in the case fl 0 yields

ff If’l:(1 Izl)dx de O(llI)
stY)

wheneverfis in H+. This fact was first proved by Fefferman [7] and in fact the
analytic functions in BMO are characterized by the above relation.

THEOREM 1.2. A positive Borel measure la on zl < 1 is an -Carleson meas-
ure for < 0 if and only if #(S(I)) O( I [- 2).
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Proofi Let < 0, the case 0 was just discussed. Let m, be the measure
(1 [z [)- - 2, dx dy on z < 1 and observe that m,(S(I))is comparable to

ii ]-2% For u L(dm,) put

M[u](z) sup M(S(I)) f ul dm
stY)

where the supremum is taken over all arcs I I. Here I is the arc centered at
z/Iz and II1 1-Izl.

Suppose # is a measure satisfying the hypothesis then there is a constant c
such that (S(I)) <_ cM(S(I)). Now it follows that the weak type (1, 1) condi-
tion {M[u] > s)<_ cs- ]u dm holds for some constant c. See Duren’s
book [6, Chapter 9.5] for details of a similar argument. Since Mis obviously a
sublinear operator of type (oo, oo), we use the Marcinkiewicz interpolation
theorem [26, Chapter XII] to conclude thatMis a bounded sublinear operator
mapping L2(m)into L2(t).
Now the novelty of this proof is that M is not a maximal function as is

usually the case. However, when applied to analytic or harmonic functions u it
follows that In] _< cM[u] for some constant c. Assuming this fact we see that if
0 D then

f a d <_ c f M[] 12 d

c f Iol dm

ff Iol(1- Izl)-- dx< c dy

elicit "
Here the constant c changes with each inequality but does not depend on the
function g. Thus,/ is an a-Carleson measure.
To show that M has the desired maximal property we use the mean value

property for harmonic functions. Fix wl < 1 and let D denote the disc
centered at w with radius (1 w I). Let I be the subarc centered at w/Iw
and such that I 2(1 w [) or 1 whichever is smaller. If u is harmonic then

lu(w)] c(1- Iwl)- ff I.I d dy
Dw

<c(1- Iwl)2-1 ff lul(1- Izl)-1-2 dx dy
Dw

<cm(S(l))-1 ff lul dmo
s(t)

<_ c[u](w).
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In order to prove the converse we use the notation

(fl)n fl(fl + 1)’"(fl + n- 1)
and note that for fl > 0, ()n/n! is comparable to na- 1, see [12, Chapter 5.4].
For w < 1, let gw(z) [(1 z)l- 2]- t. By the Binomial Theorem (z)
=o (1 2),(nl)-(z) and hence

2 E (1 + n2)a (1 2)n 2

n=O n!
w-n

n=O

(1 2).

c(1 Iwl)-1.

If g is an -Carleson measure for < O, in fact < , then it follows that

If I is a subarc we pick w centered in S(I) and observe that 1- w 12 and
11 vz for z in s(I) are both comparable to III, The above inequality then
becomes #(S(I)) 0(1I - 2). The proof is complete.

We remark that the particular case a =-- of Theorem 1.2 had been
previously attained by other methods, see [11].
We also observe that the necessity portion of the proof is valid for a < {. For

a 1/2 a slight modification is required.

COROLLARY 1.3. If p is an a-Carleson measure for a <_ 1/2 then

III-#(S(I)) 0 log --Proof. The case 1/2 is proved in a similar manner using the functions

log (1 1,)Z) -1 E n-l(I,z)n.
n=l

COROLLARY 1.4. An analytic functionfin the unit disc belongs to M(D, DIj

for fl, < 0 if and only iff(z) 0(1 r)a-L Moreover, for < fl < 0 the zero
function is the only multiplier.
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Proof. This result was mentioned earlier, however, we demonstrate the use
of Theorems 1.1 and 1.2. Iff is analytic then the mean value property yields

If(w)lz < c(1 Iwl)a-
S(2lw)

The result follows easily from this inequality and the two theorems. If 0t </3
then f is tend to zero as [z tends to 1 and hencef is identically zero by the
maximum principle.

COROLLARY 1.5. If fl < 0 thenf is in M(Do, Da) ifand only iffis analytic and
jst,) If 12( 1 z I)-- 2t dx dy is O(1I I).

COROLLARY 1.6. If If’ Iz( 1 z I)x- ’a dx dy is an g-Carleson measure for
0 < fl < < 1/2 then If(z)[ < [f(0)l + c(1 Izl) 

Proof By Corollary 1.3 and the mean value property we obtain

If’(w)l O(1 Iwl)a-=-.
Integrating f’ along [0, w] gives the desired result.

We have previously observed that a function in M(D,) must be a bounded
member of D,. For a < 0 or 0t > - these necessary conditions are also sufficient.
In [25] an example is given of a nonmultiplying bounded function in D 1/2 by
cleverly prescribing its power series coefficients. A somewhat easier example
can be obtained by using Corollary 1.3.

Consider the functions

sin (log di(1 z)-1) O(z)
cos (log 6(1 z)-1)f(z) (log 6(1 z)-l)1/2 +*’ (log 6(1 z)-l)1/2 +*

where 0 < < 1/2 and 0 < 6 < 1/2. Both functions are bounded, in fact continuous
on zl < 1, and members of D/2. This last fact can be seen by noticing that

f’(z)I + 0’(z)I O(ll z !- 2(log 1 z l- x)-x- 2)
and using the integral norm condition for D 1/2. Using the equation sin2 z +
cos2 z 1 and some manipulation we get

[1 z I-Z(log l1 z[-1)-1-z

<_c[[f’(z)[2+ [o’(z)[2 + 11- zl-2(log I1-ZI-1)-3-2e]
for some constant c and 1 z small. Integrating this relation over S(I) where
I is a small arc centered at z 1 we get
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Since 2e < 1, Corollary 1.3 shows that f and g can not both multiply D 1/2"
Actually, neither function multiplies.
For 0 < < 1/2, analysis similar to the above shows that

f(z) exp (aa(1 z)- 2fl),
where Aa exp (i(1 + 2fl)r/2), is a bounded function in D,but not a multiplier
whenever (2fl + 1) < 1/2 and fl > 0. In fact, f M(D,, D,) for all > 0.
The following theorem shows that bounded functions in Dx/2 are in some

sense close to multiplying Da/2.

THEOREM 1.7. The followin9 relations hold:

(a) Ox/2 n M(DO) whenever fl < ,
(b) Da/2 c M(D,, D,) whenever < fl ,
(c) D, c M(D,, D,+ o_ x/2)whenever , fl < .
Proof Let 9(z)= an Z" then for e < Schwarz’s inequality yields

Ig(z)l Ilgll={2 n= + 1)-=]zl2"} x/2 clloll=(1- Izl)=-1/2.
Similarly, for e we obtain 19(z)[ c[[gl[ x/2{log (1 [z )- a}1/2. e proof
of each part is similar and we prove (c) to demonstrate the method. Letfbe in
D, and 9 be in D then the growth condition on 9 imply that

us,f D._ /2 and the proof is complete.

We remark that part (a) is the analog of Theorem 3.2 [24] which concerns
multipliers of fractional Sobolev spaces.

If we take =fl=0 in Theorem 1.7 we get the curious fact that
Do M(D0, D_ /2), i.e., H2 is contained in the Bergman space B. More gen-
erally, Sehwarz’s inequality shows that B M(H2, B2). Both of these faets
can easily be deduced from Corollary 1.5. In fact using Corollary 1.5 we see that
the function f(z)= (1 z)-/2 is in M(H2, B2) but not B.

2. Characterization of -Carleson measures for 0 < _< 1/2
Theorem 1.2 and Corollary 1.3 suggest that an -Carleson measure for

0 < < 1/2 is determined by the condition I(S(I))= O(lI x- 2,) or I(S(I))=
O(log II l- )- for 1/2. However, for > 0 a change occurs. Specifically,
suppose an arc I is subdivided into n equal subarcs {I}. Estimating/(
in the obvious way we get n2"lI x- 2% But S(I) is a larger set, yet I x- 2, is the
estimate for t(S(I)). This difficulty is the crux of the problem.
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Let k,(O) 01"-x for 101 0 < < I and extend k, periodically for all 0.
It can be shown that the Fourier coefficients ,(n) are of the form an(1 + r/2) /2

where 0 < 6 <_ a <_ 6-1 for all n. The space H2 is determined by its Taylor
coefficients or as the space of harmonic extensions of function in L2(T) (T
denotes the unit circle) for whichf(n) 0 for n 1, 2 See [10, Chapter
3] for details.
The Fourier coefficients of the convolution of two periodic integrable

functions

f . g(O)= f(O- t)g(t) dt

satisfies the relation (f )^ (n) f(n)(n). Using this we see a natural isomor-
phism between H2 and D; namely, the linear operator taking the boundary
function off in H2 into the harmonic extension of]" k. The harmonic exten-
sion of a function f in L2(T) is given by the Poisson integral off, denoted by
P[f](z), where

1 f f(O-t)(1-r2)P[f](z) l1 ze- ul2
dt (z re’)

E f(n)rl"le’""

LEMMA 2.1. A function O in D, for 0 < < 1 if and only if O P[f * k]
wheref is the boundaryfunction ofafunction in H2. Moreover, II011 ,and ]If II,are
comparable.

Proof.

and

Iff(z) Z=o b.z" then

o(z) e[f , /Q(z) E a,b,(1 + n2)-/2Z"
n=O

n=O

The middle term is IIo11 and the result follows.

LEMMA 2.2. A positive measure p is an c-Carleson measure for 0 < < 1 if
and only if there is a constant c such that

P[f k] 12 dp < cl[ f z(1)
zl<,

2

for allf > 0 in L2(T).
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Proofi Assume that (1) holds. Since the Poisson kernel and k are both
positive it follows that (1) holds for allfin L2(T). Applying (1) forfin n2 and
using Lemma 2.1 shows that # is an 0-Carleson measure.

Conversely, if/ is an 0-Carleson measure then (1) holds for allf in H2. But
the general function fin L2(T) can be writtenf=fl -I-f2 where {f} are in n2

and f 11 fl I1 + f2 I1 Thus, (1) holds for allf in L2(T).
We now turn to the capacitary notions we will need. There are various

classical capacities which can be employed in this problem, however, the nat-
ural candidates are the Bessel capacities introduced in [2]. We will be using the
notation, and definitions in [18]. The Bessel kernel of order > 0 in R is
denoted by #. We will not explicitly indicate the dimension. Its definition and
properties can be found in [2, p. 416]. Briefly, the kernel #is positive, in LI(Rn),
decays exponentially at infinity, and for x near the origin behaves asympto-
tically as

ca Ixl-n if0 < a < n,

g(x).. cnlog Ix 1-1 ifg=n,

c if> n.

For 1 < p < oo the Bessel capacity B,p is defined by

n,dE inr{llfllg’f>_ 0, g .f>_ 1 on E}

where the infimum over the empty set is taken to be infinity. For n 1, the
capacity Ba,2 is closely related to the D space. In particular, for intervals I in
R which are sufficiently small Lemmas 7, 8 [18] show that

(log III-X)- if0 < 0 <1/2,
ifg =1/2,

where simply indicates comparability.
For subsets E of the unit circle, let (E) denote the corresponding subset in

the interval [- n, n] obtained by the natural identification of this interval with
the line.

THEOREM 2.3. Let 0 < < 1/2. A measure # is an g-Carleson measure if and
only if there is a constant c such that

whenever I1,..., In are disjoint arcs on T.

We remark that for 0 - the capacity B 1/2,2 in the theorem can be replaced
by the classical logarithmic capacity in R2. This follows from consideration
given in [2, p. 426-7].
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To prove Theorem 2.3 we introduce a capacity on the circle. For E c T, for
0<<1/21et

,(E) inf {llfl[-f>_ 0,f L2(T), k,, ,f> 1 on "r(E)}.

The capacity ), is monotone and subadditive, see Theorem 1 [18]. We also
claim that y(E) is comparable to B,2(E) and that there is a constant c such that
the strong type capacitary inequality

(3) fo ’({e’ e T: k ,f> t))dt <_ cllfll 

holds for all nonnegative functions f in LZ(T). Assuming these facts for the
moment, we prove the theorem.

Proof of Theorem 2.3. Assume that / is an a-Carleson measure. Let
E = Ij andfbe a test function for E, i.e.,f > 0 and in L2(T) with k f> 1
on z(E). Thus, k f> Z, for each j. It follows that P[X,.,](z) > - for z in S(I).
Thus, P[k f] > 1/4 -.no

__
S(I) and since is an a-Carleson measure,

Lemma 2.2 yields

2#(w S(Ij))< 16 IP[k= *f] I’- d _< 16cllfllz.
Since f is arbitrary, I(w S(I))is dominated by ,(w I)or B,2(x(w I)).
Now assume that # satisfies (2) for all finite disjoint collection of arcs. Let

f> 0 be a function in L2(T) and set u P[k f]. The nontangential maximal
function u* is a function on the circle whose value at e is obtained by taking
the supremum of In(z) over a cone centered at e’. Precisely, let r(e’) be the
convex hull formed by the circle of radius r (0 < r < 1) centered at the origin
and the point e’. Then u*(e’) supre,o) lu(z)[. We will assume that r is
large enough so that z is in F(ei) for all e e 21. This is clearly possible.
Next let M[g] denote the Hardy-Littlewood maximal function of g in L(T),

i.e., M[g](ei) sup 1I 1-1 , 101 where I is a subarc centered at ei. The basic
facts concerning these maximal functions are that M[g] is bounded on L2(T), in
fact Lp for 1 < p < oe, and P[#]* < cM[#] for some constant c, see [23, Chapter
7].

Let > 0 and K be a compact subset of A, {z" u(z) > t}. By compactness
there are finitely many points z, z, in K such that {S(2Iz)} covers K. The
union of the closed arcs {2Iz) can be expressed as the disjoint union of arcs {Ji}.
Clearly, each arc 2I is contained in one of the arcs J and hence K c S(Jj).
In addition, our assumption on the nontangential maximal function force 2I
to be contained in {u* > t} and hence the same thing is true for each J. It now
follows that /(K)< cT{u*> t} and by the regularity of # we have
#(A,) < cry{u* > t}.



124 DAVID A. STEGENGA

Observe that M[k f] < k M[f]. By the above consideration, (3), and
the L-boundedness of the Hardy-Littlewood maximal function we have

f P[k,f] 12 d# fo [,l(,) dt2

<Cfo y{u*>t}dt2

< C fo v{M[k * f] > t} dt2

<_C fo ?{k , M[f] > t} dt2

Thus, is an e-Carleson measure. This completes the proof modulo our preli-
minary assumptions.

We remark that the basic approach used in the above proof is suggested by
Stein’s proof of the original Carleson measure problem [23, p. 236].

LEMMA 2.4. There is a constant c such thatfor each nonnelativefunctionfin
L2(T) there is a nonnegativefunction h in L2(- , o)satisfyinl Ilhllz -< cilfllz
and k2 * f <_ * h on [-n, n].

Proof. Let f > 0 be in L2(T). Put ho f on [-2r, 2r] and zero elsewhere.
Since k and are comparable on [-r, ] we get

-< c ho( 

Taking h cho the result follows.

Note that we are using the same norm notation for functions on the lines and
periodic function on the circle. This should not cause confusion.

LEMMA 2.5. For subsets E c T, y(E) is comparable to Ba,2(17(E)).

Proof. Lemma 2.4 proves that B,2(z(E)) <_ cy(E). In order to prove a lower
bound it suffices to consider sets for which B,2(E) is small. Accordingly, let
e > 0 and assume that B,2(E) < e. Then there is a test function h with h112 < e.
Since # decays exponentially at infinity Schwarz’s inequality guarantees that
Slrl>_ h(x Y)9(Y) dy < 1/2 provided e is sufficiently small. But h is a test func-
tion and hence we must have lyl<n h(x Y)9,(Y) dy > whenever x is in z(E).
Now 9, can be replaced by k to yield lrl< h(x y)k,(y) dy > c- > 0 when-
ever x is in z(E).
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Finally, if we takefl to be the periodic extension of h on [-2n, 0] andf2 to be
the periodic extension of h on [0, 2n] thenf= c(fl +f2) will be a test function
for y(E). Thus, y(E) < Ilfll <- c [Ihll and hence ,(E) < c2B,2((E)). We now
have y(E) and B,2(x(E)) comparable and the proof is complete.
By the preceding lemmas we see that the capacitary inequality (3) is a con-

sequence of the inequality

(4) fo B,,{# h > t} dtp < cllhllg

for 0 < < 1/2, p 2, and h an arbitrary nonnegative function in/Y(R"). D. R.
Adams has proved (4) with 0 < < 1, p > 2, and p < n, see [1, p. 139]. In
addition, for 0 < c < 1, p 2, and n/2 inequality (4) appears in the same
place in an equivalent form using Besov spaces. Adams’ result is a generaliza-
tion of the strong capacitary inequality ofV. A. Maz’ya [27]. Thus, the proof of
Theorem 2.2 is complete.

Up to this point we have been viewing the boundary function of elements in
D, 0 < g < 1, as convolutions. However, using Parseval’s relation we may
characterize these functions directly. Let f be in L2(T) and define

If(O-,)-i(O)l: l":e" 111 +
dt

LEMMA2.6. A function f in H2 is in Dfor O < c < 1 if and only if
f6 L(T). Moreover, [Ifll is comparable to Ilfll / II  fll .
The proof is simple and is essentially in [2, p. 402]. See also Theorem 3c [5].
By combining Theorems 1.1, 1.2 and 2.3 we obtain a complete characteriza-

tion of the spaces M(D, Da). We explicitly record the most interesting case
along with a boundary characterization.

THEOREM 2.7. The followin# are equivalent for 0 < < 1/2"
(a) f 6 M(D).
(b) f H and If’ Iz( 1 z I)’- :" ,:, dy O(B,,2(z(w I))) for all

S(lj)

finite disjoint collections of subarcs {Ij}7= 1"

(c) f H and the boundary function satisfies (f) dx- O(B,2(E))
for all compact subsets E T.

The equivalence of (a) and (b) is clear. We postpone the equivalence of (a)
and (c) since a similar result will hold in a more general setting.

Let L(R) be the space of functions of the form # fwherefis in (R") and
take I1 *fll , to be Ilfll . We then have the well known space of Bessel
potentials introduced in [2]. Since O(x) (1 + Ix ]z)-/z, see [2, p. 417], a cal-
culation with Plancheral’s theorem shows that f is in L if and only if
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j If(x)1:(1 + 1 I:) dx is finite. Thus, L2(R1) is the real variable analog ofD.
In fact we can define L(T) to be the space of functions of the formf kwhere
f is in LP(T) and use the similar norm. Then L2(T) for 0 < < 1 will consist of
all f in LZ(T)with E_ (1 + finite, The exceptional sets (in the
sense of [2]) for L potentials are the sets of B,p capacity zero. This connection
best explains the appearance of Bessel capacities in the D multiplier problem.
The multiplier problem for L(R) was studied in [24] and for L2(T)in [5],

[14], and [16]. In particular, functions in M(L) are bounded, the inclusion
relation M(L) M(L) holds for 0 < fl < and L M(LP) for p > n. Here

nip is the critical index just as 1/2 was the case in the D setting.
However, in the Euclidean space setting the constant functions are not in L(R)
and hence we do not have the inclusion M(L) c L. But multipliers are locally
in L, see [24, Chapter 3]. We also note that the analog of Lemma 2.6 holds for
0<< landp>2with

f(y)= {f If(x- y)-f()lz[-y--.; dy 11/2
(see [22]).

LEMMA 2.8. Let It be a positive Borel measure on R". A necessary and
sufficient condition that

f If I" <_ cllfll ,,,

where 0 < < 1, p >_ 2, and ep < n is that It(E) O(B,,(E)) holdfor all compact
subsets E R".

Proof The necessity proof is trivial. The sufficiency proof, at least for
ep < n, is an immediate consequence of (4). We indicate shortly a method., of
extending (4) to the critical index e nip.
We remark that this lemma is the analog for Bessel capacities of a special

case of Theorem 4 [1].

THEOREM 2.9. Assume that p >_ 2, ’0 < < 1, and gp < n. A function f is in
M(L) if and only iffis in L(R") and E f,f ’ dx O(B,,(E))for all compact
subsets E in R.

Proof By the analog of Lemma 3.1 [24] for , we see thatfis in M(L) if
and only if f is in L and [lo  fll,-< cll l[ ,, for all in L. The proof is
completed by applying Lemma 2.8.

We remark that the analog of Theorem 2.9 with essentially the same proof
holds for D,. Thus, Theorem 2.7 is also proved.
We now sketch the method for extending the capacitary inequality.
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Claim. Inequality (4) holds for all p
_

2 and 0 < < 1.

Proof. The proof uses the same techniques in [1], however, by using the
characterization for Bessel potentials we can proceed directly.

Let H be a smooth nondecreasing function on (-, ) which is zero for
x < 1/2 and one for x > 1. Put H(x)= 2H(2-x) for integers j. Observe that

2-H of21 on the set {f> 2) and hence B,p{f> 2} 2-llH ofllg,.
Then,

B,,(f> t)at c Z 2B,,(f> 2)
o

< E II,Sll"

(11 ofll + I1:( oS)ll).

ow an easy calculation skows tkat : I1 oSll; cllfll, si. p ,
_< f I 12 (Hs S(Xly.+y) Hs f(x)I dy " dx

This last inequality follows from the fact that

us of(x)- ns of(s) lf(x)-f(s)l

holds for all , y. The hardest case is 2s f(y) < 2s+ f() < 2s+ in which
case

Z Hso f(x) Z Hso f(y) 2s+ 2H(2 -s- Zf(x))

+ 2s+x 2s+ ,H(2-S- if(y))

2+ Z[H(2-- if(x)) H(2-
+ 2+ ’[H(1) H(2-- if(y))]

< sup H’{[f(x)- 2s+ i] + [2s+, _f(y)]}
< sup H’(f(x)-f(y))

by the Mean Value Theorem.
We remark that a result similar in nature to Theorem 2.7 for the multipliers

on the space L2 is in [19]. The space L2 is the classical Sobolev space of
functions in L2 whose weak derivative of order one are also in L2. The author is
indebted to A. Torchinsky for bringing this reference to our attention.
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A nice application of these results is obtained by using a lower bound for the
capacity of a set. In our case, we have that the capacity of a Borel set is no
smaller than a multiple of the capacity of the ball of identical volume. For Borel
sets of small diameter this fact is established in 18, Theorem 20, Lemmas 7, 8].
For sets with large diameters we use a different technique.

LEMMA 2.10. There is a constant c such that, for all Borel sets E,

(a)
(b)
(c)

B,p(E) > c E I("-P)"-l for p < n and EI 1,
B,p(E) > c(log E I- )-fo p and EI < 1/2,
B,p(E) > c el

Proof. Let me be Lebesque measure restricted to E. Denote by B the ball
centered at the origin for which nl E I. If f is a measurable function,
denote byf the equimeasurable symmetric decreasing rearrangement off. In
other words, f and f have the same distribution function" I(Ifl > t}l
I{f * > t}l for all > 0. By a theorem of Riesz-Sobolev [21] we have

IIf lip- fff(x)zr(y)o(x y)dy dx

< sup fff (x)zff (Y)9: (x y) dy dx
II/llp=l

Following the calculation in [18, p. 285] we obtain

IEl(log if p n,
E 1 (- P)/P if tp < n.

Finally, the desired lower bounds are obtained by applying Theorem 14 [18].
Part (c) is elementary.

Let Wp denote the weak L space of functions for which the distribution
function 2(t)= ](ill > t}l satisfies 2(t)< ct -p. The multiplier problem in-
volves determining when []vh[[ <_ c[]a][ ,holds for certain functions h(- f).
For 1 < p < n/t, R. Strichartz has shown using interpolation methods that this
relation holds whenever h is in W/, see Theorem 3.6 [24]. A similar result is in
[15].
Using our results we obtain a direct proof of this result. More importantly,

we obtain a generalization to the critical index p n. An elementary calcula-
tion shows that f is W’ if and only iff (x) <_ c Ix [-"/P.
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THEOREM 2.11. If 2 < p g nfix, 0 < g < 1, and

f,(x)_O{IXl- ifp < n,

[xl-(log I1-)- ifp-- n

for small Ix then there is a constant c such that IIfll -< cllll..

Proof. By the Riesz-Sobolev theorem used earlier, j f(g ,dp)<
f # (g b) holds for nonnegativef, g, b where b is symmetric decreasing. By

a standard regularization argument we obtain fg < fg.
Assume p n and let E be a compact subset. Let B be the ball centered at

the origin with BI EI. If EI -<- then by the above symmetrization result
we have

fe If p dx < fn f )p dx

< c fo (log t- 1)- t,
at

<_ 0og lel-1)’-

The last step is Lemma 2.10. For ]E > 1/2, we easily obtain

fe If dx < lEI <-

For p < n the same argument works.
The growth off near the origin is dependent on the decay of the distribu-

tion function 2y. However, the decay in 2y for f" satisfying the growth condi-
tion Ix I-(lg Ix l- )- is not obvious.

Let b, W be increasing functions on [to, ) which tend to infinity with t.
Assume that q W(t) and W b(t) are both comparable to for large t, i.e.,

O<a<--, <a

for some a > 0 and large. In addition, assume that b grows slowly enough so
that ck(ct)= O(ck(t)) for each c > 0.

LEMMA 2.12. Under the above conditions, (t)= O(dp(t)-n) for large if and
only/ff (x) O(V(lx l- 1)) for all small Ix I"

Proof. Iff is measurable then there is a nonincreasing function r(t) satisfy-
ing 2(t)= n,,l where B, is a ball of radius r. We then have
f* (x) sup {t" Ix < r(t)}.
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Assume 2y(t) O(4}(t)-") for large then rcy(t) <_ 4(t)- for large and some
constant c. Hence

cf(x) (cf)#(x)<_ sup {t: (t)g x I-}
<_ sup {t: at <_ P( x [- 1)}
<_ a-m,e(Ixl-holds for all sufficiently small xl.

Conversely, iff (x) o((Ix I- )) for Ix small then

2,(t) I{f* > t}l
-< I{" vtll-t > ct)l
-< I{" a-ll 1-1 > /ct)}
O((t)-)

for all large t.
Obviously, the above lemma can be applied to the function b(t)= and

W(t) /. However, a more interesting example is supplied by (t)=
(t log t)/ and W(t) t(log t)-x. A straightforward calculation shows that ,
W satisfy the hypothesis of Lemma 2.12 and hence we have proved the follow-
ing theorem.

THEOREM 2.13. Let 0 < ct < 1, p >_ 2, and gp < n. If a functionf satisfies

0
t-n/ if gp < n,

(tlogt)- n/ ifgp=n,

for all large then IIfll -< cllll,.
In order for [llp < for all in L eitherfmust be bounded or its large

values must be controlled in size or location. We remark that iff and all its
rearrangements satisfy I1t1 clllt, where p < n then 2y(t)= O(t-"/) for
large t. Using Lemma 7 [18] and Lemma 2.7 applied to f* we obtain

lt (f) dx O(r-P). Since f is radially decreasing we get

f(x) O(Ix I-) or 2y(t) O(t-’/).
We now give a few applications to multipliers. A fairly direct calculation

shows that a functionf in H which satisfies a Lipschitz condition of order is
in M(D) for e < . However, this fact is particularly transparent in view of
Theorem 2.9 since f is bounded in this case.
An extension of this idea is obtained by using the Ln modules of continuity,

i.e.,

( ) sup f f(x ) -f(x)I dx
lYl
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THEOREM 2.14. Let q > p >_ 2, q > n-1, and 0 < < 1. Iff L(Rn) and
dt

(6) (c%(f, t))2 t + 2 < oo

thenf M(L). The same result holdsfor Dprovided p 2, n 1, andf H.
Proof. We apply Minkowski’s inequality to obtain

fE Iaf lp dx < cllfll IE[ + fE{Irl<_l f(x-S![Y+20t-f (x)12 dy}p/2 dx

<_ clE + f(x y)- f(x)]v dx
in+2rl-<l

By the Holder inequality

and hence

f f(x y)-f(x)l" dx <_ le I’-./.(,o.(f, lyl))"

f l:f l" dx < clel + lEl1-"/{f[ co(f, t)tldt },iz+2a

If gp < n then 1 p/q >_ (n gp)n-. Thus

f I:fl" dx < c lll (lel >- 1)
lizl<"-:"’"-’ (lel < 1)

and hence by Lemma 2.10 and Theorem 2.9 imply thatf M(L). For p n
we have 0 < 1- p/q < 1 and the result follows. For p > n, we see that
If [ dx <_ c where Q is any unit cube. It follows that f is uniformly

locally in LP(E) and hence f M(L) by Corollary 2.2 [24].
The proof for D is similar except that Minkowski’s inequality is not used

and the case > 1/2 uses Lemma 2.6 and the fact that D M(D).

COROLLARY 2.15. Condition (6) in Theorem 2.14 can be replaced with the
condition ogq(f, ) <_ ct+for 0 < < 1 and some e > O.

In [16] a sufficient condition is given for L2(T) multipliers where 0 < 0 < -.
The condition is expressed in terms of the p-variation (1 < p < o) of a func-
tion. Here the p-variation is defined forf L(T) by

Vp[f] sup f(t,+ 1) -f()I’
Ik=O

where the supremum is taken over all finite sets to < < ""< tn and
t to < 2r. We now show that this result is a corollary of Theorem 2.13. For
simplicity we prove this result for L2( o, o).
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LEMMA 2.16. Iff is in L( , ) then o(f tS) < (26)x/V[f].

Proof. By a standard regularization argument we may assume that f is
continuous. Let N be a positive integer and let XR ky. Then there are points
x’ between XR and XR / such that

If(x + y)-f(x)lP dx lyl ]f(x + y)-f(x’)l.
xl <_ NIyl

Since the sum can be estimated by 2V[f] the result follows.

COROLLARY 2.17. If f e L(RI) (U(T), H(T)) and V[f] < for some
q > 2 then f multiplies L2(R1)(L2(T), D)for < q-1.

Proof. This is an immediate consequence of Corollary 2.18 and the fact that
eo(f, 6) <_ C6 TM.

3. A boundary value characterization of M(H2, B2)
Returning to the characterization of M(Do, D) for fl < 0 we see that

f’ M(Do, D) if and only if

ff If’](1- Izl) dx dy- O(llI)
s()

As remarked earlier, the case fl-- 1 has the alternate boundary value
description that f is in BMO.

In this section we give a boundary value characterization somewhat similar
to that of BMO forf’ in M(Do, D) with 1 0. The boundary character-
ization is also similar to the classical theorem that certain growth rates on the
derivative are equivalent to a Lipschitz condition on the boundary.

First we observe that f’ M(Do, D) implies that f has a continuous exten-
sion to the closed unit disc, in fact f satisfies a Lipschitz condition. Using the
estimation procedure of Theorem 1.2 we see that f’() O((1 I I)) and
hence by the classical result of Hardy-Littlewood [13], f extends to a contin-
uous function which satisfies a Lipschitz condition of order 1 / fl on the
boundary.

THEOREM 3.1. Letf H and 1 < fl < O. A necessary and sufficient condi-
tion that f’ M(Do, D#) is that

f, I, If(O) --f(t) ]2(1) eO -[ dO dt 0(]I1)

hold for all subarcs I on the unit circle.
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We first remark that the Dini type condition (1) is somewhat similar, but
stronger than Lip 1 / ft. In fact, functions f in Lip 1 + fl, -1 < fl < 0, are
characterized by the relation

,, il; eo dt O(llI).

Obviously, functions in Lip 1 + fl satisfy relation (2). Conversely, iff satisfies
(2) then lettingf II 1-1 , f dt we get

If-f,I <--pip ff If(O)-i(t)l dO dtIII II

_< If(o) f(t) dO dt
II

o(111’+).
By Theorem [17] we see that f satisfies a Lipschitz condition of order 1 + ft.
Since ei- eit < III for e, e" # we see that (1) implies (2).
We remark that condition (2) and generalizations to other moduli of contin-

uity can be found in [9]. We also observe that (2) with fl 1 is equivalent to
BMO.

LEMMA 3.2. Let I, J be arcs centered at e’ with sl >_ 311 and let f be a

function in L T) with u denoting its Poisson extension to z < 1. For 0 < < 1
there is a constant c, independent off, I, and J such that

If IVul(1 d dy
sty)

le,O e,,i,+2,
dO dt + Itl- tl > 1/31JI

f(t + 0o)-fl -Proof. Assume without loss of generality that 0o 0 and let 4b be a function
which is one on 1/3J, supp 4b c 2/3J, and 4b(0)- 4b(t) < c(lO I a I)for
all 0, t. Now

f= (f fs)rk + (f fs)(1 rk) +f fx +f2 +f3
and we take ui to be the Poisson extension offi. Since f3 is constant we have
{Vu 12 is dominated by Vu 12 + Vu212.
For z rei in S(I),

f fz(t) dt < c Ivu ( )l _< c
(1 r)2 + (0- t)2 ,l>-’/31Xl

dt
f(t)-fl 7
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and hence

S(l) tl >_ 1/31JI

Now for the integral over S(I)of Iw = w, replace S(I)with the entire disc
and using the equivalent Dirichlet norm we have an upper bounded given by
IIf, II + I1 f, 2"

Since supp b c J it follows that

dO d, <_ ff If(O)-f(,)l2

. eO e.l +:
dO dt.

Thus it suffices to consider the term I1, A [1.
Since supp b c 2/3J we put

lib:m, il ff + ff + ff
2/3J 0 2/3J

IA(0)-A(t)
i- - ii -2 dO dt

=A+B+C.

For A we observe that

f, (O) f, (t) < If(O)-f(t)l + clal-’ e’- e"l If(t)-fxl
since satisfies a Lipschitz condition. Thus we need only estimate

!! lfs ,f,t, -fs e’ dO}e,,1 If(t)- I ao dt < - .: atIJI e’- e" ]J -
-< la I-: I, If(t) -DI’ at

<ff If()-f}? I. eO ei i--2, dO dt

as was done above. The B and C terms are handled similarly.

Proofof Theorem 3.1. Assume thatfis in H and satisfies (1). Put 1 + fl
then 1 2fl 1 2. We apply Lemma 3.2 with J 3I and use the fact that
f is Lip to obtain

ff If’l’(1 Izl)-’-" a dy= o(1#1)

and hence f is in M(Do, Do).
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Conversely, suppose f’ is in M(Do, Da). Fix an arc I which we assume is
centered at z 1. Put r 1 III and g(z)= (1 r)(1 rz)-1.

Sincefis Lip , setting a equal to the value offat z 1, a computation shows
that

ff I#(f- a) 12(1 z I)’- 2 dx dy

E ff I#(f- a)l(1- Izl) dy
S(2nI)\S(2n-

o(111).
In addition, I111 o(1II)and sincef’ M(Do, Da) we have

ff If’l(1 Izl)- dx dy O(1II)

Putting these two estimates together we see that, for h (f- a)#,

Ih’l(-Hence Ilhll O(I11). Finally, it follows from the inequality

ff If(O)-f(t)li Io(,) ao t
II

eiO eli @ 2

_<c Ilhll:+: ff 0(0)-ie’<’)- I=ei,I a ao a,

II

and the fact that f is Lip that (1)holds.

4. The counterexample

In this section we prove the existence of a continuous analytic functionfin
D1/2 with

(1) supB 2(I)-l{ff f,[2 flill, dx dy + I@l/2 f a, <
s(i)

yet f is not a multiplier on D1/2. The supremum is taken over arcs I. In other
words, in our characterization of multipliers proper behavior on squares or
intervals is not sufficient.
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LEMMA 4.1. Iff is in H(T), 0 < <1/2, and , If[-- O(B,2(I)) then

ff If’ 12(1 [z 1)- ’" dx dy O(B,,z(I)).

Proof This fact follows from Lemma 3.2 with J 31 if 0 < < 1/2 and
J[ Ill 1/2 if 1.

Let 2o 1 and Am be 1/2 raised to the 2 power for m 1, 2, Denote by A,
the set of n-triples whose entries are zero or one and let
x, 7= 0i(1 2i)2o 2_ for 0 in A,. Put I, equal to the interval centered
at x, and of length 21 2,. Also, denote this length by 6.. Let E, be the union
Of these intervals for in A,. The set E, is a disjoint union of 2" intervals whose
lengths are roughly 1/2 raised to the 2" power and whose positions are modeled
after those of the Cantor "middle thirds" set.
For simplicity the construction will take place on the line because dilations

are easier to describe. We take q(x) (1 ix)- then 4) extends to be bounded
and analytic for z in the upper half plane. Finally, we put

fn(x)
An

where b.(x)= dp(x6 ). Clearly, f. is bounded, continuous, and analytic. We
claim that there are positive constants A, a independent of n such that

(i) IILl[ -< A,
(ii) , Ix/2 f 2 dx <_ AB1/2,2(I),
(iii) e. 11/2f.I2dx>a>O-

THEOREM 4.2. There exists a function f in H*(T) which is continuous and
satisfies (1) but is not a multiplier of O 1.

Proof Ifwe assume that continuous functions in H(T) which satisfy (1) are
multipliers then the closed graph theorem would imply that

(2)

fe 1/1 f dx <_ cB1/z,2(E) Ilflloo + sup, B1/2,2(I) fl 11/2f12 dx

holds for all such functions where c is independent off We have used Lemma
4.1 in the above.

Let W(t)= (log l/t)-1 for small and denote by Hv the corresponding
Hausdorff measure, see [4, Chapter 2] for details. Observe that Hv(E,)<
2"(log61)_<c<oo. Thus, the set E=E. satisfies Hv(E)<oo. By
Theorem 21 [18] we must have B:/2,z(E)= 0 and by the outer regularity of
B/z,2 [18, Theorem 1] we see that lim._.oo B/2,z(E.)= O.
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We now use the sequence of functions {f,} to produce a contradiction. By the
properties of these functions we see that (2) becomes aB1/2,2(E,)-1 < 2cA
which is impossible.
We now complete the proofby verifying properties (i), (ii), and (iii). To prove

(i) we must show that g.(x)= 2-n/2S E {S2n + (x- Xa)2} 1/2 is bounded
independent of 0 and n. For a given x there is a closest point x and a next
closest point x,. Due to the extremely rapid decrease of 6. we see that for n
sufficiently large Ix xa] > 2n/2tln/2 holds for all other indices x. As a result we
see that

g.(,) < a,/’ + 2-.a a + ( ))-

ow l r b h ina ntd at with rl -S thn

6/2 if x w

gn(x) 0 2-n/26n
if x e w

where x is the closest point to x. In particular ,lg. O(2-/2) so (i)is
satisfied.
To prove (ii) we observe that Schwarz’s inequality yields

l/2f(x) <_ Z 2-"12112dP.(x x).
But a computation reveals that

l/z(x) n(1 + x)-1

and hence

1/2 f(x)<
Combining this with our previous estimate on #. we get

1 ifx w Z=,
(2)

ifx e w =.
Case 1. ]II < 1/2i._ 1. Since I can intersect at most one set ]r the integral

over I, using our dominating function in (2), becomes largest if I is centered at x
for some a. For III -< . we have

Ill(log r I-’) <- 6.(log i- 1) <_ C2"6.
and hence 2-"a;’ III <_ CB1/2,2(I). Thus, using (2)we get

fl 11/2 f <_ c2-a;’l I <_ cB1/2,2(I).
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For n < II < ILl we also have

191/2 f [2 < C 2 X2
dx < c2-" < cB1/2,2(I ).6 /

If III >- ILl then we use the same estimate combined with the fact that
1/2 f < 1 on I\L and III <_ Bx/2,2(I)to obtain the same result.

Case 2. [I > -6_ 1. We have just observed that the portion of I outside
of w/’at causes no difficulty. On the other hand, if we let M denote the number
of indices for which I ’at 4:0 then by the first case we have

Now it is clear from the construction of E. that M < 2s if II < 6._s. Hence if

-+1 < III < ,- with j 1, 2, n- 1 it follows that

M < 2s < C2"(log fi-Js+ 1)-1 < C2"(log I 1- )- <_ C2"B1/2,2(I).
If III 2 6, the above conclusion is trivially true and hence we have
M 0(2"B/2,2(I)). Combining this estimate with our previous inequality we
see that (ii) is proved.
To prove (iii)we notice that

f [/zf l2 dx >- f l/2f l2 >-2" min(f 1l/2fl2)En

so we must show that , 191/2 f 12 > C2-". Fix o and let

h 2-"/2b.(x- Xo) and k =f- h.

Then 1/2 h < 1/2 f+ @ 1/2 k. Now by a change of variables we get

Iat0 I_< 1/2 xl < 1/2 1 + X2 2-n"

By estimating 1/2 k as before we see that it is bounded independent of n and 0
and hence ,ato 11/2 kl2 O(6n). Since din tends to zero at a faster rate than 2
we have established (iii) and the proof is complete.

5. Concluding remarks

It has come to my attention that V. G. Maz’ya had published the results of
Lemma 2.8 and Theorem B, see [28], at about the time of the writing of this
manuscript. In addition, Maz’ya and T. O. Shaposhnikova have recently ob-
tained some further multiplier results.

Finally, BjiSrn Dahlberg has recently extended the strong type capacity
inequality for p > 1. It follows that by modifying in Theorem 2.9 a similar
result holds for all p > 1.
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