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1. Introduction

In [7] Dwork determines the number of p-adic unit eigenvalues of Atkin’s
Up-operator on modular functions of level 2. He applies these techniques in [8]
to modular functions of level 3. After lengthy calculation, he obtains an answer
when p 1 (mod 3) but leaves unsettled the case p -= 1 (mod 3). In [2], we
gave a new proof of Dwork’s result in the level 2 case. In this work, we extend
this method to the level 3 case. We determine the number of unit eignvalues
when p-- 1 (mod 3) (Corollary 1 to the main theorem) and give an upper
bound for this number when p -1 (mod 3) (Corollary 1 to Proposition 1).

In Section 2, we discuss the Hasse invariant and compute its values at certain
points. The computation is based on the fact that after a change ofvariable the
Hasse invariant satisfies a hypergeometric differential equation (see [8]).
Theorem 1 is in [8], but we offer a different proof based on Lemma 1 and the
infinite product for det (I- tU,). This avoids the need for an a priori upper
bound on the degree of det (I tU,) (mod p). Our Main Theorem (the princi-
pal result of [8]) is deduced as a corollary of Theorem 2, rather than by a
computation involving differential operators as in [8]. For the final step,
however, we still rely on a result of Dwork (Lemma 3). In fact, we feel our
approach reveals the significance of Dwork’s lmma.

I am indebted to B. Dwork for providing me with a copy of his manuscript
[8] and for suggesting improvements to the original version of this work. I
would also like to thank B. Dwork and S. Sperber for pointing out errors in the
original version.
Throughout this paper, p is a prime p _> 5. We let Fdenote the prime field of

p elements, F its algebraic closure, Q the field of p-adic numbers, Z the ring
of p-adic integers. Iffis a polynomial with coefficients in Z, we writeffor the
polynomial with coefficients in F, which are the reductions mod pZ of the
coefficients off. If ct, fl Z[[t]] ar such that ( ) pZ[[t]] we will writ

fl (rood p). We use the standard notation for hypergeomtric functions [9,
p. 162]"

Received May 31, 1977.

F(a, b; c; 2)= ((a)j(b)j/(c)jj!),,q,j

(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

49



50 ALAN ADOLPHSON

where for any non-negative integer j and a Qp, (a)o 1, (a)g= l-I2_ (a + s)
forj > 0.

2. The level three Hasse invariant

Consider the family of elliptic curves given by the projective equation

(2.1) X3 + X + X- 3#X1X2X3 O,

where/ ’p,/,/3 1. An explicit formula for the Hasse invariant of this family
has been given by Katz [11, equ. (2.3.7.20)]. Define h(/) Zp(/)by

[(p- 1)/31

(2.2) h(/z) =/zp-1
j=0

((1/3)g(2/3)g/j! j!)#- 3g

where [ ] denotes the greatest integer function. Then (/) is the Hasse invar-
iant of (2.1). We have

(p- 1)/3., ((1/3)(2/3)/j! j!)tp- -3 ir p 1 (mod 3)
g=O

E ((1/3)(2/3)/j! j!)lp- - 3 if p 1 (mod 3).

Thus in either case deg h(/)-- p 1, and/ h(/) iff p -= -1 (mod 3).
For later use, we calculate h-(co), where co3 1. From [5, (8.4)], it follows that

the periods of the differential of the first kind on (2.1)satisfy the differential
equation

(2.4) (]23 1)y" + 3p2y +/y 0.

By [13], the polynomial h(/) satisfies eq. (2.4). Making the change of variable
2 #3 and multiplying by a constant transforms (2.4) into

(2.5) 2(1 2)y" + ((2 52)/3)y’ y/9 0

(where y’, y" now denote derivatives with respect to 2). The point is that (2.5) is
a classical hypergeometric equation [9, p. 161] and its .properties are well
known. It is satisfied by F(1/3, 1/3; 1; 1 2).

Suppose first p 1 (mod 3). Put
p-1

B(2) ((1/3)g/j!)22 Zp[2].
g=O

Then by [6, Cor. 1 to Lemma 1 and (3.2’)],
B(2) F(1/3, 1/3; 1; 2)/F(1/3, 1/3; 1; 2v) (mod p).

Hence /(1- 2)satisfies (2.5). It is easily seen that deg/= (p- 1)/3. Thus
/(1 t3) satisfies (2.4) and has degree p- 1 in/. Since (/) has these same
properties, and since -1 is the unique root of the indicial equation of
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equ. (2.4), it follows that/(1 #3) is a constant multiple of/(#). Comparing
coefficients of #P- we conclude (since (- 1)tp- )/3 1) that (/) =/(1 -/3),
hence if 1, 1.
Now suppose p -1 (mod 3). Put

p-1

C(2)= 2(2p-a)/3 ((1/3)j(2/3)j/j!j!)2-.
j=O

Note that (1/3)j(2/3)/j!j! is a p-adic integer and is divisible by p for
(p 2)/3 < j < p 1. Hence C(2) is a polynomial of degree (2p 1)/3. By [6,
Cor. 2 to Lemma 1 and equ. (3.2’) with s 0],

C(2)/22p-)/3 _= F(1/3, 2/3 1", 2-X)/F(1/3, 2/3", 1", 2 -p) (mod p).
Thus t7(2) is a solution of (2.5), since it is well known that 2-/3F(1/3, 2/3; 1;
2-) satisfies (2.5). Again applying [6]; we have

(2p- 1)/3

((1/3)/j!)2,,qJ F(1/3, 1/3; 1; 2)/F(2/3, 2/3; 1; 2p) (mod p).
j=0

Thus the polynomial/(2) Fp[2] defined by
(2p- 1)/3

/)(2) 2 ((1/3)/J!)2(1 2)
j=O

is a solution of (2.5) (since F(1/3, 1/3; 1; 1 2) is). Since -1/3 is the unique
root of the indicial equation of (2.5), it follows that 0(2) is a constant multiple
of (2). Comparing coefficients of 2zp- x)/3 we conclude (since
(__ 1)(2p-1)/3 1) that/(2) (S’(2). It is clear from the definitions of h(/)
and C(#) that ff(/)=/-"t(/3), hence (/)= _/-/(/3). Thus if 093 1, we
have (09)= -co-P/(1)= -09 -p.

3. Reduction mod p of characteristic polynomial of Atkin’s operator

For the definition of Atkin’s operator, denoted here by Up, we refer the
reader to [3], [7], or [10]. We recall the identity [10, A3. 1.5].

(3.1) det (I- tUp)= 1-I I-I’ (1 rrx(#)-z’’+ 1)(pt)deg u)- l,
0

where 1-Iu indicates the product is taken over all Fconjugacy classes of
elements of F, excluding the supersingular classes and the cube roots of unity,
and na (#) is the unit reciprocal root of the numerator of the zeta function of
(2.1).
For any field K, define an endomorphism ff of K[] by linearity and the

condition

"/P if pin,0(#")
if pXn.
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Let A(#) K[#]. For k a non-negative integer, (Ak) is an endomorphism
of K[#], denoted , Ak. Let V. be the subspace of K[#] of polynomials of
degree < n. As observed in [4], if we put n [deg Ak/(p- 1)], then fro Ak is
stable on V, and the eigenspaces corresponding to non-zero eigenvalues are
contained in V,.

THEOREM 1. Let h(g) be defined by (2.3) and consider hp- 3 as endomor-
phism of Qp[#]. If p =_ 1 (mod 3), then

det (I tU)= (1 03 det (I- t(,o h-3)[ V_3)/(1 h(0)-3t) (mod p).

If p -1 (mod 3), then

det (I -tU)= (1 t)(1 -t2) det (I- t(o h-a)l V-a) (mod p).

Before beginning the proof, we need a lemma. If # Fp let gr denote its
Teichmtiller representative, i.e. # r is the unique lifting of# to characteristic zero
satisfying #er- 1, where N [F(#): F]. (We take Or 0. Let A be a
polynomial with coefficients in Q and put

N-1

x(#)= H A(#).
i=0

Note that Ua(t) Q (since Ua(#) Normo(.v)/o A(#v)) and depends only on
the F-conjugacy class of #.

LEMMA 1. Considering Ak as endomorphism of the space of polynomials
with coefficients in Qp, we have

det (I t($o A) V.) 1-I I-I" (1 Xa(g)k(prt)deg")- t,
0

where n [deg Ak/(p- 1)] and I-I’_t’ indicates a product extended over all
F-conjugacy classes of elements of Fp excluding [a O.

Proof This follows easily from the trace formula [4]
Tr ($o Ak)"= (p"-- 1)-t E A(gT)kA(#{)k’’" A(lr"-’)k"

.UTP-

We obtain

(3.2) E Tr (o Ak)"t"/n E (t"/n) E P"r =A(g)"k/deg
n=l n=l r=O #pn-l=

E Z"Z (=a(#)(P’t)ae’")/s,
r=0 {p} s=

where , denotes a sum over all F-conjugacy classes of elements of ’excluding # 0. Taking exponentials in (3.2) gives the lemma. Q.E.D.
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Proof of Theorem 1. From (3.1) we deduce

(3.3) det (I- tUn)=- I-I’ (1 ffl()-Ztdeg/)-1 (mod p)

IX’ (1 (#)P-3tde’")- (moO p),

since ;t(/) is a unit in Znhence satisfies t(#)n- 1 (mod p). From Lemma 1,
taking for A the Hasse invariant h of equ. (2.3), we get

(3.4) det (I t(ffo hn- 3)IVn_ 3) 1-I"(1 ()- 3tdeg z)-I (mod p).

But it follows from [13] that if is not supersingular, then n(#)--n(/)
(mod p). If/ is supersingular, then nh(/) 0 (mod p). Thus modulo p,

det (I- tUn)
(1 7h(O)P-3t)-1 det (I- t(@ hp-3)[ Vp_3) H (1 7h(#)P-3tdegz)1/deg

/t3=1

Note that rth(0)= h(0), which is zero when p -1 (mod 3).
Suppose that p 1 (mod 3). In this case/t

3 1 implies deg/ 1. Thus

(/) h(#)= 1 (mod p)

by the discussion in Section 2.
Suppose that p 1 (rood 3). Let 1, o, o2 be the three cube roots of unity

over Qp, and let 1, &, &2 be the their reductions rnod p in p. In this case, we
have deg & deg &2 2. Then

rh(1) h(1) 1 (mod p)

h(69) h(co)h(cop) =- (-69-P)(-r3 -p) 1 (mod p)

th(692) h(coE)h(co2p) (-6-2P)(-69-2p) 1 (moO p)

by the results of Section 2. Q.E.D.

4. Main theorem and corollaries

Suppose p 1 (mod 3). Consider the matrix (in the usual monomial basis) of
q h- 3 on Vp_ . The first entry of the first row is h(0)P- 3, the other entries in
the first row are zero. The last entry in the last row is 1, the other entries in the
last row are zero. Thus

det (I- t(ffo h-3)[ Vn_3) (1 h(O)n-at)(1 -t)det (I t(ffo hn-3)[ W),

where W is the space of polynomials with coefficients in Qp of degree < p 4
with no constant term. From Theorem 1, we obtain

(4.1) det (I tun) (1 t)’ det (I t(o hp-a)IW (mod p)
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MAIN THEOREM. Suppose p-- 1 (mod 3). Then

deg [det (I t(Oo hp- 3)IW (moO p)] p- 4,

i.e., as an operator on W, hp- 3 has no eigenvalues divisible by p.

The proof of the Main Theorem will be given in Section 5. By (4.1), we have:

COROLLARY 1. For p =- 1 (mod 3), Atkin’s operator Up has p eigenvalues
(counting multiplicities) which are p-adic units.

Comparing (4.1)with [10, (A3.3.3)], we see that

det (I t(Oo hp- 3)lW det (I T_l(p)) (moO p),
where Tp_ (p) is the pth Hecke operator acting on cusp forms of weight p 1
and level three. But the dimension of the space of cusp forms of weight p 1
and level three is p 4 [12], so by the Main Theorem we have:

COROLLARY 2. For p-- 1 (mod 3), all eigenvalues of the Hecke operator
Tp_ (P) are p-adic units.

For the connection with the Cartier operator, see [10, (A3.3.3)].
Now suppose p 1 (mod 3). Examining the matrix of hp- 3 as before

(and keeping in mind that h has no constant term in this case) we see that

det (I t(ffo hp-3)[ Vp_3)-- (1 -t)det (I -t(ffo hp-3)l W).
Comparing this with Theorem 1, we obtain

(4.2) det (I -tUp)=_ (1 t)2(1 -t2) det (I -t(o hn-3)l W) (mod p).
The conclusion of the Main Theorem is false when p 1 (mod 3). One has

instead:

PROPOSITION 1. If p---- --1 (mod 3), then

deg [det (I t(o hp- 3)]W)(mod p)] < p- 5.

The proof of Proposition 1 will be given in Section 6. By (4.2), we have"

COROLLARY 1. For p -1 (mod 3), Atkin’s operator Up
p 1 eigenvalues which are p-adic units.

has no more than

Combining (4.2)with [10, A3.3.31 gives

det (I t(qto h-a)l W) det (I tT_(p)) (mod p),

hence by Proposition 1"

COROLLARY 2. For p 1 (mod 3), the necke operator Tp_ (p) has at least
one eigenvalue which is a p-adic non-unit.
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5. Proof of main theorem

LEMMA 2. Let k and n be positive integers. If n > 1, let be the unique
positive integer such that

(g- 1)(p- 1)/(n- 1)< k < (p- 1)/(n- 1).

If n 1, let O. Then [k(p n)/(p 1)]-- k g.

The assertion is clear if n 1. If n > 1 define e by the equation

k ((- 1)(p- 1)/(n- 1))+ e

Proof.

so that

0 < _< (p- 1)/(n- 1).
Using (5.1) to express k we compute

(k(p- n)/(p- 1)- (k- )= 1-e(n- 1)/(p- 1),
and by (5.2), 0 < 1 e(n 1)/(p 1)< 1. Q.E.D.

Denote by Vm the space of polynomials in Fp[/] of degree <_ m.

COROLLARY. Letfe Fp[#] and put k deg f. Let n be an integer, 1 < n < p.
Then fp-n is stable on VR-
Consider now the operator ff fn- on Fp[#], wherefand n are as defined in

the corollary. From (5.1) and (5.2), we have

(5.3) [k(n 1)/(p 1)] la

where a is defined in Lemma
k a(p 1)/(n 1) and

(5.4) O(f"-’#)= cg + lower order terms

ife (p- 1)/(n- 1)or n 1
if e (p 1)/(n 1),
2. If e= (p-1)/(n-1), we have

where c e F is the coefficient of #kt- 1 inf,- 1. Thus by (5.3), f"- is stable
on either P or P_ 1, and by (5.4) the kernel of f- is contained in

_
in

either case (in particular, taking n 1, ker ()= {0} V_).
The Main Theorem will be a corollary of the next theorem.

THEOREM 2. Let fe F[#] and put k=degf Suppose n is integral,
1 < n <_ p, and let ct, e be defined by lemma 2 and equ. (5.1) (thus e is defined only
if n > 1). We assume the following"

(i) f(0)=p 0,
(ii) f is relatively prime to its derivative,
(iii) k < p(p- 1)/(n- 1)(ifn > 1),
(iv) e(n-1)_> g- l (/f n > l).
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Then the kernel of fP-" on ’k- is isomorphic to the kernel of f"-1 on

Proof. The theorem is trivial if k 0, so we suppose k > 1. Let Fp[#] be
such that (fP-")= 0. Then we must have =/r/with r/ F[/], so

$(#tlf’-’) f$(/r//f") 0.

Thus $(/arl/f")= 0. This implies rill" d/d/a(F(p)). We can then write r/=f"p’
with p Fp(p) where p’= dp/d#), and can assume without loss of generality
that p has poles only at zeros of f. We will have VR- if and only if p
produces a polynomial r/ with dog r/_< k- - 1. The proof is divided into
several cases.

Case 1. Assume p,_ Fp[#]. Then r/= f"p’ implies r/= 0 or deg r/_> nk >
k- cz- 1. Hence VR-.

If p Fp[/] we may write p z/f where r > 0 and z e Fp[p]. We assume
fXz, which determines r uniquely. Further, we can assume without loss of
generality that pr" for if p]r (by looking at the principal part expansion of
p z/f) one can find P cr/f such that p p’, tr F[/], and either pXs or
s 0. Since we are really concerned with r/= f"p’, we may then replace p by p 1-

Case 2. Assume r > n- 1. We have r/=f’p’= (fz’- rf’z)/f+ 1- with
r + 1 n > 0. For r/to be a polynomialfmust dividef’z (since r 0 (mod p)).
But (f, f’) 1 so f lz, contradicting the assumption made after case 1. Thus r/
cannot be a polynomial in this case.
Taking n 1 in the theorem, this shows that $ fP-1 has trivial kernel on

Vk, since r > n- 1 is the only case that occurs. As already observed, $ has
trivial kernel on V_ 1. This proves the theorem when n 1 and when n p
(since n p determines the same pair of operators $ and $ f- 1). From now
on, we assume 1 < n < p.

Case 3. Assume r < n- 1. Then r/=f"-’-l(fz’- rf’z). Since n- r-
1 > 0, it follows that either r/= 0 or dog r/_> k > k 1.
Thus none of the first three cases produces an r/ with dcg r/_< k 1

(other than r/= 0).

Case 4. Assume r=n-1. Then r/=fz’-(n-1)f’z. Put l(z)=fz’-
(n 1)f’z. If deg z j, it follows that (since n > 1 implies > 1) deg r/= j +
k 1 > k cz 1 unless j k(n 1) (mod p).

Suppose 1. From the definition of (Lemma 2) this implies

(5.5) deg f,-1 k(n 1) < p.

In this case, fp-, has non-trivial kernel on Vk- if and only if there exists a
polynomial z with deg z =- k(n 1) (mod p) such that r/= l(z) is non-trivial
and satisfies deg r/< k 2. Let Zo be the polynomial of least degree having
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these properties. By (5.5), there exist c 6 Fp and a non-negative integer rn such
that deg (Zo c#mpf"-1) < deg Zo. But l(f-1) 0 implies

l(zo c#Pf i) l(zo),

contradicting the minimality of deg Z o. Hence /o fP-" has trivial kernel on
k-1. Since we are assuming f(0)=/: 0, fn-1 has trivial kernel on o. This
proves the theorem when g 1. From now on, we assume _> 2.
By (5.1), k(n 1)/p o 1 / (e(n 1) ( 1))/p. Using (5.2) and our

hypothesis that e(n 1) _> g 1 we see that [k(n 1)/p] 1. Thus we can
write

f,,-1 =fo + #Pfl + 2Pf2 / "’’/ /(a-I)Pfa- 1, L-I # O,

where fo, ft, f- 6 Fp[#], deg fo, deg fl, degf_ 2 - P 1, and
degf-i =- k(n 1) (moO p). For m 1, 2, g 1 set

i=0

Then Bm Fp[#] and deg Bm= k(n 1)- mp. Since l(fn-t) 0, the degree of
l(Bm) is _< k 2. The operator /o fP-" on k- has a non-trivial kernel if and
only if there exists z 6 Fp[#] with deg z =- k(n 1) (moO p) such that /= l(z)is
non-trivial and satisfies deg k 1.

Suppose z 6 Fp[] is such that deg z k(n 1) (mod p) and deg l(z)
k- 2. Then

degzdegf"- degBm(modp) form= 1,2,...,-1,

and since ( 1 m)p deg Bm ( m)p, we see that z can be expressed in
the fo

z=O(g)f"- + E
where 0(.)e F.[], c,, c2,..., Ca_ ff Vp. Hence

(5.6) l(z) craB.
Xm=l

Put

171 emiR-rap f 1.
\m=l

p-For i= O, 1, - 2, put f -o a, Set

(Y2 E Cm[- p am 1,j #J
m=l j=p+ l-ot
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Define tr3 by

From the definition of B it is clear that a3 consists of terms of degree < -.
Hence deg/(a3) < k 1. Furthermore, l(trl)= 0. Thus

deg craB,, < k 1 -deg l(cr2) <_ k 1.
\m-1

Write tr2
, dj/#J. From (5.1), we have

k(n 1) ( 1)(p 1) + e(n- 1),

which implies k(n 1)_= e(n 1)- ( 1) (mod p). By (5.2)and hypothesis
(iv), p 1 >_ e(n 1) _> 1; hence k(n 1)is congruent modulo p to one of
the numbers 0, 1,..., p- . Thus forj 1, 2,..., - 1,

degl(1/t)=k-j-l>k-- 1.

Therefore,

deg l(cr2) <_ k 1 -d d2 d_ O.

In matrix terms, if we put

bij=aj-l,p-i, i,j= 1,2,...,-1,

)’ (d d, )’ Hencethen(bij)(cl,., c-1 1,..., -1

deg/(a2) < k 1 -- (cl, c- 1)’ ker (bij),
where (bi) is considered as acting on F-.

Summarizing, we have shown that the map

is a surjection of ker (bi) onto ker (@ fP-"). It is easy to see that this map is
actually an isomorphism" if it were not injective, would have a polynomial
solution of degree < k(n 1), which is impossible.
The kernel of@ fn- on 1_ is contained in the space spanned by {/, #2,

#-} (since f has a non-zero constant term). Its matrix in this basis in (b).
Thus ker ( fn-1) and ker ( fv-) have the same dimension. Q.E.D.

ProofofMain Theorem. The Hasse invariant (/)satisfies the hypotheses of
Theorem 2" that /(0) 0 follows from (2.3), and/ is relatively prime to its
derivative since it is a non-trivial solution of a second order differential equa-
tion. Hypotheses (iii) and (iv) are easily checked. Note that n 1. Further-
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more, letting if" denote the space of polynomials in Fp[la] of degree < p- 4
which are divisible by #, we have

det (I t($o hn- 3)1 W) det (I t(o/n- 3)11) (mod p).

Thus the Main Theorem asserts that g, h-p- 3 has trivial kernel on if’. Apply-
ing Theorem 2 with n 3 (and hence 2), we see that this will be the case
provided ff h-2 has trivial kernel on Vt. Since has non-zero constant term, it
is clear that ff h-2 has non-trivial kernel if and only if (#ff2) 0, i.e. if and
only if the coefficient of/- in h-2 is zero. The proof is concluded by the
following"

LEMMA 3 (Dwork [8]).
non-zero.

For p =- 1 (mod 3), the coefficient of ap- in if2 is

Proof The Hasse invariant / satisfies the differential equation (2.4). Its
square h-2 satisfies the second symmetric power L of (2.4). A straightforward
calculation shows that

(/3_ 1)2L (/3_ 1)(d/d#)3 + 9#(/3 1)(d/dl)
+ (19# lO#)(d/dla)+ (8la3 2).

Writing h-2 ’2p- 2 lan=/,= 0 a, and putting a, 0 for n < 0 or n > 2p 2, we have

(5.7) O= (laa- 1)2L(2)
2p+l

E [(n-1)3an_3+(-2n3-3n2-5n-2)an
n=0

+ (n + 3)(n + 2)(n + 1)an+

Putting n p 1 in this sum gives (p 2)3ap_, + 2an_ 0. If an_ 0,
then an_ , 0. Putting n p- 4 in this sum now gives (p- 5)3an_7 0.
Hence an_ 7 0. Continuing this procedure we arrive at a0 0. But as already
observed (0) =f 0. This contradiction shows an_ 4: 0. Q.E.D.

6. Proof of Proposition 1

LEMMA 4. Letfe Fn[la with degf= p 1 and f(0)= 0. Write

(6.1) laf2 fo + lanf
(where deg ft p 1, deg fo -< P 1) and put a ifz(ft/tf2)’.,. ,. _< p- 4. ker

Then

Proofi An easy calculation shows tr ff’ 2flf’ la- lffi Hence
treFn[la since zlf- Next we have O(fn-3tr)=fO(#(ft/laf2)’)=O since
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(fl/[gf2), has no terms of degree congruent to -1 modulo p. Finally, using
(6.1), we can write

(6.2) a (/f)-(fo f -ff).
Hence deg tr < p 4. Q.E.D.

Proof of Proposition 1. Let W again denote the space of polynomials in
Fp[/] of degree < p 4 which are divisible by p. Then

det (I t(d/o hp- 3)W) det (I t(o KP-3)lff’ (mod p)
Thus Proposition 1 is equivalent to the assertion that h-p- 3 has non-trivial
kernel on W.

Write luff2 ho + lzPhl. Then by Lemma 4, a =/z(hl/h-2) lies in the kernel
of I// h--p- 3 on //r. Furthermore, a 4: 0" if not, then by (6.2), we have h0 hx
for some constant ; so if2 ( + lP)hl. But this implies has a multiple root,
contradicting the fact that h is a non-trivial solution of a second order linear
differential equation. Q.E.D.

Added in proof Hypothesis (iii) of Theorem 2 is implied by hypothesis (iv).
The proof can be streamlined somewhat by replacing (iii) and (iv) by the
equivalent hypothesis that [k(n- 1)/p] - 1.
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