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THE U,-OPERATOR OF ATKIN ON
MODULAR FUNCTIONS OF LEVEL THREE
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1. Introduction

In [7] Dwork determines the number of p-adic unit eigenvalues of Atkin’s
U -operator on modular functions of level 2. He applies these techniques in [8]
to modular functions of level 3. After lengthy calculation, he obtains an answer
when p = 1 (mod 3) but leaves unsettled the case p = —1 (mod 3). In [2], we
gave a new proof of Dwork’s result in the level 2 case. In this work, we extend
this method to the level 3 case. We determine the number of unit eigenvalues
when p =1 (mod 3) (Corollary 1 to the main theorem) and give an upper
bound for this number when p = —1 (mod 3) (Corollary 1 to Proposition 1).

In Section 2, we discuss the Hasse invariant and compute its values at certain
points. The computation is based on the fact that after a change of variable the
Hasse invariant satisfies a hypergeometric differential equation (see [8]).
Theorem 1 is in [8], but we offer a different proof based on Lemma 1 and the
infinite product for det (I — tU,). This avoids the need for an a priori upper
bound on the degree of det (I — tU,) (mod p). Our Main Theorem (the princi-
pal result of [8]) is deduced as a corollary of Theorem 2, rather than by a
computation involving differential operators as in [8]. For the final step,
however, we still rely on a result of Dwork (Lemma 3). In fact, we feel our
approach reveals the significance of Dwork’s lemma.

I am indebted to B. Dwork for providing me with a copy of his manuscript
[8] and for suggesting improvements to the original version of this work. I
would also like to thank B. Dwork and S. Sperber for pointing out errors in the
original version.

Throughout this paper, p is a prime p > 5. We let F,denote the prime field of
p elements, F , its algebraic closure, Q, the field of p-adic numbers, Z , the ring
of p-adic integers. If f'is a polynomial with coefficients in Z ,, we write f for the
polynomial with coefficients in F, which are the reductions mod pZ, of the
coefficients of f. If «, f € Z [[t]] are such that (« — B) € pZ [[t]] we will write

& = B (mod p). We use the standard notation for hypergeometric functions [9,
p. 162]:

@
F(a,b;c; A)= Z ()/(c); iNA
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50 ALAN ADOLPHSON

where for any non-negative integer j and a € Q,, (a)o =1, (a);= [ [z} (@ + 5)
for j > 0.

2. The level three Hasse invariant
Consider the family of elliptic curves given by the projective equation

where u € F,, u* # 1. An explicit formula for the Hasse invariant of this family
has been given by Katz [11, equ. (2.3.7.20)]. Define h(u) € Z (1) by

2) M=t S (A

Jj=0
where [ ] denotes the greatest integer function. Then h(u) is the Hasse invar-
iant of (2.1). We have
(=13 o

ZO ((1/3);(2/3);/jt jYu?=*=% if p=1 (mod 3)
(23) k)=, ‘

‘ZO ((1/3);2/3)/j! jYyur=1=3 if p= —1 (mod 3).

J=

Thus in either case deg h(u) = p — 1, and pu|h(u) iff p = —1 (mod 3).

For later use, we calculate h(w), where w® = 1. From [5, (8.4)], it follows that
the periods of the differential of the first kind on (2.1) satisfy the differential
equation

(24) (> —1)y" +3p*y + puy =0.

By [13], the polynomial h(u) satisfies eq. (2.4). Making the change of variable
A= p* and multiplying by a constant transforms (2.4) into

(25) A=Ay + (2 —54)3)y —y9=0

(where y', y” now denote derivatives with respect to A). The point is that (2.5) is
a classical hypergeometric equation [9, p. 161] and its properties are well
known. It is satisfied by F(1/3, 1/3; 1; 1 — A).

Suppose first p = 1 (mod 3). Put

p—1

B(A) =Y ((1/3)/i")H € Z,[A)

ji=0
Then by [6, Cor. 1 to Lemma 1 and (3.2)],
B(1) = F(1/3, 1/3; 1; A)/F(1/3, 1/3; 1; A%) (mod p).

Hence B(1 — 1) satisfies (2.5). It is easily seen that deg B = (p — 1)/3. Thus
B(1 — ) satisfies (2.4) and has degree p — 1 in p. Since h(u) has these same
properties, and since —1 is the unique root of the indicial equation of
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equ. (2.4), it follows that B(1 — u?) is a constant multiple of A(x). Comparing
coefficients of u?~*! we conclude (since (—1)?~ Y7 = 1) that h(u) = B(1 — u3),
hence if ®® = 1, h(w) = B(0) = 1.

Now suppose p = —1 (mod 3). Put

C(a) = a2r= 17 Z (173)12/3);/3* iNA~

Note that (1/3);(2/3);/j!j! is a p-adic integer and is divisible by p for
(p —2)/3 <j<p— 1 Hence C(4) is a polynomial of degree (2p — 1)/3. By [6,
Cor. 2 to Lemma 1 and equ. (3.2") with s = 0],

C(A)A@P=D03 = F(1/3,2/3; 1; A" Y)/F(1/3,2/3; 1; A™?)  (mod p).

Thus C(4) is a solution of (2.5), since it is well known that A~ */3F(1/3,2/3; 1;
A~ 1) satisfies (2.5). Again applying [6], we have
@p-13

Y ((1/3);/1)*4 = F(1/3, 1/3; 1; A)/F(2/3, 2/3; 1; A*)  (mod p).

j=0
Thus the polynomial D(4) € F,[4] defined by

_ @p=1)3 .
D)= % (UG- 2y
i<
is a solution of (2.5) (since F(1/3, 1/3; 1; 1 — 1) is). Since —1/3 is the unique
root of the indicial equation of (2.5), it follows that D(4) is a constant multiple
of C(A). Comparing coefficients of A?P~Y3 we conclude (since
—1)@r~ V3 = 1) that D(A) = —C(A). It is clear from the definitions of h(u)
and C(u) that h(u) = u~?C(u?), hence h(u) = —u~?D(u?). Thus if w® = 1, we
have hw)= —w ?D(1) = —w~".

3. Reduction mod p of characteristic polynomial of Atkin’s operator

For the definition of Atkin’s operator, denoted here by U, we refer the
reader to [3], [7], or [10]. We recall the identity [10, A3. 1.5].

61 det(— )= TTTT (1 = mu) 20 Oprepessy
r=0 {u}

where [, indicates the product is taken over all F,conjugacy classes of
elements of F,, excluding the supersingular classes and the cube roots of unity,
and 7,(u) is the unit reciprocal root of the numerator of the zeta function of
(2.1).

For any field K, define an endomorphism y of K[u] by linearity and the
condition

u'?if p|n,

Vi) = 0 ifpin
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Let A(u) € K[u]. For k a non-negative integer, ¢ — y(A4*¢) is an endomorphism
of K[u], denoted y o A*. Let V, be the subspace of K[u] of polynomials of
degree < n. As observed in [4], if we put n = [deg 4*/(p — 1)], then ¢ - A* is
stable on V¥, and the eigenspaces corresponding to non-zero eigenvalues are
contained in V.

THEOREM 1. Let h(u) be defined by (2.3) and consider y o h*~2 as endomor-
phism of Q,[u]. If p =1 (mod 3), then
det (I —tU,)= (1 —¢t)* det (I — t(y o h*~3)|V,_3)/(1 — h(0)’3t) (mod p).
If p= —1 (mod 3), then
det (I —tU,)= (1 —t)(1 — t®) det (I — t(y o h*~3)|V,_3) (mod p).

Before beginning the proof, we need a lemma. If u € F, let u; denote its
Teichmiiller representative, i.e. uris the unique lifting of 4 to characteristic zero
satisfying " ~* =1, where N = [F,(u): F,]. (We take 07 =0. Let 4 be a
polynomial with coefficients in Q, and put

=TT 462

Note that 7 ,(u) € Q,, (since m (1) = Normg,(,,y, 4(#r)) and depends only on
the F,-conjugacy class of u.

LemMMA 1. Considering o A* as endomorphism of the space of polynomials
with coefficients in Q,, we have

0

det (I—t(l// oAk)lV H n” l_n ”ys rt degu)

r=0 {u}

where n = [deg A*/(p — 1)] and []j, indicates a product extended over all
F,-conjugacy classes of elements of ¥, excluding ji = 0.

Proof. This follows easily from the trace formula [4]
Tr(oAY=0"-1)" 3  AlprfA@p) - Awur)
urP~1=1

We obtain

o0

(32) - 21 Tr (f o A*)'t"/n = 21 t"/n) Z Z T a(u)idee s

2 Zﬂ ﬁl (ma(u)(pieyee 2y /s,

where Y7, denotes a sum over all F,-conjugacy classes of elements of F,
excluding p = 0. Taking exponentials in (3.2) gives the lemma. Q.E.D.



THE U ,-OPERATOR OF ATKIN 53

Proof of Theorem 1. From (3.1) we deduce
(3.3) det (I —tU,) = [('[)’ (1 = my(u)~2t%2#)~ 1 (mod p)
"
=[] (1 = my(uyp3e*e#)" ! (mod p),
{u}

since m, (i) is a unit in Z , hence satisfies 7,(u)’ ! = 1 (mod p). From Lemma 1,
taking for A the Hasse invariant h of equ. (2.3), we get

(34) det (I —t(y o h*~3)|V,_3)=[]"(1 — my(uy3t*#*)"1  (mod p).
{m}
But it follows from [13] that if u is not supersingular, then 7,(u) = 7 (u)
(mod p). If p is supersingular, then m,(1) = 0 (mod p). Thus modulo p,
det (I —tU,)
= (1 — m(0)P~3t)" 1 det (I — t(y o h*73)|V,_3 H 1 — my ()P~ 3gdesw)tidegn

Note that m,(0) = h(0), which is zero when p = —1 (mod 3).
Suppose that p = 1 (mod 3). In this case u*> = 1 implies deg u = 1. Thus

mu(u) = h(ur) =1 (mod p)
by the discussion in Section 2.
Suppose that p = —1 (mod 3). Let 1, w, w?* be the three cube roots of unity

over Q,, and let 1, @, @? be the their reductions mod p in F - In this case, we
have deg @ = deg @* = 2. Then

m(1) = h(1)= —1 (mod p)
m(@) = h(w)h(@?) = (- ) (-o~")=1 (mod p)
m(®%) = h(@?)h(@?) = (-0~ **)(-&"**)=1 (mod p)
by the results of Section 2. Q.E.D.

4. Main theorem and corollaries

Suppose p = 1 (mod 3). Consider the matrix (in the usual monomial basis) of
Y o k"2 on V,_5. The first entry of the first row is h(0)? ~3, the other entries in
the first row are zero. The last entry in the last row is 1, the other entries in the
last row are zero. Thus

det (I — t(y o h*73)|V,_3) = (1 — h(Oy~3t)(1 — t) det (I — t(y - kP~ 3)| W),

where W is the space of polynomials with coefficients in Q,, of degree < p — 4
with no constant term. From Theorem 1, we obtain

(41) det(I—tU,)=(1—1t)*det (I —t(y - h*~3)|W) (mod p)
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MAIN THEOREM. Suppose p = 1 (mod 3). Then
deg [det (I —t(y o h*~%)| W) (mod p)] = p — 4,
i.e., as an operator on W, o h?~3 has no eigenvalues divisible by p.

The proof of the Main Theorem will be given in Section 5. By (4.1), we have:

CorOLLARY 1. For p=1 (mod 3), Atkin’s operator U, has p eigenvalues
(counting multiplicities) which are p-adic units.

Comparing (4.1) with [10, (A3.3.3)], we see that
det (I — t(y o h*3)|W)=det (I — tT,_,(p)) (mod p),

where T,_,(p) is the pth Hecke operator acting on cusp forms of weight p — 1
and level three. But the dimension of the space of cusp forms of weight p — 1
and level three is p — 4 [12], so by the Main Theorem we have:

COROLLARY 2. For p=1 (mod 3), all eigenvalues of the Hecke operator
T,-,(p) are p-adic units.

For the connection with the Cartier operator, see [10, (A3.3.3)].
Now suppose p = —1 (mod 3). Examining the matrix of y o h?~3 as before
(and keeping in mind that h has no constant term in this case) we see that

det (I —t(y o h*73)|V,_3)= (1 —t) det (I — t(y o K*~3)|W).
Comparing this with Theorem 1, we obtain
(42) det(I—1tU,)=(1- t)*(1 — ¢2) det (I — t(y  h*~3)|W) (mod p).

The conclusion of the Main Theorem is false when p = —1 (mod 3). One has
instead:

ProposiTION 1. If p= —1 (mod 3), then
deg [det (I — t(y o h*~3)| W) (mod p)] <p —5.
The proof of Proposition 1 will be given in Section 6. By (4.2), we have:

COROLLARY 1. For p= —1 (mod 3), Atkin’s operator U, has no more than
p — 1 eigenvalues which are p-adic units.

Combining (4.2) with [10, A3.3.3] gives
det (I — t(y o h*~3)|W) =det (I — tT,-4(p)) (mod p),
hence by Proposition 1:

COROLLARY 2. Forp = —1(mod 3), the Hecke operator T,_(p) has at least
one eigenvalue which is a p-adic non-unit.
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5. Proof of main theorem

LeMMA 2. Let k and n be positive integers. If n> 1, let o be the unique
positive integer such that

o= 1) = D/(n — 1) <k < op - /(s — 1),
Ifn=1,let 0« =0. Then [k(p —n)/(p — 1)] =k — a.

Proof. The assertion is clear if n = 1. If n > 1 define ¢ by the equation

(5.1) k=(@-1p-1)/(n-1)+e
so that
(52) O<e<(p—-1)/(n—-1)

Using (5.1) to express k we compute
k(p—n)/(p—1)— (k—o)=1—e(n—1)/(p— 1),
and by (52),0<1—-¢n—-1)/(p—-1)<1. QED.

Denote by ¥, the space of polynomials in F,[u] of degree < m.

COROLLARY. Let f'€ F [u] and put k = deg f. Let n be an integer, 1 <n < p.
Then o fP~" is stable on V, _,

Consider now the operator Y o f"~! on F [u], where fand n are as defined in
the corollary. From (5.1) and (5.2), we have

i ife=(p—1)/(n—1)orn=1
where o is defined in Lemma 2. If e=(p—1)/(n—1), we have
k=oa(p —1)/(n — 1) and

(5.4) Y(f" 1u*) = cu® + lower order terms

where ¢ € F5 is the coefficient of y*®~ 1 in /"~ !. Thus by (5 3), ¥ o f"1isstable
on either ¥, or ¥,_,, and by (5.4) the kernel of y o f"~ 1s contained in ¥,_, in
either case (in particular, taking n = 1, ker () = {0} = V_,).

The Main Theorem will be a corollary of the next theorem.

THEOREM 2. Let fe F,[u] and put k=degf Suppose n is integral,
1 < n < p,and let a, ¢ be defined by lemma 2 and equ. (5.1) (thus ¢ is defined only
if n> 1). We assume the following :

i) 70)#0,

(i) fis relatively prime to its derivative,
(i) & <p(p— 1/(n — 1) (i n > 1),
(iv) em—1)=a—1(@Gn>1)
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Then the kernel of o fP™" on Vi _, is isomorphic to the kernel of Y o "~ on
Va1

Proof. The theorem is trivial if k = 0,s0 we suppose k > 1. Let £ € F [u] be
such that y(¢f?7") = 0. Then we must have & = un with n € F[u], so

YlunfP~") = fb(un/f") = 0.

Thus y(un/f") = 0. This implies n/f" € d/du(F (1)). We can then write n = f"p’
with p € F(u) where p’ = dp/dy), and can assume without loss of generality
that p has poles only at zeros of f. We will have ¢ € V,_, if and only if p
produces a polynomial n with deg n <k — o — 1. The proof is divided into
several cases.

Case 1. Assume p € F [u]. Then n = f"p" implies n = 0 or deg n > nk >
k — o — 1. Hence & ¢ V_,.

If p ¢ F,[u] we may write p = t/f” where r > 0 and 7 € F,[u]. We assume
S}z, which determines r uniquely. Further, we can assume without loss of
generality that p4r: for if p|r (by looking at the principal part expansion of
p = t/f") one can find p; = 6/f* such that p} = p’, o € F,[u], and either p}s or
s = 0. Since we are really concerned with # = f"p’, we may then replace p by p,.

Case 2. Assume r>n— 1. We have n=f"p' = (ft' — rf't)/f*1™" with
r+ 1 —n> 0. For 7 to be a polynomial fmust divide /'t (since r # 0 (mod p)).
But (f, f') = 1 so f |, contradicting the assumption made after case 1. Thus 7
cannot be a polynomial in this case.

Taking n = 1 in the theorem, this shows that i o fP~! has trivial kernel on
Vi, since r > n — 1 is the only case that occurs. As already observed, y has
trivial kernel on V_,. This proves the theorem when n = 1 and when n = p
(since n = p determines the same pair of operators y and y o f?~!). From now
on, we assume 1 <n < p.

Case 3. Assume r<n—1. Then n=f""""!(f' —rf't). Since n—r—
1> 0, it follows that either n=0ordegn >k >k —a — 1.

Thus none of the first three cases produces an 5 with degn <k —a —1
(other than 5 = 0).

Case 4. Assume r=n—1. Then n=ft' — (n—1)f'z. Put l(z)=f' —
(n —1)f'z. If deg © = j, it follows that (since n > 1 implies « > 1)deg n =j +
k—1>k—a—1unlessj=k(n—1) (mod p).

Suppose o = 1. From the definition of « (Lemma 2) this implies

(5.5) deg /" '=k(n—-1)<p.

In this case, ¥ o f?~" has non-trivial kernel on ¥, _, if and only if there exists a
polynomial t with deg 7 = k(n — 1) (mod p) such that = I(t) is non-trivial
and satisfies deg n < k — 2. Let 7, be the polynomial of least degree having
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these properties. By (5.5), there exist ¢ € F, and a non-negative integer m such
that deg (to — cu™f" ") < deg 1. But I(f"~ ) = 0 implies

i(ro — cu™f"™*) = I(zo),

contradicting the minimality of deg t,. Hence ¥ o fP™" has trivial kernel on
V1. Since we are assuming f(0) # 0, ¢ o f"~! has trivial kernel on V,. This
proves the theorem when o = 1. From now on, we assume o > 2.

By (5.1), k(n — 1)/)p=a — 1 + (e(n — 1) — (« — 1))/p. Using (5.2) and our
hypothesis that ¢(n — 1) > « — 1 we see that [k(n — 1)/p] = « — 1. Thus we can
write

Pl =fo+ ufy + pPh 4+ uCTV L fiy #0,

Where an fla"‘a fa—IEFle]y dcng’ degfla'-‘a degfa—lsp'—l’ and
deg f,—y =k(n—1) (mod p). Form=1,2,..., 0 — 1 set

m-—1
B, = u‘"‘”(f"“ -2 u"’f,-)-
i=0

Then B, € F [u] and deg B,, = k(n — 1) — mp. Since I(f"~!) = 0, the degree of
I(B,) is <k — 2. The operator { o f?~" on ¥, _, has a non-trivial kernel if and
only if there exists T € F [u] with deg 7 = k(n — 1) (mod p) such that n = I(t)is
non-trivial and satisfies deg # <k — o — 1.

Suppose 7 € F,[u] is such that deg = k(n — 1) (mod p) and deg () <
k — 2. Then

deg r=degf" ! =deg B, (mod p) form=1,2,...,a—1,
and since (¢ — 1 — m)p < deg B,, < (x — m)p, we see that 7 can be expressed in
the form
a—1
T= g(“p)fn—l + Z cmBm’
m=1
where g(u) € F,[u], ¢y, c5, ..., c,—4 € F,. Hence

(5.6) () = z(afl ¢ B, )

Put

a—-1

=5
m=1

Fori=0,1,...,0—2,put fi= Y224 a; ;u. Set

a—1 r—1 .
0y = Z Cm#_p( 2 am—l,jﬂj)'

m=1 j=ptil-a
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Define o3 by

a—1
63 = ( Y cmB,,,) -0, — 0,.
1

From the definition of B,, it is clear that o5 consists of terms of degree < —a.
Hence deg l(03) < k — o — 1. Furthermore, /() = 0. Thus

a—1

degl( Y cmB,,,)sk—oc—lHdegl(az)sk—a——l.
1

Write 0, = Y521 d;//. From (5.1), we have
k(n—1)= (¢ —1)(p — 1) + &(n — 1),

which implies k(n — 1) = ¢(n — 1) — (x — 1) (mod p). By (5.2) and hypothesis
@iv),p— 1 >¢(n— 1) > a — 1; hence k(n — 1) is congruent modulo p to one of
the numbers 0, 1, ..., p—a. Thusforj=1,2,...,a — 1,

deg l(1/p)=k—-j—1>k—a—1
Therefore,
deg o)) <k—a—1ed,=d,==d,_,=0.
In matrix terms, if we put
bjij=a;_yp-5 Lj=12,...,a—1,
then (b;;)(cy, ..., Ca=1) = (dy, ..., ds—, ). Hence
deg (o) <k —a—1e(cy, ..., c,—y) € ker (b)),

where (b;;) is considered as acting on F~ 1.
Summarizing, we have shown that the map

a—1
(Cas - ca_l)'i—-ml( y cmB,,,)
m=1
is a surjection of ker (b;;) onto ker ( o f?~"). It is easy to see that this map is
actually an isomorphism: if it were not injective, I would have a polynomial
solution of degree < k(n — 1), which is impossible.
Thekernel of Yy o f"~ on V,_, is contained in the space spanned by {u, u?, ...,
u*~1} (since f has a non-zero constant term). Its matrix in this basis in (b};).
Thus ker (y o f"~') and ker (f o f?~") have the same dimension. Q.E.D.

Proof of Main Theorem. The Hasse invariant h(u) satisfies the hypotheses of
Theorem 2: that h(0) # O follows from (2.3), and & is relatively prime to its
derivative since it is a non-trivial solution of a second order differential equa-
tion. Hypotheses (iii) and (iv) are easily checked. Note that « = n — 1. Further-
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more, letting W denote the space of polynomials in F,[u] of degree < p — 4
which are divisible by u, we have

det (I — t(y o h?~3)|W) =det (I — t(y - h*~3)|W) (mod p).

Thus the Main Theorem asserts that iy o #?~3 has trivial kernel on W. Apply-
ing Theorem 2 with n = 3 (and hence « = 2), we see that this will be the case
provided ¥ o h? has trivial kernel on V. Since h has non-zero constant term, it
is clear that o h? has non-trivial kernel if and only if ¥(uh?) = 0, i.e. if and
only if the coefficient of y?~! in h? is zero. The proof is concluded by the
following:

LemMa 3 (Dwork [8]). For p =1 (mod 3), the coefficient of u?~* in h? is
non-zero.

Proof. The Hasse invariant h satisfies the differential equation (2.4). Its
square h? satisfies the second symmetric power L of (2.4). A straightforward
calculation shows that

(8 = 1PL = (¢ = 1)X(d/dp)® + 9> (w* — 1)(d/dp)?
+ (19p* — 10p)(d/dp) + (84° - 2).

Writing h? = 2232 a, 4" and putting a, = 0 for n < 0 or n > 2p — 2, we have
67)  0=(2—1PL(P)
2p+1

= Z [(n— 1)3a,,_3 + ("2’13 —3n% — 5n — 2)a,
+ (n+3)(n + 2)(n + Da,,3]u"

Putting n=p — 1 in this sum gives (p —2)’a,_,+2a,-,=0.If a,_,; =0,
then a,_,=0. Putting n=p — 4 in this sum now gives (p — 5)%a,_,=0.
Hence a,_, = 0. Continuing this procedure we arrive at a, = 0. But as already
observed h(0) # 0. This contradiction shows a,_; #0. Q.ED.

6. Proof of Proposition 1
LEMMA 4. Let fe F,[u] with deg f=p — 1 and f(0) = 0. Write
(6.1) W =fo+ uf

(Where degfi=p—1, degfo<p—1) and put o= pf>(fi/uf?). Then
oceF[u],dego <p—4,and o €ker (y - f773)

Proof. An easy calculation shows o =ff, —2f,f — u"'f,f. Hence
o€ F[u] since u|f Next we have y(f? 3¢)=fib(u(f,/w?))=0 since
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(fi/wf*) has no terms of degree congruent to —1 modulo p. Finally, using
(6.1), we can write

(62) o= (uf)"(fo f1 —fifo)
Hence deg o < p—4. Q.E.D.

Proof of Proposition 1. Let W again denote the space of polynomials in
F,[u] of degree < p — 4 which are divisible by u. Then

det (I —t(y o W*~3)W)=det (I — t(y - h*~3)|W) (mod p)

Thus Proposition 1 is equivalent to the assertion that o h?~3 has non-trivial
kernel on W.

Write ph? = hy + uPh,. Then by Lemma 4, ¢ = ph®(h, /h*) lies in the kernel
of Y o h?~3 on W. Furthermore, ¢ # 0: if not, then by (6.2), we have h, = ah;,
for some constant a; so h? = (« + p?)h,. But this implies A has a multiple root,
contradicting the fact that h is a non-trivial solution of a second order linear
differential equation. Q.E.D.

Added in proof. Hypothesis (iii) of Theorem 2 is implied by hypothesis (iv).
The proof can be streamlined somewhat by replacing (iii) and (iv) by the
equivalent hypothesis that [k(n — 1)/p] =« — 1.
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