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THE GEOMETRY OF FINITE RANK
DIMENSION GROUPS

BY

EDWARD G. EFFROS AND CHAO-LIANG SHEN

George Elliott has recently observed [6] that an important class of
C*-algebras, those that are "approximately finite dimensional" (see [2]), are
essentially classified by certain countable (necessarily torsion free)ordered
abelian groups, which he called dimension groups. To formulate the latter
notion, let Zk be k-tuples of integers, ordered in the usual way by the set (Zk) +
of k-tupls of non-negative integers. The dimension groups are just the ordered
direct limit groups lim Zk(n) that arise when one is given a sequence of positive

group homomorphisms Zktl) - Zk(2) -- Zk(3) - "". The dimension groups and
the closely related Riesz groups of Fuchs [8] (see Section 1) have been carefully
investigated in [4], [7], [11] for the ultimate purpose of classifying the AF
algebras. Perhaps, as A. Connes has suggested to us, they will also prove useful
in the study of certain C*-algebras with AF prototypes.

In this paper we shall use methods well known among convexity theorists to
give an dementary and complete geometric description of the divisible finite
rank dimension groups. Since one may also take the divisible hull of a dimen-
sion group (see Lemma 2.1), this has many implications for more general
dimension groups. Some of these are discussed in Section 2. In particular, we
have found a necessary and sufficient condition for an order simple finite rank
Riesz group to be imbeddable in R’ with the usual ordering (see Theorem 2.3).

1. Divisible finite rank dimension groups

We use the notation N, Z, Q, and R for the positive integers, the integers, the
rationals, and the reals, respectively, and Q +, R+ for the non-negative rationals
and reals. If V is a real vector space, we let V* denote its dual vector space.
By an ordered abelian #roup we mean an abelian group G together with a

subset P G+ such that P / P
_

P, P (- P) 0, and P P G. We write
a < b if b a P. (G, P) is a Riesz oroup if in addition

(a) a G, na G+ (n N) imply a e G +, and
(b) given a, b G (i, j 1, 2) with a < b, there exists a c G with

ai<c<b(i,j= 1,2).
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(b) is equivalent to the Riesz decomposition property:

(b’) if ai, bi G+ (i, j 1, 2) and ax + a2----bl + b2, then there exist
cij G + with aj clj + c2j and bi cgl + cg2 (see [8, Theorem 2.3]).

All dimension groups are Riesz groups [7, Section 2.7] and it is also known that
countable divisible Riesz groups are dimension groups [11, Prop. 3.5]. Thus
throughout this section we shall use (a) and (b) as an intrinsic characterization
of the divisible dimension groups. If G is divisible and of finite rank r, we may
identify G with the additive group of the rational vector space Q". In this case
G+_G+ for Q+, since if=p/q, p, qN and aG+, then qa=
pa G +. We regard Q’ as a subset of R" and we give it the relative topology.
We let ei, 1 < < r, be the usual basis in Rr.
An order ideal J in a Riesz group G is a subgroup such that J J + J +

(where J + J G +), and if 0 < a _< b J +, then a J+. If G Qr, then J
must be a subspace of the rational vector space Q’ since if p/q, p, q N,
then for a J +, 0 < a < pa J +. We say that a Riesz group G is order simple
if {0} and G are its only order ideals.
Turning to linear theory, we recall that a subset of a real vector space V is a

cone if C + C
_
C and C

_
C for all R+. A cone must be convex. C is

proper (resp. 9enerating)if C c (-C)= {0} (resp. C C V). If C is proper,
we let < be the corresponding linear order on V, i.e., v _< w if w v C. C is
simplicial if there are linearly independent elements v x, vd V which gener-
ate C, i.e.,

v
3
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Given a closed cone C in Rr, we say that C is cosimplicial if the dual cone

C*= {f V*: flC >_ 0}
is simplicial. From the Bipolar Theorem (see [3, p. 51]), it is equivalent to
assume there exist linearly independent f,, fd (Re)* such that

C {v: fk(V) _> 0, k 1,..., d}.

LEMMA 1.1. Suppose that (Qr, P) is a Riesz group. Then the closure P is a
cosimplicial cone in R.

Proof We have that P + P
_

P, and from above, P
_
P for Q+. It

follows that P is a closed cone in R’. P* is proper since iff P* c (- P*), then
liP 0, or since Q" P P,f lQ 0 and by continuityf= 0. We claim that
P* is a lattice cone, i.e., in the relative ordering on P* defined by P any two
elements f, 0 P* have least upper bound and greatest lower bound. We define
fv 9 on P by

(fvg)(a) sup {f(a,)+ g(a2): a a, + a2, ai P}.

This exists since ifa al + a2, 0 < ai < a, thenf(al) + g(a2) < (f+ g)(a). We
claim that fvg is additive on P. If a b + c, b, c P, let b b + b2,
c c + c2. Then since a (b + b2)+ (ca + c2),

f(b,) + 9(b2)+f(c,)+ g(c_)= f(b, + c,) + g(b2 + c2)_< (f v g)(a),

(fv 9)(b) + (fv g)(c) < (fv 9)(a).

On the other hand if a a + a 2, then using the Riesz decomposition property,
we may select bi, c e P as described by the following table"

al a2

bx b2

Cl c2

(the rows add up to b and c, the columns to a a, a2). Then

f(a,) + 9(a2)=f(b,)+ g(b2) + f(c,) + 9(c2)
< (fv g)(b) + (fv 9)(c),

i.e. (fv g)(a) < (fv 9)(b) + (fv g)(c), and equality follows. We may then
extend fv 9 to Qn= p_ p by letting

(fv g)(ax a2) (fv g)(a,) (fv g)(a2),
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the non-ambiguity being a consequence of the additivity offv g on P. fv g is
clearly an additive homomorphism on Qd. Given Q, > 0, and a P, we
have (fv 9)(za) (fv g)(a). To see this, note that if a a + a:, ai P, then
oa oax + oa2, oai P and

a[f(a,) + 9(a2)] f(0ca,)+ g(aa2) < (fvo)(aa);
hence

(fv 9)(a) < (fv 9)(aa).

Equality follows since 1/z(fv 9)(aa) <fv 9(a). Given a > 0 and a Qd,
a al a2, ai P, we have oca aal aaz and

(fv g)(aa) (fv g)(aax) (fv g)(aaz)

a(fv g)(a,) a(fv g)(a2)

a(fv g)(a).

Finally if a < 0, and a a a2, a, P, then aa (-a)az (-a)a, and

(fv g)(aa) (-a)(fv g)(a.) (-)(fv g)(al)

We conclude that fv g" Qn R is rationally linear, and letting t= fv 9(e) we
may extend it to an element of (Rn)* by letting (fvg)(v)= z,ti,
(v iei Rn). We have that f<fv9 since if a P, a a + 0 implies
f(a) f(a) + g(O) <iv g(a) and similarly, 9 <iv 9. On the other hand, givenf,
g < h P*, then a a + a2, a P implies

f(a + 9(az < h(a + h(a2 h(a);

hencefv 9 < h. It is now a simple matter to verify thatf/ g (f+ g) (fv g)
is the greatest lower bound for f and g in P*.

It is well known to convexity theorists that a proper closed lattice cone in a
finite-dimensional space must be simplicial. In convexity terminology, there
must exist a geometric simplex K on a hyperplane H not passing through 0
which generates the cone P* (for some highly instructive pictures, see [3,
p. 159]). Fortunately, Phelps has given a completely elementary proof of this
result [10]. To begin with, let v be a linear functional on (Rr)* (equivalently, an
element of Rr) which is strictly positive on P*\{0}. The existence of v is guar-
anteed by the fact that P* is closed and thus locally compact, and one may
appeal to a theorem of Klee (see [1, p. 83]). We let

H= {f e (W)*" v(f)= l} and K=H c P*.
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Without appealing to Choquet theory, Phelps used the lattice ordering of P* to
prove that K is a geometric simplex [10, pp. 58-62, 75-76 (note the last
remark)]. The extreme points of K provide the desired functions fk, k 1,

d. Q.E.D.

LEMMA 1.2. If (Qr, p) is a dimension 9roup, then P has interior in Qr.
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Proof We may letei =ai-bi(1 <i_<r),ag, bj6P. Ifa=bitPthen,
for each i, a + ei P. But P must be rationally convex since if p, q N, a, b P
implies pa + qb P and hence

(pa + qb)/(p + q) P.

Thus the rational convex hull of {a, a + ex, a + er} lies in P. The latter is just
the intersection of a geometric simplex in R" with Q", and must have interior in
Qr. Q.E.D.

THEOREM 1.3. If (Q", P) is a dimension group, then there exist linearly
independent elements fl, fa (Ra)* such that

int P {a 6 Q"fk(a) > 0, k 1,..., d}

(the interior is taken relative to Q").

Proof From Lemma 1.1, there exist fl, f (R")* with

(1.1) P {a Qr:fk(a) _> 0, k 1, d}.

It is evident that if a int P, then fk(a) > 0 for all k. Conversely suppose that
fk(a) > 0 for all .k, but a int P. Since P has interior (Lemma 1.2), we may
choose a bounded open set B P. Choosing e Q, e > 0, sufficiently small, we
may assume that fk]a B > 0 for all k. But we have that (a- B) P 0
since otherwise given c eB ( P) with a c > 0, we will have that a > 0, a
contradiction. But a- eB is open, hence (a- eB) P 0. This contradicts
the fact that from (1.1), a eB

_
P. Q.E.D.

THEOREM 1.4. If (Q", P) is an order simple dimension Troup, then there exist
linearly independent elements f, f (R)* such that

P {a 6 Q" fk(a)> 0, k 1,..., d} w {0}.
Conversely 9iven such a set P, (Q", P) must be a simple Riesz 9roup.

Proof Assume that (Qr, P) is order simple. From Theorem 1.3, it suffices to
show that if a P, then fk(a) > 0 for all k. Letting

(1.2) Hk {a P" fk(a)= 0},

it thus suffices to show that Hk P {0} for all k. Note that if 0 < a < b
nk P, then a nk P, since a, b a P imply that f(a), f(b a) _> 0, i.e.,
f(b) _> fk(a) _> 0. It follows that J Hk P Hk P is an order ideal in Q"
(see [8, Prop. 5.1]). Now J 4: Q’, since J Q" would imply fk 0, a contradic-
tion. Thus J {0}, and Hk c P {0}.

Conversely given such a set P, it is evident that P + P
_
P and P c (- P)

{0}. To see that P P Q", extendfa,...,fd to a vector basisfa,...,fn,...,f, for
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(R’)*, and let v, v, be the dual basis in R (i.e., f(vj)= 6). The set
A {= j vj: j > 0} is open in R and contains elements arbitrarily close to
each vi, and the latter is therefore also true for A c Qr. If we slightly perturb
the v, we will still have a basis, and we thus obtain a basis v’ for R lying in
A Q’. Since the latter is a subset of P, P P Q’. Given a Q’ with na P
(n N), it is immediate that a P. Finally, suppose that relative to P, ai < b
(i, j 1, 2). If aa b, we will have a < aa < b. Thus we may assume that

b a, P\{O}.Then for all k,fk(ai) <fk(bj). Letting (k max {fk(al),fk(a2)}, and
fig min {fk(ba),fk(b2)}, we have ek < fig. It follows that

B {v R’" k <f(v) < ilk, k 1,..., r}

(Z 7kVk" k < Yk < 3k, k 1,..., r}

is non-empty and open, and thus B c Qr is non-empty. If c B c Q, then
a < c < hi, and we are done. Q.E.D.

The situation for non-simple dimension groups (Q’, P) is now reasonably
clear. Since it is somewhat cumbersome, we will only sketch the details. The
maximal order ideals of (Q’, P) are generated by the "facial intersections"
Pk Hk P (see the proof of Theorem 1.4). Then Jk Pk- Pk is a rational
subspace of Q’, and (Jk, Pk) is again a dimension group. Pk will itself have facial
intersections Pk,- Hu Pk. In this manner we obtain successive
decompositions

P (int P) w ( Pk)= (int P) w (int Pk) Pk,
k k,l

which must terminate in at most r steps. Conversely by taking an open cosim-
plicial cone intersected with Q" and "decorating" its faces with smaller cosim-
plicial cones, we again obtain dimension groups. Some examples for Q2 are

e, {(, ): , > 0} {0},
P {(, ): > 0, > 0} {(0, ): > 0} {0},
P3 {(0, fl): a > 0, fl > 0} L) {(0, fl): fl > 0}

{(, o): > 0} {0}.

We have that (Q2, p) is simple, (Q2, P2) has one non-trivial order ideal,
whereas (Q2, P3) Q () ordQ" An interesting rank 3 example is (Q3, p), where

P= {(e, fl, 7)" e>0, fl>0, ?>0}
w {(0, , /)" < 3; < 2//; , 7 > 0}

{(0, , ). > 0} (0}.
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2. Non-divisible finite rank Riesz groups

Let us suppose that (G, G + is a Riesz group of rank r. Then we may regard
G as a subgroup of Q", where Q" is the divisible hull of G, i.e., for all a Q", there
exists an n N such that na G (see [9, Section 19]). We define

P={aQr:naG+ for somenN}.
It is immediate that

(2.1) Pc G=G+

(this will imply below that if a, b G and a < b in Qr, then a < b in G).

LEMMA 2.1. (Q", P) is a Riesz 9roup, and the map J + J + G determines a
one-to-one correspondence between the order ideals of (Q, P)and of (G, G + ).

Proof We have P+P_P since ifma, nbG + fora, bQ’;m,nN,
then mn(a + b) G + implies a + b P. P is proper, i.e., P c (-P)= {0} be-
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cause given ma G / and na -G / we have mna G + (-G +)= {0}, i.e.,
a 0. P P G since given na G, na t g 2, g i6 P implies a a a 2

where ai n-19 6 P. If na 6 P for n 6 N, then mna G / for some m 6 N and
a 6 P. Finally, if ai, bj6 P (i, j 1, 2), and al + a2 bl + b2, choose n 6 N
with nai, nbj 6 G / (i, j 1, 2). Then hal + ha2 nbl + nb2 and we may select
Cij G + with naj ,i cij, nbi-- j cij. Then we have aj i c’ij, b _j ’ij,

--1wherecij=n cijP.
A subset S of a Riesz group is the positive part of a (necessarily unique) order

ideal if and only if 0 S, S + S
___
S and 0 _< a < b S implies a S (see [8,

Section 5]). Given an order ideal J in Q, it is evident that J + G has these
properties in G. On the other hand if I is an order ideal in G,

S(I+)= {a Qd. na I + for some n N}

is the positive part of an order ideal in Qr. Since we have

S(J + G)-J + and S(I +)G-I+,

we have the desired one-to-one correspondence. Q.E.D.

We shall say that (Qr, P) is the divisible hull of (G, G +).

THEOREM 2.2. Suppose that (G, G+) is a finite rank order simple Riesz group
with divisible hull (Q*, P). Then there exist linearly independent elements fl,...,
fa (R*)* such that

(2.2) G + {a G’fk(a)> 0, k 1,..., d) w (0).

Proof From Lemma 2.1, (Q", P) is order simple, and thus there existfl,

f e (W)* satisfying Theorem 1.4. (2.2)is then a consequence of (2.1).
Q.E.D.

Let G be a finite rank Riesz group with divisible hull (Q", P)and let fl,
f (Rr)* be as in Theorem 1.3. We define Hk by (1.2) and for each k we let

H- {a Hk" f(a) __> 0, j 4= k}.

We will say that G is positively irrational if

H- G={0}(k= 1,...,d) and Hk G={0}.
k

If a e H Q’, then selecting n N with na G, we have na HI G. Thus
it is equivalent to assume H Q={O}. We note that from (1.1),
H Hk P.

Letting (Rp) + (R /)p, we have"
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THEOREM 2.3. A finite rank Riesz group G is order isomorphic to an order
simple subgroup of (Rp, (RP)+) for some p N if and only if it is positively
irrational.

Proof Since Hk P H; P {0}, (Q’, P) is order simple, and from
Lemma 2.1, so is G. We define 0" G --, Rd by

O(a) (f(a), fa(a)).
0 is an algebraic injection since ker 0 (H c G). On the other hand, since
H; c Q’ {0} for all k, O(a) 0 if and only if a 0 orL(a) > 0 for all k, hence
from Theorem 2.2, if and only if a e P.

Conversely suppose that G is a finite rank additive subgroup of R which is
an order simple Riesz group in the relative ordering

(2.3) G + G (R")+.
We let 9,..., 9p (RP)* be the co-ordinate maps, i.e., the dual basis to {e}. We
may assume that G is not contained in any of the co-ordinate hyperplanes

K {w Rp" 9,(w)= 0}

(otherwise replace Rp by Rp- , etc.). Letting K{ K (R)+, it is evident
that K{ G K G+ is the positive part of an order ideal. If G + K,
then G Ki, a contradiction. Thus

(2.4) K G {0}.
The inclusion map G Rp has a unique rational lineal extension

" Q" Rp, where (Q’, P)is the divisible hull. We let (e,)= w, and extend
to a real linear map " R Rp by letting

Then h e (R)* and from (2.3),

G + ={aG’gj(a) 20, 1 Njp}={aG" hj(a)O, 1 Njp},

P={aeQ’:h(a)0, 1 N j N p},

and thus P= {v e R’" h(v)2 O, 1 j p}. From the Bipolar Theorem [3,
p. 51], the dual cone P* is the smallest cone containing ha, hp. However P*
is also generated by the linearly independent elements f,..., described in
Theorem 1.3. Letting H be a hyperplane containingf, ,fn, K H P* is a
geometric simplex with extreme points f, . Multiplying the h by positive
constants, we may assume the hj lie in H and thus in K. Since P* is generated
by the h, K is the convex hull of the h. It follows that (see [3, Section 25.14])

{A, ...,} {h, hp} convex hull {A, ...,}.
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Suppose that a G is such that fk(a) 0 and f(a) >_ 0 (j 4: k). Choosing/with
fk hi, we have gi(a) hi(a) J(a) 0, and for 4: i, g,(a) h(a) >_ 0 since

h is a convex combination of the f, fn. From (2.4), a 0. On the other
hand, if a G is such that f(a) 0 for all j, then g(a) h,(a) 0 for all l, i.e.,
a (] K, {0}. Thus G is positively irrational. Q.E.D.

The construction of non-divisible Riesz groups seems to be much more
subtle. One can no longer choose an arbitrary cosimplicial cone C in R" and
expect C c G to determine a simple Riesz ordering (see the classification of the
Riesz groups (Z2, P)in [4]). One has, for example:

PROPOSITION 2.4. Suppose that (G, G+) is a finitely generated order simple
Riesz group, and that fx, fd (Rr)* are selected as in Theorem 2.2. Then one
must have d < r- 1.

Proof We may assume that G Z
_

Qr. Suppose that to the contrary,
d r. Then fl, fr will be a basis for (R*)* and we may select a dual basis v 1,

v,R. Fixing an element aoG+, we have ao=aivi, where
ai f(ao) > 0. The set D {a G: 0 _< a < ao} is contained in the compact set

K {/) Rr: 0 <A(/) < i} { flii 0 fli i}.
But K can contain only finitely many of the lattice points G Z, hence D is a
finite set. It follows that D and thus G + must contain minimal elements, contra-
dicting the simplicity of G (see [11, Section 2]). Q.E.D.

Another restriction for finitely generated simple Riesz groups (G, P) may be
discovered in the proof of [4, Theorem 2.1]. Suppose that G Z" and

P {a G: A(a)> 0} w {0}, f, (R")*,
and let us identify (R")* with R by using the pairing

Then iff= (fl, ft,), not all of the fl can be rational, since that would imply
the existence of minimal elements. On the other hand the fl need not be
independent over Q since (Z, P) with

t, + + 42 > 0} {(0, 0, 0)}
is a simple (non-totally ordered) Riesz group.
Ofcourse after one succeeds in geometrically constructing a Riesz group, one

must then determine if it is a dimension group before one has found a new
operator algebra. Methods for solving this problem will be explored in a sub-
sequent paper.
We conclude by remarking that Choquet has formulated a version ofsplex

theory that should be appropriate for countable Riesz groups of infinite rank
s  tio.
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Added in proof It is shown in [5] that all Riesz groups are dimension groups,
and a more complete analysis of the finite rank case is given there.
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