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A UNIQUENESS THEOREM FOR SUBMANIFOLDS
OF EUCLIDEAN SPACE

BY

JOEL L. WEINER

A uniqueness theorem for a submanifold of Euclidean space gives sufficient
conditions in order for the submanifold to be determined up to a rigid motion.
Well-known examples are the theorems of Minkowski [5] and Christoffel [3]
for convex surfaces in R3. Each of these theorems states that some curvature as
a function of the normal to the convex surface determines the surface up to a
translation. These results have been extended to convex hypersurfaces of
Euclidean spaces of arbitrary dimension; see, for example, Chern [1]. A few
results give extensions to submanifolds of arbitrary codimension; see, for exam-
ple, C. C. Hsiung [4]. This paper deals with this sort of uniqueness question for
submanifolds of arbitrary codimension in Euclidean space.

Let M be a closed C manifold of dimension n and let M denote the tangent
space to M at m. The main object of study is a pair of immersions X,
X’: M R"+ k, k > 1, such that for each m 6 M the tangent spaces dX(Mm) and
dX’(Mm) agree. We impose some convexity conditions on X and X’ and
assume the equality of some curvature (or curvatures) at corresponding points
of X and X’ in order to conclude that X and X’ differ by a translation.
Actually, one condition we impose is the equality of the volume elements
induced by X and X’ on M. This is equivalent to the assumption that the
Lipshitz-Killing curvature induced on the unit normal bundle by X and X’
agree since the immersions have the same unit normal bundle with the same
metric induced on each fiber of the unit normal bundle. (See [2] for the
definition of the Lipshitz-Killing curvature.)
The method of proof is by means of integral formulas in the style of Chern

[1]. However, here the integrands are multivector-valued forms on M.
Throughout the paper all manifolds and maps are Coo.

I would like to thank the referee for suggesting ways to clarify the presenta-
tion of this paper.

1. Definitions and the statement of the theorem

Let ’(M, A’Rn+ k) be the space of p-forms on M whose values are r-vectors
in R"+k" if

t g’(M, A’R"+’) and fl gr(M, AR"+ ’),
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then
A fl P+q(M, Ar+’R"+k)

is the multi-vector-valued form obtained by simultaneously taking the wedge
product of forms on M and multivectors in R"+k. It should be noted that
/ fl 1)Pq+ rfl A 0. For an example of such a product let X: M R+ k be
an immersion of an oriented manifold M, then

dX /x... /x dX (n times) n! dV

where (m)= el ,’"A e, if el, e, is a positively oriented orthonormal
frame of dX(M,,) and dV is the volume element induced on M by X. We will
use the notation and dV introduced above for oriented M throughout the
paper. If X’: M R"+ k is another immersion, let ’ and dV’ denote the corre-
sponding quantities.

If X, X’: M - R"+k are immersions of M into R+k such that dX(Mm)
dX’(M,,), then we say X and X’ have the same Gauss map. IfM is oriented, this
is equivalent to + ’.

If M is not orientable we also use dV and dV’ to denote the canonical
measures induced on M by X and X’, respectively. If fiT/is the orientation
covering of M, with a particular orientation, and , ’" 2r --} R+ k are immer-
sions covering X and X’, respectively, let dV and dV’ denote the volume
elements induced on AT/by and .’, respectively. Then dV dV’ (as meas-
ures) is equivalent to dV dV’ (as n-forms).

Let X: M R"+ be an immersion and N be a unit vector normal to X at m.
We denote the second fundamental form in the direction N (at m) by I1, i.e.,
II -dN. dX. The immersion X is said to be locally convex if for each
rn M there exists a unit vector N normal to X at m such that II is positive
definite. By Hadamard’s principle, local convexity is enough in the codimen-
sion 1 case to imply that the immersion is star-shaped, i.e., there exist an origin
and a unit normal vector field relative to which the support function p X N
is positive. We need to generalize this concept to higher eodimensions. Thus
X" M R"+ k is called star-shaped relative to the (n + 1)-dimensional linear
subspace L of R"+ if P X" M L is a star-shaped immersion (in the co-
dimension 1 sense), where P: R"+k---, L is orthogonal projection onto L. It
follows immediately from the definition that if n > 2 then M is a sphere and X
is an embedding. If X is star-shaped relative to L, then we may choose
2 A"+ t(L) and an origin in Rn+k such that (;t, X/x ) > 0, where den-
otes the standard inner product on A"(R"+k); for the origin in R"+k we choose a
point of L relative to which the support function of P. X is positive.

Let X, X’: M R"+ k be two immersions with the same Gauss map. The pair
X, X’ is said to satisfy condition (A) if there exists a point rn M and a unit
vector N normal to X and X’ at rn such that both II and II’u are positive
definite. Here 1I’ is the second fundamental form of X’ in the direction N.

Finally we let q and r/’ denote the mean curvature vector fields along X and
X’, respectively.
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THEOREM. Let X, X’ M R"+ k be immersions with the same Gauss map and
dV dV’. Suppose X is locally convex and the pair X, X’ satisfies condition (A).
Moreover, if

(i) X and X’ are both star-shaped relative to the same subspace L, or
(ii) r/- r/’,

then X and X’ differ by a translation of Rn+ k.

2. Proof of the theorem

First note that we may reduce the proof to the case where M is oriented. To
see this suppose the theorem is true for any oriented M. Let N be a nonorient-
able n-dimensional manifold and X, X’" N Rn+ k be immersions which satisfy
the hypotheses of the theorem. (Of course this may only happen under assump-
tion (ii).) Let/ be the orientation covering with a particular orientation and let, .’" ] Rn+k be immersions covering X, X’, respectively. Then , ’"2
_

ln+ k satisfy the hypotheses of the theorem and thus ,g and ’ differ by a
translation. Clearly X and X’ differ by a translation. For the remainder of the
proof, we therefore assume that M is oriented.
We introduce an orthonormal moving frame el,..., en along X and X’ so

that +_’= el/x’"/xen. Then there exist 1-forms on M, coi and
1 _<i< n, such that dX =eco and dX’ =eco’, where co (col, con)
co’ (co’, co’n)t, and e (el, en). There exists an n x n matrix b such that
co bco’. Note that det (b)= + 1 since

dV col/x.../x con det (b)co’ /x /x con -+ det (b)dV’= +_ det (b)dV.
Define functions tri, 0 < < n, by

where is a parameter. The e are the elementary symmetric functions of the
eigenvalues of b.
Note that b is determined up to similarity by the choice of the frame e 1,

en; in fact it is the matrix of

dXo (dX’)-1" dX(Mm) dX(Mm)
relative to this frame. Hence the eigenvalues of b are invariants of the pair

LEMMA 1.
on M.

The matrix b is diagonalizable and has only positive eigenvalues

Proof. Let as and av denote the matrices of II and II’n relative to e 1,...,

en, respectively. Since -dN eas co ea’n co’, it follows that

(1) av anb.
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Since X is locally convex, we may choose N for each m M such that lls and
hence as are positive definite. We may simultaneously diagonalize a and as
and in so doing change as to the identity matrix, i.e., a and as are cogredient
to a real diagonal matrix and the identity matrix, respectively, by means of the
same change of basis matrix. Thus we see that b may be diagonalized and has
only real eigenvalues.
Using condition (A), there exists m M and a normal N to X and X’ at m

such that both IIs and II’ are positive definite. Again using (1), we see that b
has only positive eigenvalues at m. Since the eigenvalues of b vary continuously
on M, det (b) :J: 0, and b has only real eigenvalues on M, b must have only
positive eigenvalues on M. |

Remark. It is clear from the preceding lemma that if X is locally convex and
X, X’ satisfies condition (A), then X’ is also locally convex. In fact, lls is
positive definite if and only if II’ is positive definite.

LEMMA 2. det (b)= 1 and ’.

Proof This follows immediately from Lemma 1. |

The proof of the theorem is now trivial for n 1 and does not require
assumptions (i) or (ii). Therefore we suppose n > 2 for the remainder of the
argument.
We are given in condition (i) of the theorem that both X and X’ are star-

shaped relative to the same linear subspace L. Thus we know there exist an
origin in L and (n + 1)-vectors 2, 2’ A"+ I(L) such that (X ^ , 2) > 0 and
(X’/x , 2’) > 0. We may have to translate X or X’ to obtain an origin for which
both inner products are positive, but this is immaterial. If we assume I1 11-
I1 ’11- 1, then 2’= + .. In fact, the following holds.

LEMMA 3. 2’ 2, for n > 2.

Proof Suppose 2’ -2. Set X,. PL X and X. PL X’; then X and
X. are star-shaped immersions into L. Let

of course, (m) is the unit n-vector tangent to X and X at m. Define a unit
vector field N on M normal to X and X by N A 2. Then

and
X N<0.

Note that X + fiX’ is an immersion for any > 0, fl > 0; this is the case
since

a( x + flx’) (ax’) ax (ax’) +
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and dX (dX’)- is diagonalizable with only positive eigenvalues by Lemma 1.
Since for all > 0, fl > 0, X + fiX’ and X have the same Gauss map

aXL + flX’ PL (aX + fiX’)
is an immersion. Choose so large that X’(M) is contained in the bounded
component of L XL(M); here we are using the fact that X. is an embedding
when n >_ 2. Define q" M x [0, 1] L by

Note that

so that

b(m, t)= (1 t)XL + tX’.

N (X xX) N X" N oXz, N < 0

and thus is a local diffeomorphism.
Let W be the bounded component of L- X’(M). Note that

X’.N<O and ---/(.,1).N>0;
therefore for values of close enough to 1, b(m, t) W for any m M. In
particular (M x [0, 1]) W0. Let U be the component of- I(W w X’(M)) containing M x {1}. Then U isa compact submanifold with
boundary ofM x [0, 1] and the boundary of U has more than one component.
Consider dplU: U W w X(M); it is a local diffeomorphism onto
W w X’(M) that maps the boundary of U into the boundary of W u X’(M).
Thus b U is a covering map. But W w X’(M) is a disk; therefore U must be a
disk. However, U has more than one boundary component.

This contradiction implies 2 2’. |

I would like to thank Les Wilson for his assistance in the proof of this lemma.
Let r > O, s > 0 and r + s n 1 and define

,.,s X/x X’ A dX A ^ dX A dX’ A A dX’.

/" s

Then

&x,.,s -X’ A dX A ^ dX A dX’ A A dX’

r+l s

+ X A dXA’"A dXA dX’A"" A dX’

r s+l



A UNIQUENESS THEOREM FOR SUBMANIFOLDS 21

Applying Stokes Theorem, we obtain

X’ /x dX /x /x dX /x dX’ /x... /x dX’ j’ X/x dX /x... /x dX /x dX’ /x... /x dX’.

r+l s r s+l

The substitutions dX ebo9’ and dX’ eog’ give

In particular, this implies

(2)

where tr’i, 0 < _< n, are elementary symmetric functions of eigenvalues of b- 1.
Note that tri tr,_i since det (b) 1.

Proof of the theorem under assumption (i). Since X and X’ are both star-
shaped relative to the same subspace L, Lemma 3 implies that there is an
(n + 1)-vector 2 and an origin such that (X ^ , 2) > 0 and (X’/x , 2) > 0.
Taking an inner product of each side of (2) with 2, we obtain

(3)

From Lemma 1 and the fact that det (b)= 1, we conclude using Newton’s
inequality that tr0 tr,_ 1 tr,_ < 0. Similarly tr- tr,_ < 0. Therefore
the left-side of (3) is less than or equal to 0 but the right-side of (3) is greater
than or equal to 0. Thus

f ,(x ^ , o.-,) o

which implies ao- tr,_ 0. Hence b 1 by Newton’s inequality and thus
dX dX’. Therefore X and X’ differ by a translation. |

Let v: M Ak(R"+ k) be a map such that Ilvll 1 and /x v be the positively
oriented unit element of A"+ k(R"+ k).
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LEMMA 4.
dX /x... ^ dX / dv (- 1)"n !(, r/) dV,

where denotes Hodge star operator in R"+k.

Proof We introduce an orthonormal moving frame ex, e.+kalong X so
that e/x.../ e, and v e,+ /x.../ e,+k. We then define dual forms
1 < _< n, by dX 7= co e and connections forms ,, 1 r, s n + k, by
de, 7 ,e. Then

dX...dXdv=(n-1),(a...j’.’o.e b’"e.)
A Oai en + A "e A e A e + A A e +

an+ i=

AOi+ A’’’An)e1A’’’AeA’’’Aen+
(- (, av.

In the preceding computation, a caret above a hctor indicates that the hctor is
to be deleted.

Let r _>. O, s > 0 and r + s n 1 and define

fl,.,s X/ v/ dX /... / dX / dX’ /... / dX’.

/" s
Then

dfl,.,s (- 1)kv / dX / / dX / dX’ /’" / dX’

r+l s

By Stokes Theorem we obtain

+ X/ dv/ dX/.../ dX/ dX’/.../ dX’.

/" s

(4) (- 1)k+ fuX /x dv /x dX /x"" /x dX /x dX’ /x /x dX’

l" S

IMv/,,dX/’"/dX/dX’/’"/dX’.
r+l s
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Proof of the theorem under assumption (ii) By Lemma 4, the assumption
r/’ implies

dX /x... /x dX /x dv dX’ /x... /x dX’ /x dv.

n-1 n-1

Multiplying both sides by X and integrating over M, we obtain

’tX
/x dv /x dX /x /x dX X/x dv Ix dX’ /x... ^ dX’ O.

n-1 n-1

Using (4) for r 0 and n- 1 in (5), and the fact that

dX /x... /x dX dX’ /x.." /x dX’

/’/ n

we get

This implies

(6)

tv
/x dX’ /x"" /x dX’ dX /x dX’ /x"" /x dX’] 0

n n-1

(v ,, )(o0 0.

Since v/ is constant and ao trl 1 trl < 0, by Newton’s inequality and
the fact that det (b) 1, we obtain from (6) that 1 trl 0. Again Newton’s
inequality implies b 1 and thus X and X’ differ by a translation. |

Remark 1. In the proof of the theorem under assumption (ii), it is enough to
assume that det (b)[ tr, < 1 rather than dV dV’, i.e., det (b) 1.
Lemma 1 still holds; the proof only uses det (b) 4: 0. In this case equation (6)
would become

j ,lv ,, dr’ O.

Using Newton’s inequality, we obtain tr >_ vnrr/n >_ tr or an tr _< 0. Again we
conclude tr an and thus b 1.

Remark 2. The theorem essentially holds for manifolds with (nonempty)
boundary. We know of no analogue for Lemma 3 when M is not closed.
Therefore condition (i) must be changed to read: M is oriented and there
exists an origin ofR"+k and an (n + 1)-vector 2 A"+ (R"+k) such that (X/ ,
2) > 0 and (X’/ , 2) > 0. Leaving the other hypotheses of the theorem as they
are and assuming that X and X’ differ by a translation on each component of
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the boundary (and not necessarily the same translation on each boundary
component) we may conclude that X and X’ differ by a translation. The
remarks in Remark 1 apply here too.

3. An example

In the codimension 1 case it is enough to assume + ’, dV dV’, X is
locally convex, and X, X’ satisfies condition (A) in order to conclude X and X’
differ by a translation. These are precisely the hypotheses for the Minkowski
problem. Clearly X and X’ map M onto a convex hypersurface. Also if K and
K’ denote the Gauss-Kronecker curvature ofX and X’, respectively, then these
conditions imply K K’ > 0 as a function of the same normal (inward versus
outward pointing normal). Without assuming that X, X’ satisfies condition (A)
it is possible that K(N) K’(-N) for all inward pointing normals N.
For higher codimensions some additional assumptions, such as (i) and (ii),

need to be made. In fact we present a continuous family of locally convex
immersions Xo" S x S R* all of which have the same Gauss map and
induced volume element. That any pair Xo, X’o, satisfies condition (A) follows
from continuity. But no immersions in the family induce the same metric on M;
hence no two may differ by a translation.

Let S be the circle of radius l/x/2 centered at the origin of R2 and X"
S x S R be the embedding given by taking the product of the inclusion i:
S R2 with itself. Let Y" S x S R’ satisfy the condition that X, Y is an
orthonormal moving frame of the normal bundle of the embedding X. For
-r/4 < 0 < n/4, define

1
So v/cos 20 (cos 0" S + sin 0" Y).

If toa, 092 are 1-forms such that dX toex + o92e2, then dY oae o2e2.
Thus

1
dXo v/cos 20

((cos 0 + sin 0)o9 ea + (cos 0 sin 0)092e2).

Clearly dXo/x dXo dX/x dX so that 0 and dV0 dV for all 0. Since each
immersion Xo has its image in a 3-sphere, it necessarily follows that each
immersion is locally convex. It is clear, moreover, that no two of the metrics
induced on M by the Xo are equal.

4. On condition (A)
Let X, X’: M ---, R+ be immersions with the same Gauss map. We are con-

cerned with finding properties of M or X which imply that the pair X, X’
satisfies condition (A) when X is locally convex. Then under certain circum-
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stances we could eliminate the assumption that the pair X, X’ satisfies condi-
tion (A) from the hypotheses of the theorem.

In codimension 1 if X is locally convex then X embeds M as a convex
hypersurface of R"+ a. If X’ has the same Gauss map as X, then X’ also embeds
M as a convex hypersurface [2, Theorem 3]. So for any unit normal N we must
have either IIN and II definite in the same sense, i.e., condition (A) holds, or
II and II’ are definite in the opposite sense and thus X and -X’ satisfies
condition (A).
We say an immersion X: M R"+k is firm if the following holds: if X’:

M R+ k has the same Gauss map as X, then either X, X’ or X, -X’ satisfies
condition (A). We restate this definition from another point of view. The im-
mersion X is firm if and only if for every immersion X’" M --, R"+ k with the
same Gauss map as X there exists a unit vector z in R"+k and a point rn 6 M
such that the height functions h X. z and h’ X’. z are non-degenerate and
have a local extreme at m. This follows by observing that the hessians of hz and
h’z at their critical points are lit and ll’z, respectively.

In codimension 1 every locally convex immersion is firm. It is natural to ask
whether every locally convex immersion is firm. The answer is no as the follow-
ing example illustrates. Let X i" M Rq, i= 1, 2, be locally convex immer-
sions. Let X X x X2 and X’ Xt x X2). Both X and X’ have the same
Gauss map and, in fact, both are locally convex but X is not firm since neither
X, X’ nor X, -X’ satisfies condition (A).
We now give some sufficient conditions on M or X that imply X is firm. In

the next proposition the trivial subbundles are the 0 and n dimensional ones.

PROPOSITION 1. If the tangent bundle ofM has no nontrivial subbundles (and
hence M is even dimensional), then every locally convex immersion X" M --, R"+ k

is firm.

Proof Suppose there exists an immersion X" M--, Rn+k with the same
Gauss map as X but for which X and + X’ do not satisfy condition (A). The
proof of Lemmal may be slightly modified to show that b has a constant
number q (counting multiplicities) of negative eigenvalues and q 4: O, n. This
implies that for each m M there exists the same number of linearly indepen-
dent vectors v M,, such that dX(v)= 2 dX’(v) with 2 < 0; these vectors v
correspond to the eigenvectors of b with negative eigenvalues. The span of these
vectors in each M,, defines a q-dimensional subbundle of the tangent bundle of
M. This contradiction proves the proposition. |

Note that any surface other than a torus or a Klein bottle is an example of a
manifold whose tangent bundle has no nontrivial subbundles. This condition is
also satisfied if z(M) 4:0 and Hi(M, Z) O, 0 < < n, in particular, if M is an
even dimensional sphere.

PROPOSITION 2. Let X" M -, R"+ k be an immersion (which is not necessarily
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locally convex). Suppose there exists a non-degenerate height function
h X z([[z[[ 1)with less than 4 critical points, then X is firm.

Proof. Let X" M R/ k be an immersion with the same Gauss map as X.
The height function h’ X z has the same critical points as h. Two of the (at
most) three critical points are extremes of h; two of the (at most) three critical
points are extremes of h’. Therefore there must be one critical point which is an
extreme of both h and h’. |

PROPOSiTiON3. Let M=S with n=lmod4 and X: M--.R+k be a
locally convex immersion. If there exists a non-degenerate heightfunction with no
critical points of index 1 or n- 1, then X is firm.

Proof This proposition follows from the fact that the tangent bundle of
these spheres have nontrivial subbundles only in dimensions 1 and n- 1 [6,
p. 144]. |

There are many unanswered questions. For example, we know that some
locally convex immersions of the torus are not firm, but are there any locally
convex immersions that are firm? Are all locally convex immersions of the
Klein bottle firm? Are all locally convex immersions of S3 firm; to find a
counterexample we must look among those immersions for which almost all
height functions have at least 4 critical points. In general, what are necessary
and sufficient conditions on locally convex immersions X for X to be firm?

Finally suppose M or X satisfy conditions which imply that X is firm if X is
locally convex, e.g., M is an even dimensional sphere. Then the assumption that
X, X’ satisfy condition (A) may be deleted from the statement of the theorem
and the theorem still essentially holds. For now we may conclude that either X
and X’ or X and X’ differ by a translation under assumption (i) while X and
X’ still must differ by a translation under assumption (ii).
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