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COEFFICIENTS OF BLOCH AND LIPSCHITZ FUNCTIONS

BY

GRAHAME BENNETT1, DAVID A. STEGENGA AND RICHARD M. TIMONEY

(Dedicated to the memory of David L. Williams)

We present a new approach to problems concerning the coefficients (a,) of
Bloch and Lipschitz functionsf(z) anZ" (on the unit disk). The approach
is based on a new characterization of Bloch functions which is due to Van
Casteren [13]. We use an obvious generalization of his result.
Some of our results are not new, but the proofs we give are more elegant and

straightforward than the existing ones. One of the principal advantages of our
approach is that it makes it possible to show the extent to which the results are
best-possible. To a large extent, our new results are of this nature.

After completing our work, we became aware of unpublished work of A. L.
Shields and D. L. Williams which overlaps considerably with ours. We thank
them for graciously suggesting that we publish our version.

Before stating our principal result we need some terminology. A vector space
S of complex sequences (an)n=O (pointwise operations) is called solid if (a.). s S
and a;,I _< a, for all n > 0 imply (a,). s S. A functionfanalytic on the unit
disc belongs to the class A (0 < < 1) if

(0.1) f’(z)l < c(1/(1
for some constant c > 0. For 0 < < 1, A is the usual Lipschitz class, while A0
is the Bloch space (usually denoted B).

0.2 TH.ORM. The smallest solid (linear) sequence space containing the seq-
uence ofcoefficients (an)n ofeveryfunctionf(z)= E=o an zn in A (0 < < 1)is
the sequence space defined by the condition

2n

E a O(n- ).
j=n

In fact, #iven (a.). satisfyin# this condition, there exists a’z A with
la, <- la’, Yor all n.

To get a feeling for this result it may help to consider H (2 < p < ). There,
the corresponding solid space is , the square-summable series. This will come
as no surprise to those familiar with the standard theorem on random power
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series [5, p. 228], [14, Section V.8]. Thus, in a strong sense, finding the smallest
solid sequence space containing the coefficients of every function in a class is
the same as finding the strongest growth condition the absolute values of the
coefficients must satisfy. It is the next best thing to a characterization of the
coefficients of the functions in the class (which is often impossible to give).

In Section 1, most of the terminology we use is defined. Our first step is to
transfer problems about the coefficients of functions in As (0 < < 1) to prob-
lems about the coefficients of the derivatives of functions in these classes. We
are thus led to examine the coefficients of functions g(z) ’ b,,z" satisfying a
growth condition

(0.3) Io(z)l-< c k(1/(1- I 1))
where if(x)= x, c a constant. It is trivial to translate results back to the
original setting.
We actually work in somewhat greater generality and consider coefficients of

harmonic functions on the disk satisfying a growth condition like (0.3)where
(x) is an increasing function on [1, ). This is done partly to illustrate the
power of our technique and partly because it involves very little extra work.
We apply the result of Van Casteren (suitably generalized) many times. The

power of his result is that it enables us to reduce the problems we consider to
problems about coefficients of bounded functions. This is usually sufficient to
solve our problems because bounded functions are (comparatively) well
understood.
Our main result is Theorem 1.9 (c) (it implies Theorem 0.2). We use an

imaginative result of de Leeuw, Kahane and Katznelson [4] (or, more precisely
a substantial improvement of it due to Kisiliakov [7]). Their result identifies the
smallest solid sequence space containing the power series coefficients of all
bounded analytic functions on the disk.
Our results can be applied to various problems concerning multipliers. Thus

our results easily imply results in [2], for instance.

1. Statement of the results

Let C denote the complex numbers and D the unit disk.

1.1 DEFINITION. Let : [1, oo) -, [1, oo) be a monotone increasing function.
If $(x) does not increase to , assume $(x)= 1. For technical reasons we
always assume that $ satisfies

(*) qt(2x) < ck(x)
for all x > 1 (some c > 0). Then h(@) denotes the space of all complex-valued
functions u(z) harmonic in D satisfying the growth condition

lu(z) _< cq,(1/(1 ]z 1))
for all z < 1 (some c > 0). The smallest allowable value of c is denoted Ilull .
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The space of all analytic functions in h($) is denoted A($).

1.2 Remark. For 1, A(ff)= H, the set of bounded analytic func-
tions on D. For q(x)= x- (0 < < 1), A() is the set of all =f’ with
fA.

The spaces A()and h() were considered in [8], [11], [12].

1.3 Notation.
D, we write

For u(z) -oo brlJle (z rei) harmonic in the unit disk

n-I

(s.u)(rei) , crllei,
j=-n+l

(tr.u)(re’) (su)(z)
i=0

and Ilull sup {I u(z) z < 1}. Here n > 1.
The well-known inequality II ,ull Ilull [6, p. 171 will be used frequently.

Also, the relation a.u a.sN u (N > n) will be needed.
Here now is our generalization of the result of Van Casteren [13]. We defer

the proof to Section 2.

1.4 THEOREM. lf u is a harmonic function on the unit disk, then u e h(/) if
and only if Ilcr, ulloo g c/(n) for all n > 1 and some constant c > O.

1.5 COROLLARY. Forfanalytic on the unit disk,f A (0 <_ <_ 1) ifand only
/f II .(f’)ll <- c all n >_ 1 and some constant c > O.

It is well known [6, p. 23] that fHp if and only if

1.7 DEFINITION. Let S be a linear space of sequences (with pointwise opera-
tions). Then S is called solid if (2.a.). X whenever (a.). e X and (2.). is a
bounded sequence of scalars.

Notice that the term "solid" applies to spaces of doubly infinite sequences (as
well as singly infinite) but we reserve the term for linear sequence spaces.
We will frequently use the observation that a space of harmonic (or analytic)

functions on D may be considered as a sequence space via the correspondence

u(re’) bjrl3le’ (bl)-oo
--00
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1.8 THEOREM. (a) If u h(), then

(1.9) F. Ibl O(q,(n)).
IJl -< n

(b) The smallest solid space containing h(k) (resp. A*()) is the space of
sequences )_, (resp. (b)=_)satisfying (1.9).

Proof of (a). It follows easily from 1.4 that

2 I()() do 1 bl
IJl 2n

II,ull
o((2))

Rstritj to th rang [j[ n in th summation, obsrv that 1 IJ I/(2n) z
for [j] and apply (*) to gt th rsult. W dfr th proof of (b).
Not that Theorem 0.2 follows asily from Theorem 1.8.

1.10 THEOREM. (a) Let u(re) bsrlSleU be harni in D and satisfy
bs 0 for all j. Then u h() if and only if
(1.11) E 1 o(()).

(b) The largest solid subspace of h() (resp. A()) is the space of seq-
uences (bs) (resp. (bs)) satisfying (1.11).

Proof. Use Theorem 1.4.

For the case (x)= x this theorem is known [2].
1.12 THEOREM. Let u(re) _(R) brlSle h(). Then

(a) lb. O((n)),
(b) lJl-<,, bl O((n)4n),
(c) IIs,ll o((n)log n),
(d) IIs,ll O(log ),

Furthermore, if 1, these results are best possible in the sense that there exist

four functions in A() which achieve the required Orowth for infinitely many
values of n.

Proof Part (a) follows trivially from (1.8), while (1.9) and the Cauchy-
Schwarz inequality imply (b). Part (c) follows from 1.4, the observation

and the fact that the nth Dirichlet kernel has L norm at most log n [14, Section
II.12]. Part (d) can be deduced from (c) and Theorem 1.4.
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To show that (a) is best possible (for 1), choose an increasing sequence
(n)= of positive integers satisfying

(1.13) E k(n) < c(nk+ )

for all k > 1 (c > 0 a constant). For (x) x" (a > 0), n 2 will do. Then, by
(1.10) (a),

bz" A(O) if and only if Ibm[
j=l

In particular, ]o (n)z" A().
To show that (b) is best possible, choose an increasing sequence (n)=x

satisfying (1.13) and, in addition, n+ > 2n, (n+ ) < ca(n) (for some con-
stant c > 0). This requires (*). Set m n+ n.

It is known that there exists a sequence (e) in {-1, 1} with the property
that the polynomials

P,,,(z) (Z’--o ez)

satisfy liP, -< 5 (see [9]).
The function #(z) A(@)is of the form

(where c > 0 is some constant). To show g A($) observe that

IIs, + -< const. $(n)
and Theorem 1.4 now implies A(R)($).
We do not give complete details for the construction requirel to prove that

(c) is best possible. It is somewhat similar to (b) but involves the following
lemma.

1.14 LEMMA. There exists a constant c > 0 and a sequence (P,(z)), ofpolyno-
mials with

(i) degree of P, equal to 2n,
(ii) ilP,]I(R)=I,
(iii) ]]s,P, ]1oo > c log (n + 1),

for all n > 1.

Choose (n) as for (b) but with n+ > 4n. Set

g(z) E (n)z"P,,(z)
j=l

(where the P. come from Lemma 1.14). Now g e A() can be shown as in (b)
and [Is. g achieves the required rate of growth for n 2n.
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This example works for (d) also because, when n nj is large,

const, if(n) log n

const. (2n) log 2n.

1.15 Remarks. (1) For 1, the "O" in (a) and (b) of Theorem 1.12 can be
replaced by "o" so that (a) and (b) are not best possible in the case ff 1. For

1, it is known [3] that there exists u h(@)with Ils, ull > log n for all n.
On the other hand if u can be extended to be continuous on , IIs, ull
o(log n) is known [14, ction II.11]. For 1, we do not know if (c) is best
possible for A (@) n.

(2) For @(x) x, the fact that 1.12 (c) is best possible answers a question
posed by Van Casteren [13].

1.16 THEOREM. (a) If #(z)= bz" A() and b, increases with n,
then

(1.17) Ib, O(@(n)/).
(b) There exists a sequence (e.),o in {- 1, 1} such that, (b)is an increas-

in# sequence of positive numbers satisfyinff (1.17), then

o(z) E bz ().
n=0

Proofi (a) is easy to deduce from 1.12(b) and (*). The sequence (en)._-o for
(b) is the same one referred to in the proof ofTheorem 1.12. By the technique of
summation by parts one can show that I1,11 --o(,(n)). Since I1,11 -<
IIsll, Theorem 1.4 yields the result.

b is a sequence satisfying1.18 THEOREM. (a) If( .).=o

(=olbl) =Ox/yO--]
then Y’,=o e’nbz A() for almost every choice of a sequence (e’n) of uni-
modular complex numbers.

(b) If lim inf.-.oo ff(n)/x/10g n > 0 and (rl) is a sequence of positive num-
bers increasing to oo, then there exists a sequence (b)o such that

| (fo
_

2)
1/2 ()

b’l=l < r/..v/log n
all n

j=o

while =o eb. z" does not belong to A($)for any choice ofunimodular num-
bers (e’)..
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For $(x) x, part (a) is to be found in [1] and part (b) improves a result in
[1]. The proof of (a) is immediate when one uses Theorem 1.4 and the Lemma
of Salem and Zygmund used in [1] (Lemma 3.2) (see also [10]).
The proof of part (b) is constructive and we sketch the details. The basic

z2 Onebuilding blocks of the construction are the polynomials Pn(z)
makes use of the fact that

z2 I
j= j=

Let (n) be a sequence of positive integers which increases so rapidly that

j=i

for all

_
2 (where denotes .). The required sequence (b.). is iven by. ()(Io nk)- , when n n + T, 0 r Io n, and . 0 for all

not of this form. ow, every function y() eo"b." satisfies

for n 4n. Hence y (), by Theorem 1A.

1.19 Remark. For 1, one can define spaces ho($), Ao(/) by using the
growth condition lu(z) o(g,(/(1 z I)). Many of our results (including
1.4) carry through in this setting, if one replaces "O" by "o" throughout.

2. Proofs of the main results

We begin with some technical lemmas.

2.1 LEMMA. Let /" [1, ) [1, c) be a monotone increasingfunction. Then
the following are equivalent conditions on

(i) satisfies (*).
(ii) There exist constants a, > 0 such that k(x)x-a< g/(y)y- for all

x>y>l.
(iii) There exists > 0 such that = n(n)r < [fl/(1 r)2](1/(1 r))

forO<r < 1.

Proof It is not hard to show (i) (ii) and (ii) (iii) follows by an argu-
ment in [12, Lemma 1]. Since we really only need to know that (i)=:, (iii), we
omit the proof that (iii)=:, (i).
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2.2 LEMMA. Let r. ,(0) ’."k _+, ( kl/n)e’r There exists M > 0
such that, for r 1 l/n,

2-- IK..,(o) ao <_ M

for all n >_ 1.

Proof Observe that, for r 1 1/n,

1/2IK,.,(0)I < Re y’. (n k)(re-’)"-k + 1
0

Re {(1/n)r-"e"[(n + 1)(re-’)"+’/(1 re-’)
+ re-’(1 r"+ e-"+ ))/(1 re-’)]}} + 1

IRe {(r(n + 1)/n)e’/(1 re’)}l + 2/(nl 1 re’Ol) + 1

21o 0 1/1 re’lz + 2/(hi I re’l) + 1

Using Taylor’s theorem, one finds

g,,(0)

c/(, I1 re’ ) + c/I(1 ’/12)d
The last step requires the inequality

1 cos 0 0’/2 0"/4 (0/2)[1 n’/2],
valid for 10[ n. Now integration yields the estimate required.

Proofof Theorem 1.4. We adapt the proof used by Van Casteren [13] in the
analytic case (for (x)= x). First observe the elementary formula

(2.3) .(z) (1 ) Z .r"-’(..u)(z)
n=l

(valid for u harmonic in D, 0 r < 1 and z < 1). If u satisfies

then part (iii) of Lemma 2.1 and (2.3) immediately imply u e h().
On the other hand, if u h(),

where K,,(O) is as in Lemma 2.2. Taking r 1 1/n and applying Lemma 2.2
one easily deduces
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We remark that the proof is even simpler in the analytic case since one can
avoid the use of Lemma 2.2 by using the elementary formula

(2.5) n(tr.9)(z)=
1

valid for O analytic in O, n > 1, z] < 1 and 0 < r < 1.

2.6 Rerk. (1) It seems that the assumption (*) on the increasing function
is necessary for the validity of Theorem 1.4. If increases so rapidly that

lira sup. (n)TM > 1, then there is a subsequenee (n)of the positive integers
so that (n)TM > 1 + > 1 on the subsequenee. For such (n), any gap series
9(z) 2 az" converging in D satisfies [[g.O[[ O((n)). However, such a 9
need not be in A(). [In fact, by an elementary construction, one can show
that given (n)g, any sequence (rg) in [0, 1)tending to 1 and any sequence (x)
in R, there exists 9(z)= a z" converging in D with o(rg) x.]
On the other hand, if lim sup (n)/" 1 and x(x) is convex, define

9(z) b,z" by bo (1) and

b. ( + 1)( + 1)- .(.)+ (. 1)(. 1)
for n 1. Then [[g,0][ (n) and (by (2.3))

0) l ) .-(.).
n=l

Hence, by the implication (iii) (i) of Lemma 2.1 (which we did not prove), if
fails to satisfy (*), then O a()

(2) If satisfies (*) and the formal power series 9(z)= b,z" satisfies
[g, Ol[ O((n)), then the series converges for [z < 1. The details of some of
the arguments in Section one required this remark.

It remains now to prove Theorem 1.8(b). The proof is based on the following
result of Kisliakov [7] which is an improvement of the result in [4].

2.7 THEOREM. If(b.).o is a sequence with [b.[ 2 < , then there exists a
function 9(z)= =o b’,z" with a unormly converoent power series satisfying

b; b. and bkZk B 2 bkl2
k=O k=O

(where B > 0 is an absolute constant).
2.8 COROLLARY. If (bj)=m i8 oiven (0 < m < n), then there exists a polyno-

mial p(z)== bz satisfyin

b3lblor and I11 bl

(here B > 0 is the absolute constant from Theorem 2.7).
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Proof of Theorem 1.8(b). Suppose (bn)n_-o is a sequence satisfying

Ibl z _< c,(n)
j=O

for all n > 1 (some constant c > 0). Since the case @ 1 is disposed of by
Theorem 2.7, assume 1. Using (*), one can find an increasing sequence
(nk)= with n 1, ’.J= @(n) < @(nk+ ) and @(nk+ ) < C@(nk) for all
k_>l).
By Corollary 2.8, for each k >_ 1, one can find polynomials

P,(z) E bz
nk<_j <nk+

Now define
Therefore,

satisfying

[IPk [Ioo <-- B 2 [bl
<j<k- nk

//=b. hn,

and Ib) -> bl for nk <j < nk+,.

if m nk+ 1, s,,,# E=, Pk(Z).

k

IIs.ll Z liP,
/=1

_< n Ibl
l=l

k

< Bc Z (n,)
l=l

<_ Bc(,,,/
<_ Bcc (n,).

Hence I1.11 -< Bcc, (r) for r 1. By Theorem 1.4, # e A(ff). The desired
result is now immediate.

2.9 Remarks. (1) The function g constructed in the above-proof satisfies

I111 < n c, where B is a constant depending only on and

c sup bl (n).
n<l

(2) The harmonic case of Theorem 1.8(b) follows immediately from the
analytic case (of course). However, the harmonic case is easier to prove in the
sense that one can carry out a modified version of the above construction (for
harmonic functions) using only the result of de Leeuw, Kahane and Katznelson
[4] (i.e., without appealing to Kisliakov [7]). The modified construction is more
complicated, however.
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If q is such that h($) is invariant under harmonic conjugation (e.g., if
,(x) xa, a > 0), then the analytic case follows from the harmonic case. A. L.
Shields and D. L. Williams have recently obtained necessary and sufficient
conditions on q for h($) to be conjugation-invariant.
We close with a result on multipliers. First, we need a definition.

2.10 DEFINITION. If S1, S2 are sequence spaces, then (2.). is called a multi-
plier from $1 to S2 if (2.a.). 6 S2 whenever

Notice that, if S2 is a solid sequence space, then the multipliers from $1 to $2
are the same as the multipliers from the smallest solid space containing S to $2
(see [2]). Using this remark, Theorem 1.8(b) easily implies the following result,
which includes a result in [2].

2.11 PROPOSITION. Suppose Ifl(X)= )Ca, a > 0 (or more generally that d/
satisfies Y’,=o (2) -< ct(2")for all n >_ 1, some c > 0). Then a sequence (2,), is a
multiplier from A(d/) (regarded as a sequence space)to (0 < p ) and
only if

2 I,1/‘-’ (2" < m (if 0 < p < 2),
n= jeI.

Z 12ilp 0(2") < (2p<),
n=O

sup (p

(where I. [2", 2"+1)).
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