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EMBEDDINGS OF §$" x M IN $"*2 x M
FORM A GROUP

BY
STANLEY OCKEN'

Introduction

This paper describes group structures for a large class of codimension two
embedding problems. The classic example of algebraic structure in an embed-
ding problem is furnished by the knot cobordism groups of [9], [11], [13]. Our
general study uses homology surgery theory, first developed and applied to the
codimension two placement problem in [7].

Let M be an arbitrary k-dimensional compact manifold. This paper classifies
standard M-knots, i.e., embeddings f: " x M — §"*2 x M which are homoto-
pic, rel boundary, to the standard inclusion. Using a definition of cobordism
based on concordance of embeddings, we prove that the set G%(M) of cobor-
dism classes of such M-knots forms an abelian group in a natural way,
provided n > 2 and n + k > 4. This was known previously for M simply con-
nected [7] and for a certain class of non simply connected M [16]. Herein we
treat the general case by devising a variant of surgery theory which studies the
normal cobordism problem for simply split simple homotopy equivalences [5],
[8]. The desired group structure is obtained by exhibiting G'(M) as a subgroup
of a relative homology surgery group in this theory. For all M, we interpret this
group structure geometrically. When M is a point, Gi{(M) coincides with the
knot cobordism groups of [11], [13], wherein the group operation is defined by
taking connected sum of knots.

Two embeddings f, g: S" x M — S"*2 x M are called cobordant if fis con-
cordant to @fiy, where ¢ and y are certain allowable automorphisms of
S"*2 x M and S" x M respectively. The set of cobordism equivalence classes is
denoted G}(M); see Section 1 for a precise definition, as well as the reason for
including the superscript “t” in the notation. Our results are valid for M a
smooth (resp. piecewise linear, topological) manifold, provided we restrict
attention to smooth (resp. piecewise linear locally flat, topological locally flat)
embeddings and concordances, and require ¢ and ¥ to be diffeomorphisms
(resp. piecewise linear homeomorphisms, homeomorphisms). For simplicity,
discussions and results are stated for the smooth case.

The groups G}(M) do not, in general, satisfy the fourfold periodicity proved
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in [13] for the knot cobordism groups C,,, which correspond to G}, (point) in the
piecewise linear or topological cases. To remedy this, we defined in [16] a larger
cobordism set G,(M), based on embeddings in $**? x M of manifolds simple
homotopy equivalent to S” x M. In this paper, we construct a family of (abel-
ian) relative surgery obstruction groups I'§(¥), where W is a commutative
square functorial in 7,(M). Our main technical result is:

THEOREM 3. For n> 2, n+ k > 4, there is a bijective surgery obstruction
map 0: G,(M) - Iy . 5('F).

Since the groups I'j(¥) satisfy fourfold periodicity, we obtain G, (M) =~
G+ 4(M). The isomorphism is constructed geometrically as follows:

THEOREM 5. For n>2 and n+ k >4, there are geometrically defined
isomorphisms

-xCPp2

G(M) —— G\(M x CP?) —— G,(M x I*) —— G,+4(M)
(I= 0, 1)).

For related constructions in the simply connected case, see [7]. In particular,
this result provides a geometric interpretation of the periodocity of knot cobor-
dism groups; cf. [7], [2], [12].

The relative homology surgery groups I'j(¥) in turn depend on absolute
surgery groups L§(r), with = = n (M). These groups contain the obstruction to
finding a normal cobordism from a given normal map with target M x S' toa
simple homotopy equivalence which is simply split along M x pt, where pt is a
basepoint of S* [8], [5]. We exhibit a splitting

L¥(n x Z) ~ i, L(n)® L,-(n),

for n > 6. Note that both Wall groups which appear on the right are the groups
E(r), which study simple homotopy equivalences; cf. [17]. The groups L% are
related to the groups LY of [10], which study the “super-simple” homotopy
equivalences defined in [6].

In order to interpret geometrically the group structure in GY(M), we
consider, as in [16], the case that M has non-empty boundary. (Here, and
throughout this paper, the superscript “(¢)” indicates that we are discussing
either the fake or standard cobordism groups.) In this situation, an M-knot is
required by definition to coincide on the boundary with the standard inclusion.
As a result, G® (M x I) admits a groups operation, defined by “stacking”
embeddings along part of the boundary. For n > 2, this group structure coin-
cides with the algebraically defined one of Theorem 3 above. Furthermore,
there is a natural map
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obtained by viewing S"~! x M x I as a neighborhood of the equator in
S" x M. For M* any compact manifold, we prove:

THEOREM 1. Ifn + k > 4, the map GY_ (M x I) - GY(M) is an isomorphism
for n > 3, and an epimorphism for n = 2.

The commutativity of the stacking operation may be explained, as in [16,
Section 13], by studying the two stacking operations in G®. ,(M x I x I).

We obtain as a result the following “partial unkotting theorem” for M-knots.

THEOREM 2. Let f: S" x M — S"*? x M be a standard M-knot, with n > 2
and n+ k> 4. Let N be any (arbitrarily small) neighborhood of S° x M in
S"*2 x M. Then there exist diffeomorphisms ¢: S"*2 x M — S"*%2 x M and
Y: 8" x M —S" x M, and an M-knot g: S" x M — S"*2 x M such that:

(i) g coincides with the standard inclusion outside N.

(i) g=of.

Thus every standard cobordism class contains a representative which coin-
cides, away from two copies of M, with the standard inclusion. Theorems 1 and
2 generalize the result of [7] that the natural map #i,: C, 4 — G'(M), defined
by taking the connected sum of a classical knot with the standard inclususion,

is a bijection for M a closed, simply connected, piecewise linear or topological
manifold.

Section 1

We recall the definition of G(M), where M is a compact manifold with
possibly nonempty boundary. A parametrized knot in M, or more briefly a
standard M-knot, is an embedding f: S" x M — $"*2 x M which is homotopic,
rel 4, to the standard inclusion i, . Two M-knots f and g are conjugate provided
there exist difftfomorphisms

G: " x M52 xM and Y:S"xM->S"x M

such that:

(i) ¢ and ¥ are the identity on the boundary.

(ii) There exist homotopies rel 0, my¢p ~ my and myyy ~ ¥, where m, de-
notes projection to M.
The M-knots f, and f, are concordant provided there exists a smooth embed-
ding F: 8" x M x I - 8"*? x M x I, such that:

(i) F(x,i)=(fi(x), i) i=0,1;xe 8" x M.

(i) F coincides with i, on the boundary.
Finally, f and g are cobordant provided they are conjugate to concordant
M-knots. The set of cobordism equivalence classes so obtained is denoted
G;(M). Technically speaking, an M-knot comes equipped with a framing
f: 8" x M x D* - §"*? x M; we sometimes omit reference to the framing in
order to simplify the exposition. See [16, Section 1] for complete information.
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In order to realize the entire surgery obstruction group which we propose to
define, we must study fake M-knots. Such a knot is defined by a triple (f, X, &),
where:

(i) &:8"x M- X is a simple homotopy equivalence of manifolds which
has zero normal invariant and restricts to a diffeomorphism on the boundary.

(i) f: X > S"*? x M is an embedding such that f o ¢ is homotopic rel 0 to

the standard inclusion.
The definition of the cobordism relation is given in [16, Section 8]; the resulting
set of equivalence classes is denoted G,(M). Let To=S"x M x D* and
W, =D"*! x M x S* denote the corresponding tube and complement of the
standard embedding i,. Then there is an associated characteristic map
F: 82 x M —5"*2 x M such that:

(C1) npF ~my el d.

(C2) FIT=(f):T>T,.

(C3) The complementary map F = F|W: W — W, is a simple homology
equivalence with coefficients Z[r,(M)].

See [16, Section 2] for details.

The last condition motivated [7] to construct a surgery theory for studying
homology equivalent manifolds. We now indicate briefly the results of [7]
which we need.

Let n = n,(M), and let IT: Z[r x Z]— Z[n] = A be induced by projection.
Set d = n + k + 2, the dimension of W,.

First, there exists a surgery group I'(IT) for d > 5 which contains the
obstruction ¢(G, B) to finding a normal cobordism rel d from a given normal
map (G, B), G: W - W, to a simple A homology equivalence. Of course we
assume that G|dW is a simple A-homology equivalence to begin with [7, 1.7
and 2.1].

Next suppose given a normal map (F, B), F: W - W, with F a simple A-
homology equivalence of pairs, together with a surgery group element
y € Tyyy(T1). If d > 5, there is a normal cobordism (H, C), H: Z —» W, from
(F, B) to a normal map which we shall denote

(yF,y-B),y-F: y-W-oW,

also a simple homology equivalence of pairs, such that ¢(H, C) =y [7, 1.8 and
22].

This last result permits the construction of new M-knots by surgery, starting
from a given M-knot f with complementary map F: W — W, as follows. Since F
is the restriction of the simple homotopy equivalence F, F is covered by a
canonical bundle map which we shall henceforth not mention. Given
y € [y44(IT), construct y - F: y- W — W, as above. The manifold y- W will
be the complement of the new knot. Define

Yy E=(F)tuy W: Tuy WoTyu Wy=5"%x M;

note that the domain of this map is obtained by pasting the original tube to the
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new complement. Then y- F is homotopic rel & to a diffeomorphism g,
provided y is in I, ((IT), the kernel of the natural map I'y,(IT) - L4, 4(x).
Define

Y f=@|T)of: To-»8"*2 x M.

This yields a new M-knot, whose cobordism class depends only on that of f.
Hence there is an induced action of I, ,(IT) on G'(M). Similar remarks apply
to G,(M); see [16, Sections 4, 9] for details.

An important invariant of a cobordism class x € G¥(M) is its “Seifert surface
obstruction” p(x) € L, +1(n). This is defined to be the Wall surgery obstruc-
tion of the restriction of the map F: W — W= D"*! x M x S to the trans-
verse inverse image of D"*! x M x pt. We shall show later that the natural
map i: Gi(M) - G,(M) is injective, and that x € G,(M) is in the image of i if
and only if p(x) acts trivially on the simple homotopy triangulations of D" x M.
This is the reason for the “t” in the notation “G,(M)”.

Section 2

This section determines the isotropy subgroup of the trivial cobordism class
under the action of I, ,(IT). Let
k*: Ld+ 1(7[ X Z) - rd+ I(H)
be the natural map, and let
X 81 Ly(m) = Lgs4(n x Z)

be induced by crossing normal maps with a circle [17]. The composite
k(- x S') is easily seen to take values in ", ;(TT), which vanishes if d is even
[16, p. 18].

PROPOSITION 1. Let ae Ly(n), d>6. Then ky(ax S') - x=x for all
x € GO(M).

Remark. The lack of this result in [16] forced the author to assume that
k,(- x S')is the zero homomorphism. For reasons that will become clear later,
it was in fact necessary to assume that the composite

L"(n) == L(n x Z) —=*— (1)

is zero. This is the circle perfect condition on n = n,(M) [16, Section 17].

Proof. For convenience, we consider only the case x € G%(M). Minor varia-
tions of the proof yield the result in the fake case; see [16, Sections 8-10] for
necessary information.

Let F: W — W, be the complementary map of a knot in the cobordism class
x. By [7, 13.7], we may assume that F induces an isomorphism on 7,. We shall
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use the diffeomorphism f: T, — T to identify Toand T.Setd , W = 0W n 0T;
note that this is identified with $* x M x S =8, W,.

Let y = k,(« x S*). We construct y - F by doing surgery on id, to obtain a
simple homotopy equivalence (x x S*) - id, ; then

y+F=Fo ((axS')-idy).

Since L,(n,(0+ W)) — L,(n,(W)) is an epimorphism for all n, the surgery may
be performed on a collar neighborhood oW x I of W in W. Write
W=0,WxI|)swxoW.

Ifd>6,let h: X ->S" x M x I be the simple homotopy equivalence ob-
tained by using « to do surgery rel @ on idg.. . as in [18, 5.8 and 6.5]. If
d > 7, the s-cobordism theorem yields a difftomorphism &: 8" x M x I - X
such that

hol:S"xMxI—->S"xMx1I
is a homotopy from idg., y xo to a diffeomorphism
Y:S"xMx1-8"xMx 1.

Write 0 = h x S* and y = k,(« x S*). We have realized our desired surgery
obstruction by the map of collars

0: X xS' 50, W, x I

Pasting back the tubes and complements, we see that y - F is the composite

T U (X < Sl) U W WxD?uevid

SnxMx1 SExMx0
TU@WxI)uoW—— §%2 x M.

This follows from naturality of surgery obstructions. Then v - fis, by definition,
(9| T) o £, where f: T, — T is the given framed knot and g is a diffeomorphism
homotopic rel 8 to y - F.

To see that y - fis cobordant to f, construct the difftfomorphism

O=@W"'xD*)u (¢ 'xSHuid:
TOXxXxSY)YUW-STu @, WxI)uW=8*"2xM
Then 7y - f may be rewritten as the composite

T, LT gnr2 o pp 207 gnr2 oy
Now observe that (® | T) o f=fo (! x D?)asaresult of our identification of
T, and T. Hence y - fis cobordant to f as desired.

The s-cobordism theorem used in the above argument fails when d = 6. The
proposition may be proved in this case by using a modified definition of G¥'(M)
in the case n+ k=4; see [16, pp. 43, 59]. We leave the details to the
reader. M
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Conversely, [16, 6.2 and 10.6.2] show that if d > 5 and y e [, ,(IT) acts
trivially on x, € GP(M), then y = k,(x x S*) for some o € Ly(n). It follows

that k,(L4(n) x S*) = T'y+,([T) is the isotropy subgroup of x, for
d=n+k+22>6.

Section 3

The next part of this paper is devoted to showing that k(L {r) x S') is the
isotropy subgroup for all classes x € G ,(M). To accomplish this goal, we follow
the idea of [16, Section 11] and try to map G (M) to an appropriate relative
surgery group. Specifically, we wish for a diagram with exact bottom row

L) M L) — G,
N N lo
kx(* X S1), iy m
Lu{m) @ Las 1(m) = Ty y(IT) — Tyay(?)
in which the right-hand square commutes, i..,
0(y - x) = m,(y) + 0(x) for ye 'y, (1) and x € G,(M).

It will then follow formally that the isotropy subgroup of x € G (M) is indepen-
dent of x; cf. [16, Section 12].

In order to construct the group at the lower left, we in turn need a Wall
surgery group for n, = ® x Z, which satisfies a splitting

L y(m x Z) ~ i Lyy1(n) ® Ly(m) x S*.

In the usual splitting of L, ,(z x Z) [17], we encounter the group L%=) x S*
because the group Wh(n) gives rise to an obstruction to finding a simple
splitting of a simple homotopy equivalence [8], [5]. We apply the methods of
[18, Section 9] to construct the group L**(n x Z); here the superscript stands for
“simply split”.

Consider a Poincaré pair (Y, X), together with a codimension one Poincaré
subpair (y, x) with trivial normal bundle. A simple homotopy equivalence
f: (N, M) (Y, X), where (N, M) is a manifold pair, will be called simply split
along (y, x) if f and f|M are transverse regular to y and x respectively, and if
F1(f~2W)f~ (x)) is a simple homotopy equivalence of pairs. Briefly, we call f
as ss-equivalence along (y, x).

If F: W — W, is the complementary map of a standard (resp. fake) M-knot, it
follows from [16] that

OF: 0, W—0d,W,=8"x M x S!

is the product of a difffomorphism (resp. simple homotopy equivalence) with
idg:, hence OF is an ss-equivalence along S” x M x pt. Furthermore, if an
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M-knot is conjugate to iy, its complementary map is an ss-equivalence along
(D" x M x pt, S" x M x pt).

These facts indicate the role of simple splitting in the study of G¥(M).

Let (£, b),f: (N, M) — (Y, X) be a normal map. Assume given a subpair (y, x)
of (Y, X) as above, with y = Y inducing the natural inclusion 7 — 7 x Z of
fundamental groups, and that f|M is an ss-equivalence along x. We now
proceed to the construction of L*(n x Z), which contains the obstruction to
finding a normal cobordism rel  from (f; b) to a normal map (g, c), with g an
ss-equivalence along (y, x).

Let K be a CW-complex with finite 2-skeleton and

w: ny(K)—- {1}

a homomorphism. As in [18, Section 9] we have in mind the case K = K(=, 1)
with 7 a finitely presented group. We now construct a group based on unres-
tricted objects over K x S!, with additional data provided by a codimension
one surgery problem. Specifically, let an object consist of data

0=(Y,X,v,N,M, ¢, F, w, y, x, n, m).

Here, the first eight entries define an unrestricted object over K x S*, as in [18,
p. 86]. In particular, recall that ¢: (N, M) — (Y, X) is a degree one map from a
manifold pair in dimension n to a Poincaré pair, and that w is a map from Y to
K x S'. To this we add the following structure: (y, x) is a codimension one
subpair of (Y, X) with trivial normal bundle. The map w: K x S! is transverse
regular to K x 0 = K x S!, with

(@, @] X)"(K x 0) = (v, x)

Here 0 € S! is a base point, and in the future we will think of S' as
[0, 27]/0 ~ 2n. In addition, ¢ is transverse regular to (y, x) = (Y, X), and
(n, m)= ¢~ 1(y, x). Let $|M,,: M,,— X, be the map obtained by splitting
¢|M along m, as in [4], [17]. We require finally that ¢|m and ¢|M,, be
homotopy equivalences. As usual, the fundamental classes [N] and [n] are part
of the structure of ; we obtain the object —@ by reversing their signs.

Next, define an object 6 as above to be null equivalent (write 6 ~ 0) if there
exist data

((Za Ya Y+), l’t, (P, N, N+)a l//’ Ga Q9 (Z, y, Y+), (P, n9 n+))

which extend the object 6, as in [18]. Here, (Z, Y, Y.) is a Poincaré triad of
dimension n+ 1, with Y n Y, =X, and (z, y, y,) is a codimension one
Poincaré subtriad with trivial normal bundle. The map Q: Z—» K x S' is a
transverse regular (to K) extension of w: ¥ - K x S, with

(Q’ Ql Y’ Ql Y+)_1(K)= (Z’ Y )’+)~
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Similarly, ¥: (P, N, N.)—>(Z, Y, Y,) extends ¢, is transverse regular to
(zy,y+)andy~1(z,y,y+) = (p, n, n.). Finally, y/|n, and y| N, must be simple
homotopy equivalences. Now write 8, ~ 0, if the object 8, + 0,, obtained by
taking disjoint unions, is null equivalent. As in [18], we obtain an abelian group
of equivalence classes under ~, which we denote L¥(K x S'). Let Li(K)
denote the Wall group based on unrestricted objects over K; recall that

LY(K(m, 1)) ~ L,(n, w)
provided n > 5 [18, 9.4.1).2

PROPOSITION 2. There is a natural split short exact sequence

i

0 LYK) —» L¥(K x §') =~ L!_ (K) — 0.
Proof. Let ¢=1, say, and define i: K — K x S' by i(k)=(k, ). Let
p: K x S - K denote the projection. Given
a= (Y, X,v, N, M, ¢, F, w)e L}(K),
define an object i,(x) € Li¥(K x S*) by including null subobject data:
is(@)=(Y,X,v,N,M, ¢, F, iow0,0,00).

Similarly, given 6 representing a class in L¥*(K x S'), define an object p ,(6)
over K by omitting the subobject data and replacing w by pc w: Y - K. It is
easy to check that i, and p, induce well-defined homomorphisms

iy: La(K) > L(K x S*) and p,: L¥(K) - Li(K)

with p, i, the identity. Hence, i, is injective.

The splitting map s, sends an n-dimensional object over K x S* to the
(n — 1)-dimensional object over K obtained by restricting maps and bundles to
the subobject data. We may write

s40)=(y, x,v|y, n,m, vin, F|N, w|y)
for 0 as specified above. This induces a homomorphism
St LK x SY) > Li_ (K).
Finally, crossing with a circle defines in an obvious way a homomorphism
- x ST L ,(K)—> L#(K x S*)

such that s, (¢ x S') =« for a € L;_,(K). Hence s, is onto.

To prove exactness, let [6] be a class in L}¥(K x S') such that s,([6]) = 0. By
cobordism extension [3], 6 is equivalent to an object, still denoted 6, in which
@ |n: (n, m) > (y, x) is a simple homotopy equivalence of pairs. Split

¢:(N,M)->(Y,X) and w:Y->K x §?

2 Henceforth we omit reference to the orientation character and write L,(r) for L,(r, w).
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along y and K x O respectively, thereby obtaining maps
¢s: (N 2n U M,)) > (Y, 2y U X,) and o5 Y, > K x [¢ 21 — ¢].

Note that the boundary of Y, for instance, consists of two disjoint copies of y,
each glued to X, along a copy of x. By Mayer Vietoris sequences for homotopy
equivalences and Whitehead Torsion [18], ¢, is a simple homotopy equivalence
on the boundary; recall that ¢,|M,, is required to be a simple homotopy
equivalence in our definition of objects. Let w: Y, — K be the composite of w,
followed by projection. Then the data obtained by restricting attention to the
split maps ¢, and w define an object B representing a class in L}(K).
We claim that i ([f]) = [6]. Recall the 12-tuple which defines 6, and set

V=¢xI:NxI=P->Z=YxI (I=[0,1])
Q = (projection) o (w x I): Y x [ » K x §* x - K x S*.

From Q and y, extract the information for defining an equivalence i ,(8) ~ 6 as
follows. Let
z=yx1
yr=yx1ludyxlI
p=nxlI
ny=nxluodnxlI
Yo=Y x0
Y= (o x 1)"}K x [¢ 2n — ¢])

Y, =0(Y xI)— (Y, U ).

It is easy to check that these data, together with obvious unmentioned bundle
data, define an equivalence between the objects over K x S! defined by data
along Y, and Y, respectively. But the data along Y, define the object 6, while the
data along Y; define an object which is clearly equivalent to i ,(8). Hence
i,([B]) = [6] as desired. W

We now write Li¥(n x Z) = L¥(K(m, 1) x S*). It follows from [18, 9.4.1] and
the last result that there is a canonical splitting for n > 6:

L¥(n x Z) ~ i, L(n)® L,_ () x S*.

To apply this result, consider an n-dimensional Poincaré pair (Y, X) and an
(n — 1)-dimensional subpair (y, x) with trivial normal bundle. Assume that the
inclusion y = Y induces the inclusion # — n x Z of fundamental groups. Con-
struct a map w: Y — K x S!, transverse regular to K x 0, such that

(@, 0| X)"1(K x 0) = (v, x)
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Let (£, ), f: (N, M)~ ) (Y,X)be anormal map, transverse regular to (y, x), and
as usual set (n, m) = (f, f |M)~'(, x). Assume that f | M, f |m, and f | M, are
all simple homotopy equivalences. It is clear that these data define an object
0(f, b) over K x S, representing a class o(f, b) € L(n x Z).

PROPOSITION 3. Assume that n > 6, Y, and y are connected, and (f, b) is a
normal map as above. Then o(f, b) = 0 if and only if (f, b) is normally cobordant
rel 0 to an ss-equivalence along (y, x

Proof. 1If (f, b) is normally cobordant rel 0 to an ss-equivalence, it follows
immediately from the definitions that 6(f, b) ~0. Conversely, assume
6 =0(f, b)~0 and n > 6. By Proposition 2, s(0) ~0 in L}_,(K)~ L,_,(r)
[18, 9.4.1]. Since y is connected, the restriction of (f, b) to (n, m) is normally
cobordant rel 0 to a simple homotopy equivalence of pairs. By a cobordism
extension argument, we may perform a normal cobordism of (f, b), thereby
obtaining an equivalent object, still denoted 6(f, b), such that (f, b)|(n, m)is a
simple homotopy equivalence of pairs. Split (f, b) along (n, m); it follows si-
milarly that a further normal cobordism will yield an equivalent object 6(f, b)
whose restriction to (N ,, d(N ,)) is also a simple homotopy equivalence of pairs.
That (f, b) is a simple homotopy equivalence, and hence an ss equivalence
along (y, x), follows as usual from Mayer-Vietoris sequences. WMl

Section 4

We are now ready to define the relative homology surgery group which
realizes G,(M). Let = = = (M), let

I: Z[r x Z] - Z[x]
be the group ring homomorphism induced by projection, and W: id ,, x ;,— IT

the commutative square

Z[n x Z] —— Z[r x Z]

-

Z[n x Z] ——  Z[n].

Now recall that the construction of relative surgery groups in [18, Section 9]
and [7, Section 3] is based on the definition of surgery groups in terms of
unrestricted objects. Hence we may use our definition of L{*(x x Z)and that of
[7] for T(IT), to produce a relative group, denoted I'$*(¥), which fits into a
sequence

2 1(P) = Li(n x Z) > T,(IT) - T35(¥)

which is exact for n > 6; cf. [7, Section 3].
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The group TI}(¥) solves the following surgery problem. Fix an n-
dimensional Poincaré triad (Y, X _, X ,) together with a Poincaré subpair
(x, 0x) of (X ,, 0X ) with trivial normal bundle. Assume that the inclusions
x < X, < Y induce the homomorphisms 7 - X Z = n x Z on fundamental
groups (and that these three Poincaré complexes are connected). Then the
following is proved precisely as in [18, Section 9] and [7, Section 3] by using
Proposition 3 above:

PROPOSITION 4. Given data as above, let
(F,B), F:(NNM_,M,)->(Y,X_,X,)

be a normal map which is transverse regular to (x, x), with preimage (m, om).
Assume that F|M_ is a simple homology equivalence over Z[r] and that
F|0M_ = 0M . is an ss-equivalence along dx. Then there is a relative surgery
obstruction o(F, B) € T'(¥) which vanishes (for n > 7) if and only if (F, B) is
normally cobordant rel M _ to a normal map

(G,C), G: (Q, P_, P,) > (Y, X_, X.)

such that G is a simple homology equivalence over Z[n) and G|P, is an ss-
equivalence along (x, 0x). B
We are now prepared to define the relative surgery obstruction map

0: G, (M)->T,.(¥), whered=n+k+2,

and k is the dimension of M. Let F: W — W,=D"*! x M x S! be the com-
plementary map of an M-knot. As observed in [7, Section 13], F is the restric-
tion of the homotopy equivalence F, hence is covered by a canonical bundle
map (which we will henceforth not mention). In the notation of Proposition 4,
and following the argument of [16, Section 11], set

Y=W,x1I
X_ =Wx0
X, =Wyx1uooW,xI
x=D""'xMxptx1udD"!xM)xptxI
where pt denotes a base point of S*. Decompose W x I similarly; it is easy to
see that the normal map F: W x I - W, x I satisfies the hypotheses of Propo-
sition 4. Hence the surgery obstruction o(F x I) e I'y,,(¥) is defined and
solves the surgery problem described provided d > 6. It follows as in [16,

Section 11] that o takes the same value on cobordant knots, hence defines a
map 0: G,(M) - I'{,, (¥). Furthermore, the diagram

L,(m) L, r‘a+ 1(IT)

ky(c x S)
B

G, (M)
xSt la) [}

k
ir1(m x 2) —— T (M) ——— T3 (P)
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commutes [16, p. 69]. The bottom row is exact provided d > 5. Then Proposi-
tion 1 and [16, 6.2 and 10.6.2], applied to the above diagram, yield the fun-
damental technical result which we have been seeking:

PROPOSITION 5. Assumed > 6, x € GO(M),andy € Ty, (TI1). Theny - x = x
if and only if y = k(o x S*) for some o € L().
Let p: G,(M)— L, (n) be the composite

GW(M) —— L3(n x Z) —*> Ly—(n)

where ¢ measures the surgery obstruction of the complementary map. In the
case that M is a point, p measures the index or Arf invariant of the Seifert
surface. Combining [16, 10.5.1 and 10.7.1] and Proposition 1, we obtain:

PROPOSITION 6. Let d > 6, n > 2. Then the sequence

Ly(m) =5 Tuaa(ll) S Gy(M) S Ly-yfw) = T(I)
is exact. Ifd > 6, n = 0 or 1, the sequence is exact at T, {(IT) and L,_ ,(r), and
p(y - x) = p(x) for y € Ty, (TT), x € G,(M).
Of course, we mean that the sequence is exact in the strong sense that
y-x=xiff y = k(o x S*) for some « € Ly(n) and p(x) = p(y) iff x =y y.
The path to our final results is clear. It is easy to see that the natural
splittings

Ly y(n x Z) & Ly 1 (n) @ Ly(m) x S* and Ty y(I) & L 1(m) @ Ty 1(IT)
are compatible with the natural map

k*: L§s+ 1(7'[ X Z) b d Fd+ 1([[).
It follows that there is an exact sequence

L y(n x Z) =% Ty y(T) =2 G(M) —2 L(z x Z) — T(I)
given the hypotheses of Proposition 6. Then the surgery obstruction map
6: G,(M) - I'$%, {(¥) defined above induces a map from this sequence to the
exact relative surgery sequence for I';, (V). See [16, Section 11] for the (nontri-
vial) proof that the appropriate diagrams commute; the crucial result [16, 11.2]
is based on the definition of surgery groups in [18, Section 9] and carries over to
our case. The Five Lemma immediately yields:

THEOREM 3. Assume n + k > 4. Then 0: G,(M*) - TS5, . 3('¥) is a bijection
for n > 2 and a surjection for n > 0.

Section §

The theorems of the introduction follow immediately from Theorem 3 and
the definition of jy: G¥ (M x I) > GP(M). Recall that an (M x I)-knot
f:8" 1 x M x I - 8" x M x I coincides with the standard inclusion i, on
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the boundary. Embed S"°!x M x I as a tubular neighborhood of
S"! x M = 8" x M; similarly for $"*! x M x I. It follows that f extends to
an M-knot

m(f): S"x M > S""2 x M

which coincides with i, outside S"~! x M x I. It is easy to check that this
induces a well-defined map

Jm: G2 (M x I)> GP(M) [16, Section 13].

Then, naturality of surgery obstructions and Theorem 3 imply that
ju: Gu—1y(M x I)> G,(M) is a surjection for n + k > 4 and a bijection if, in
addition, n > 2. This proves the fake M-knot assertion of Theorem 1 of the
introduction.

As noted in the introduction, G2 ,(M x I) admits a natural group structure,
defined by “stacking” of embeddings. Here the essential fact is that an
M x I-knot is required to coincide with the standard inclusion on M x 01l ; see
[16, Section 13] for a precise definition. Furthermore, naturality of surgery
obstructions implies that the composite

GO (M x I)>GOM) 5 T,,pss(P)
is a homomorphism for n > 1. For n > 2, this provides a geometric interpreta-
tion for the group structure induced on G,(M) by the bijection 6.

We now turn to the computation of G(M). Define L, ;. (n, M) to be the
subgroup of L,...(n) which acts trivially on the class of idp..y in
(D" x M), the set of simple homotopy triangulations of D" x M rel 0. The
next result follows from Proposition 1 and [16, 5.1 and 7.1].

PROPOSITION 6. Letd=n+k + 2> 6. If n > 2, the sequence
Lym) =55 Ty y(T) = GYM) 5 Li-y(n, M) =25 Ty(10)
is exact. If n =0 or 1, the sequence is exact at T, (1) and L';_ (n, M), and
p(y - x)=x for y e Tyy4(TT), x € G,(M). W

Now consider the natural map j,: G',_ (M x I)— G(M). To prove the
assertion of Theorem 1 that this is a bijection for n > 2 and a surjection for
n > 0, note that

Lyyxra(m, M) = Lin—1y+ @+ 1)+ 1(m, M x I).

The map j,, therefore induces a map of the sequences for G!,_ (M x I) and
G} (M) given by Proposition 6'. The Five Lemma yields the desired result. As
before, stacking of embeddings defines a group structure on G, _ (M x I); the
map j,, induces a group structure on G4(M) for n > 2. Note that iteration of j,
induces a surjection

GH(M x I") - Gi(M);
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together with the definition of cobordism, this proves Theorem 2 of the
introduction.

Let Li(n, M) = L(rn)/L{(r, M). Then a comparison of the exact sequences of
Propositions 6 and 6 yields:

THEOREM 4. Assume n > 2, n + k > 4. There is an exact sequence of abelian
groups
0- G,(M)- G,(M) -~ Loiis1(m, M) > 0.

By the argument of [7, 3.6], the groups I'$;, ;('P) satisfy fourfold periodicity
for d > 6. By Theorem 3, there is a group isomorphism G (M) ~ G, 4(M) for
n > 2. As shown in [16, 16.2], this isomorphism may be realized geometrically
by combining the following three isomorphisms:

(i) G,(M)—- G,(M x CP?), obtained by crossing an M-knot with id¢p.,

(i) G,(M x I*)> G,(M x CP?), induced by the inclusion of a 4-disc in
CP?, and

(iii) G,(M x I*)> G, (M), the fourfold iteration of the map jy,.

This yields Theorem 5 of the introduction. A similar argument in [7] in the
special case that M is a point provided the first geometric proof of the periodi-
city of knot cobordism. For other explanations of knot periodicity, see [12], [2].

Our next result states necessary and sufficient criteria for unknotting
M-knots up to cobordism. First we need a definition. A map of manifolds
S+ (M, d0M) — (N, ON) is a collared diffeomorphism if it is obtained by gluing a
level preserving homotopy dM x I — 0N x I to a diffeomorphism M — N;
here as previously M is the closure in M of the complement of the collar
neighborhood 0M x I of M. Assume as usual that n > 2, n + k > 4.

THEOREM 6. Let F: W — W, be the complementary map of a standard (resp.
fake) M-knot f. Then fis cobordant to the standard embedding i if and only if F is
Z[ry(M)]-homology s-cobordant, rel boundary, to a collared diffeomorphism
(resp. to a map) which is an ss-equivalence along

(D" x M x pt, S" x M x pt).

Proof. 1t follows easily from [16, 3.1] that the complementary map of a
standard M-knot conjugate to i, is both a collared difffomorphism and an
ss-equivalence of the desired type. A similar but easier argument shows that the
complementary map of a fake M-knot conjugate to i, is an ss-equivalence. By
the argument of [16, 3.1], concordant (fake or standard) M-knots have
Z[n,(M)]-homology s-cobordant complementary maps. This proves the “only
if” part.

Conversely, assume that the complementary map of a knot in the cobordism
class x has the desired property. By Proposition 4, the relative surgery obstruc-
tion 6(x) (resp. 0i(x)) of the fake (resp. standard) cobordism class x vanishes.
Here, i: Gi{(M) — G,(M) is the natural map. Since 6 and i are both injective
(Theorems 3 and 4) it follows that x = x,, the trivial cobordism class. W



EMBEDDINGS OF 8" X M IN §"*2 x M FORM A GROUP 251

Finally, we state an easy corollary of Propositions 6 and 6’, and the vanishing
of T, (TT) in odd dimensions.

THEOREM 7. Assume that n>2 and n+ k >4 is even. Then G, (M) and
G (M) are subgroups of L, +(7). W

This generalizes the vanishing of the even-dimensional knot cobordism
groups C,. It follows that even-dimensional M-knot cobordism groups are
finitely generated if M is compact and n,(M) is finite [18], [1]. In contrast, C,,is
not finitely generated for n odd [11], [15]. In fact, Levine has shown that (for
n>3) C, is an infinite direct sum of infinitely many copies of Z, Z,, and Z,
[13]. Since the natural map #iy: C,if— GP(M) is a monomorphism [16,
16.3], it follows that G¥(M) is never finitely generated when n + k is odd.
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