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O. Introduction

Let G be a topological (or more generally semitopological) group. A com-
pact semitopological semigroup S, together with a continuous homomorphism
b: G - S is called a semitopological compactification of G if b(G) is dense in S.
Such compactifications appear as a natural object of study in harmonic
analysis; in fact, the universal semitopological compactification, the weak
almost periodic compactification, has been studied rather extensively (cf. Eber-
lein [7], de Leeuw-Glicksberg [9], [15], Berglund--Hofmann [1], Taylor [22],
Burckel [5], just to mention a few.) However it seems that most attention has
been given to properties of the function space associated with S, not to the
structure of S itself. Comparatively few general theorems about the structure of
S have been established; as the most important results we cite the following.

(i) The minimal ideal of S exists and is a compact topological group [21].
(ii) The multiplication of S is jointly continuous at all points (s, 9) and

(g, s), where s 6 S and g 6 b(G)[13].

Given the structure theory of compact semitopological semigroups, state-
ment (i) is equivalent to"

(i’) The idempotents in the minimal ideal of S are central in S.

The first and central result of this paper can be considered as an extension of
statement (i’): we show that if the group (3 is connected and locally compact
then all idempotents in S are central. This result and the techniques of its proof
give birth to various other structure theorems, which in some cases allow a very
detailed description of the weak almost periodic compaetifieation of a non-
abelian connected locally compact group in terms of semitopological
compactifications of abelian ones. In particular, we show that the remainder of
the weak almost periodic compaetification of the affine group (R +, () (R, +
is isomorphic to the weak almost periodic compactification of the reals; this
example also contradicts an erroneous statement by Burekel [5], that in the
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weak almost periodic compactification of a locally compact group G the clo-
sure of a normal subgroup H is isomorphic to the weak almost periodic
compactification of H. (It is shown in the appendix that this statement becomes
true if H is supposed to be central in G.) Furthermore, we deduce a theorem on
the structure of the weak almost periodic compactification of a connected
simple Lie group, which as a special case includes the recent result of Veech
[23] that the weak almost periodic compactification of a non-compact con-
nected simple Lie group with finite centrum must be a one-point
compactification. Thus, the results of this paper provide further evidence for
the general feeling that the structural complexity of the weak almost periodic
compactification of a locally compact and connected group is mostly due to
"abelian" features of the group; definitely non-abelian (and non-compact)
groups are too "rigid" to be bent and plunged into "sophisticated" compact
semitopological semigroups. (This philosophy does not apply to non-
connected groups; for discrete groups the above statements are false (cf. 2.19).)

1. Preliminaries

1.1. In dealing with algebraic properties of semigroups we use the notation
and terminology of Clifford-Preston [6], if not explicitly stated otherwise.
Multiplication is usually denoted by simple juxtaposition; if A, B are subsets of
a semigroup S then we write AB for the set (ab a A, b B; similarly
sA {sa [a A} and As {as [a A} for any elements S.

If e, f are idempotents in a semigroup then we write e _<f if ef= e and
e _< g f if fe e; we write e _< f if ef= fe e. Note that the relation "_<" is a
partial order whereas "_</" and "_< g" are in general only pre-orders (i.e., they
are reflexive and transitive but not necessarily antisymmetric). The set of all
idempotents in a semigroup S is denoted with E(S). The maximal subgroup
H(e) belonging to an idempotent e in a semigroup S is the set

{x eSe xeSe eSex eSe},
i.e., the set of all elements in eSe which have an inverse with respect to e.
The identity of a semigroupmif it existsmis usually denoted with 1, without

reference to the semigroup considered. The maximal subgroup belonging to 1 is
called the group of units.

1.2. A semigroup is called semitopological if it is endowed with a Hausdorff
topology rendering the left and right translations x - ax and x - xa contin-
uous. If a semitopological semigroup is algebraically a group, lattice etc., then
we speak of a semitopological group, lattice etc.

1.3. If A, G, H,... are Lie groups then the associated Lie algebras are
denoted with the corresponding gothic letters [, fro, , Let G be a Lie
group, if0 its Lie algebra. Following the general custom we write (ad x)y
[x, y]. The adjoint representation G- Aut ff induces an action G x if0- fro,



390 WOLFGANG RUPPERT

(g, x) --. g. x and we have exp (g. x) g(exp x)g- , for all g G, x (b. If x is
an element of fir then we write (Ad x)y instead of

1
(adx),y"expx.y= .n=0

All Lie algebras are assumed to have been equipped with a Euclidean norm,
such that the norm of a subalgebra . of a Lie algebra (b is induced by the norm
of (.

1.4. We shall need the following version of Iwaswa’s decomposition
theorem (cf. Helgason [10], p. 234).

THEOREM. Let G be a connected semisimple Lie group. Then there are closed
subgroups K and H of G such that

(i) the adjoint representation G Aut if) maps K onto a compact group;
(ii) H is simply connected and solvable;
(iii) the map K x H G, (k, h) kh, is a diffeomorphism (thus afortiori a

homeomorphism).

1.5. If T is a semitopological semigroup, q" T- S a continuous homo-
morphism from T to a compact semitopological semigroup S, then the pair
(S, b), is called a semitopological compactification of T if 4)(T)is dense in S. If no
ambiguity can occur then we omit the reference to the compactification map
and speak of the "semitopological compactification S of T". (Notice that if T
contains an identity, then must be identity-preserving, by continuity.)

Clearly, every subsemigroup H of a compact semitopological semigroup
gives rise to a canonical semitopological compactification H - H. Throughout
this paper the letter S will always indicate a semitopological compactification
of a group G.

1.6. If S is a semitopological compactification of a semitopological group G
then the left action of G on S, G x S S, is defined by

the right action S x G - S by

These actions are (jointly)continuous, by a theorem of Lawson [13] (see 1.8.
below). (It is the philosophy of this paper to study semitopological
compactifications of groups just by investigating the properties of these
actions.) Since no confusion is to be feared, we frequently omit the dot, thus
simply writing gs instead of dp(g)s, so instead of sdp(g). It is easy to see that for g,
h G, s S, we always have (9" s). h 9 (s h); therefore, expressions such
as g-s9 or 9sh, g, h G, s S, are not ambiguous.
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1.7. Every compact semitopological semigroup contains a minimal ideal
(see Berglund-Hofmann [1], p. 67 for example). For a semitopological
compactification of a group, the structure of the minimal ideal is particularly
simple. The following theorem essentially goes back to Ryll-Nardzewsky [21],
(cf. aerglund-Hofmann [1], p. 142).
THEOREM: The minimal ideal ofa semitopolooical compactification ofa oroup

is a compact topological oroup.

(Clearly, the identity of the minimal ideal is a minimal idempotent, with
respect to each of the relations <, <, <.)

1.8. By a famous theorem of Ellis [8], a locally compact semitopological
group is already a topological group. This result is contained in the more recent
theorem of J. D. Lawson [13], [14], given below.

THEOREM. Let X be a compact Hausdorffspace, T a compact semitopological
semioroup with identity 1. Suppose that z: T x X X satisfies the followin9
conditions.

(a) rr is an action of T on X: r(st, x)= rr(s, zr(t, x)) for all x X, s S.
(b) rr(1, x)= x for all x in X.
(c) rc is separately continuous; i.e., the maps

X -+ X, x --+ re(to, x) and T-+ X, -+ rt(t, Xo)
are continuous for all to T, Xo X.
Then rt is (jointly) continuous at all points (0, x), where H(1)and x X. In
particular, every suboroup ofa compact semitopolooical semigroup is a topolooi-
cal 9roup.

1.9. The study of semitopological compactifications of groups is facilitated
by the existence of universal semitopological compactifications.

Let T be a semitopological semigroup. A bounded continuous function
f: T C is called weakly almost periodic if the translates x -,f(tx), t T, off
form a weakly conditionally compact set. The multiplication of T extends
canonically to the Gelfand space of the weakly almost periodic functions on T,
thus inducing a semitopological compactification of T. This compactification is
called the weak almost periodic compactification of T.

1.10. THEOREM. The weak almost periodic compactification is universal.

In other words, if T is a semitopological semigroup, (S, tk) its weak almost
periodic compactification, then to every semitopological compactification
there exists a continuous homomorphism V rendering the diagram

T ,S

S’
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commutative. (cf. Berglund-Hofmann [1], p. 120 ff.) By this universality it is
obvious that a property holds for all semitopological compactifications of a
group if it holds for the weak almost periodic compactification and is preserved
under continuous surjective homomorphisms.

1.11. If G is a locally compact topological group then the one-point
compactification G w {co} can be made into a compact semitopological semi-
group; we only have to extend the multiplication of G by defining
coo 9co co. Thus if G is locally compact then it is imbedded homeomor-
phically onto an open subset of its weak almost periodic compactification and
we may consider G as an open subset of its weak almost periodic
compactification.

1.12. The following proposition is convenient for the study of semi-
topological compactifications of projective limits of Lie groups. The proof is
left to the reader. (Hint: use Theorem 1.8.)

PROPOSITION. Let S be a semitopological compactification of a topological
group G. IfN is a compact normal subgroup ofG then Ns sNfor all s S (i.e.,
to every n N there are n’, n" N with sn n’s and ns sn"). The given multi-
plication orS induces a multiplication on the orbit space S/N, so that SIN becomes
a compact semitopological semigroup. Also, the compactification map : G - S
induces a compactification map CG/N: GIN - SIN and if clb is injective then so is

/

We call (S/N, (G/N) the quotient of (S, b) by the compact normal subgroup
N of G. This is not to be confused with the Rees quotient S/1, where I is a closed
ideal (which is collapsed to a zero element by the quotient map).

1.13. We conclude this section with a remark on the iclempotents in a
compact semitopological semigroup.

PROPOSITION. Let T be a compact semitopological semigroup with identity
and suppose that its idempotents commute with each other. Then the idempotents
of Tform a complete lattice with respect to the ordering <_, introduced in 1.1.

Proof Since the idempotents of T commute, they form a subsemigroup
E(T) of T. If A is a set of idempotents then the set

B= {e e T [e: e, f ef for all feA}
is closed in E(T) (not necessarily in T). The set B is not empty since it contains
1. By Lemma 2.10 of [20], B must contain a minimal element a. Clearly
aa’ E(T) and aa’ < a for all idempotents a’ in A, so a is unique, a sup A.
In the same way it follows that inf A exists, which finishes the proof.
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2. The main theorem

2.1. In this section we prove the central result of this paper which was
announced in the introduction. For the sake of technical simplicity it is conven-
ient to prove a slightly stronger result.

THEOREM. Let G be a locally compact topological group, S a semitopological
compactification ofG. Furthermore, suppose that the identity component Go ofG
is open in G and that there is a discrete central subgroup D with G Go D. Then
the following statements hold:

(i) All idempotents ofS are central. (Thus E(S) is a complete lattice, by 1.13.)
(ii) If, in addition, Go is solvable then sG Gsfor all s in S (i.e.,for all s S,

g G there are elements g’, g" G with sg g’s, gs sg").

2.2. Actually, (ii) is shown mainly to help prove the more important (i). The
reason for admitting non-connected groups G will become clear later when we
use an Iwasawa-type decomposition (2.14.) of G to establish. (i) by applying a
special case of (ii). Note that in (ii), Gs sG implies sS Ss for all s in S (by the
separate continuity ofthe multiplication), so every left and every right ideal of S
is a two-sided ideal of S. In terms of semigroup theory, this means that S is
"nearly abelian" in the sense that all of Green’s relations coincide. Note also
that for an idempotent e, the relation eS Se implies that e is central.
At the end of this section it will be shown that for a rather large class of

discrete groups the statements of Theorem 2.1 are not true.

2.3. To prove Theorem 2.1, we first show that we may assume that Go is a
connected Lie group such that every compact normal subgroup is trivial. Since
the connected locally compact topological group Go contains a compact
normal subgroup N such that Go/N is a Lie group, this reduction is contained
in the lemma below. (Note that every normal subgroup of Go is also normal
in G.)

LEMMA. Let N be a compact normal subgroup ofG and write to: S S/Nfor
the canonical homomorphism between S and the quotient semigroup SIN. Thenfor
an element s in S we have sG Gs ifand only if x(sG)= x(Gs). In particular, all
idempotents in S are central in S if all idempotents in SIN are central in SIN.

Proof. Since N is compact and normal in S we have sN Ns for all s in S
(1.12); hence x(sG)= x(Gs) implies sG GsN NGs Gs.

2.4. By the remark in 2.3 we may assume that the group G is a Lie group
and, since the properties (i) and (ii) ofTheorem 2.1 are preserved under contin-
uous surjective homomorphisms, that S is the weak almost periodic
compactification of G. If G contains a compact normal subgroup of positive
dimension and if Theorem 2.1 has been shown already for all groups ofdimen-
sion less than dim G, then 2.3 implies that it also holds for G. Obviously, the
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theorem is trivial for dim G 0, since then G (and therefore S) is abelian. Thus
the following general assumptions will imply no loss of generality.

GENERAL ASSUMPTION. Throughout the rest of this section we suppose that
the following hold:

(i) G is a Lie group ofdimension n >_ 1, such that G GoD, where Go is the
component of the identity in G and D is a discrete central subgroup.

(ii) S is the weak almost periodic compactification ofG and G is considered as
an open subgroup of S (this is possible by 1.11).

(iii) Theorem 2.1 is true for all groups with dimension less than n.

2.5. We next observe some useful facts concerning the isotropy groups of
the left or right action of G on S. For the sake of simplicity we henceforth use
the following notation for left, right isotropy groups and their Lie algebras.

Notation. If s is an element of S then we define

FL(S {g Gigs s), Fg(s) (g G lsg =’ s)
the corresponding subalgebras of the Lie algebra O ofG are denoted with L(S)
and g(s) respectively.

2.6. The general induction hypothesis in 2.4. allows the following reduction
of the problem:

LEMMA. (i) If e is an idempotent in S such that (e) contains a non-trivial
ideal 91 of eb then e is central in S.

(ii) If s is an element ofS such that R(s) contains a non-trivial ideal 91 of 0
and eb is solvable then sG Gs.

Proof. Write N for the closure in G of the normal subgroup of G which
corresponds to 9. Clearly, GIN also satisfies the assumption on G of Theorem
2.1. The closure N of N in S is a compact semitopological semigroup, its
minimal ideal is a compact group contained in the maximal subgroup of some
idempotent f By continuity, g- 1/g / and therefore g- Xfg ffor all g G
(every automorphism of N must leave invariant the minimal idempotent f).
Now, gf= fg for all g G implies sf= fs for all s S, so the map S -fS, s fs
is a homomorphism. The minimal idealfN ofN is a compact normal subgroup
of H(f) and the quotient semigroup fS/fN is a semitopological
compactification of the group GIN. Now dim GIN < dim G, so by our general
induction hypothesis 2.4, all idempotents in fS/fN are central in fS/fN, hence
the same is true in fS, by Lemma 2.3. It follows that et eft ftef= te for all
t S, which proves (i). The proof of (ii) is completely analoguous and therefore
left to the reader.

2.7. The next lemma shows that the reduction indicated by Lemma 2.6. can
be applied if e is an idempotent ofS commuting with all of its conjugates g- eg,
g G, and such that dim Fg(e) > O.
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LEMMA. Let e be an idempotent in S with eg-Xeg g-Xege for all g G.
Then the identity component of Fn(e) is a normal subgroup of G; i.e.,

(F(e))o (F(g-eg))o g-(F(e))og for all g G.

Proof. We first recall the following proposition (cf. Ruppert [18], Proposi-
tion 2.3.; compare also the well-known results in Montgomery-Zippin [17], p.

2.8. PROPOSITION. Let G be a Lie group, Y a regular Hausdorff space and
Y x G Y, (y, g)- y g, a jointly continuous action. Furthermore, let H be a
closed connected subgroup of G,

X= {x e Y]F(x)= {g G lx g= x} H).

Then the set {x X IH is open in F(x)} is open in X (where X is provided with
the topology inherited from Y).

Proof Let O be the Lie algebra of G, . the Lie algebra of H. As a vector
space, eb is the direct sum . .’ of . with some complementary vector space
.’. If e is chosen sufficiently small, then, with

the map U x U2 G, (u, v) exp u.exp v, will be a homeomorphism onto
an open neighborhood U of the identity 1 of G. Let x s X such that the
component of the identity of F(x) coincides with H. We may assume
U F(x)= exp U. Define

A exp {h .’ e/4 < ][hl] < e/2}.

A is compact and x xA, so we can find an open neighborhood V of x in X
with VV.A=O. Let veV and suppose v’u=v for some
u- exp u exp u2, u Ua, Ilu2 < Then, by assumption, v e X implies
v.expux=v, hence v.u=v.expu2=v. Thus v.expu2=v implies
v.exp (nu2)= v for all natural numbers n. Suppose u2 = 0. Choosing

n [e" 4-Xllu2 II-a] / 1,

we get e/4< IIn.u2 <e/2 and exp (n.u2) e A, a contradiction to
V V. A 0. Thus u2 0, u e H. The assertion follows.

2.9. Proof of 2.7 (continued). Applying the above proposition we can find a
neighborhood U of e such that the identity components of FR(e) and FR(u)
coincide for all u in U Se. Choose a neighborhood V of the identity in G such
that eg-e9 U for all 9 V. Clearly,

FR(g- Xeg) g-Fn(e)g and eg- eg g-Xege Se.
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It follows that for all V,

(F(g- eg))o (F(eg- eg))o (F(e))o
and consequently (F(g-eg))o (F(e))o. Since Go is generated by every
neighborhood of the identity, this implies the assertion of the lemma. (Note our
general assumption (2.4), G Go" D!.)

2.10. The following lemma will take our reduction arguments a step
further; in particular it implies that if A is a closed connected normal subgroup
of G with Lie algebra I then for any s in S either sA As or I R(S) {0}.

LEMMA. Let (g[ n I) be a net in G which converges to an element s in S.
Suppose that A is a closed connected subgroup of G with corresponding Lie
algebra I and such that g; Ag, A (hence g;l I I for all n in I.

(i) If there is a non-zero element x ofI with lim g- x 0 then

x (s) and I c (s)# {0}.

(ii) If there is an element x ofI with lim [[g-. xl[ then

{0).

(iii) Iffor every non-zero element x in 21 there is a subnet

<gm m I’> of (g. n I>
such that lim g, x exists and is not zero, then sA As (i.e., for every s S,
a A there exist elements a’, a" A with sa a’s, as sa"). (It should be
emphasized that there is always a subnet of (g,> which satisfies the assumption
of at least one of the statements (i)--(iii).)

Proof (i) Since the action of G on S is jointly continuous we have, for every
real number 2,

(exp 2x)s lim (exp 2x)g, lim gn(exp 2(g-. x))= s. 1 s.

(Recall that g- X(exp 2x)g. exp 2(g- x).) Taking 2 sufficiently small this im-
plies x e /(s).

We next show that s(s) 21 # {0}. Let B be the closure of the one-
parameter group {exp 2x12 e R) in S and let e be the minimal idempotent of B.
Then e commutes with all elements of B. By continuity, bs s for all b in B, in
particular es s. Define x,= IIg 1,  11- x and choose subnets (gmlm I’)
and (Xm m I’> of the nets (g, n I> and (x, n I> respectively such that
both of the limits y lim 9 Xm and z lim e(exp Xm) exist. Clearly,

Y[[ 1 and z is contained in the maximal subgroup H(e). For all m and every
real 2 we have e(exp 2Xm) e(exp 2Xm)e, since exp 2Xm lies in B. By Lawson’s
Theorem (cf. 1.8), multiplication is jointly continuous at (z, s) if it is restricted to
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eSe x eS and the right action of G on S is jointly continuous. Therefore, for
all real numbers 2,

s exp 2y lim egm(exp ,(g 1. Xm)= lim (e exp 2Xm)gm

lim (e "exp IX, "e)(egm)= zs s.

As before, this implies,y n(s).
(ii) Define xn ]lg-. x]l-ix and choose a subnet

(gin m I’) of (g,, In I)

such that y lim g,l. x,, exists. Then Ilyll 1, and, similar to the proof of (i)
(note that lim Xm 0),

S- lim (exp 2Xm)gm- lim gm(eXp (g, 1" 2x,,))- s "exp 2y

for all real numbers 2, which implies the assertion.
(iii) By a standard argument, there is a subnet (g,,Im I’) such that

p(x)- lim g,X.x exists for all x. Obviously, the mapping x- p(x)is an
endomorphism of the Lie algebra I. Since p(x) :/: 0 for all non-zero x, we see
that p is actually an automorphism. As in the above proofs we conclude

(exp x)s lim(exp x)g lim gm exp(g, x" x)= s exp p(x).

Since A is generated by the elements exp x, x I, and p is surjective, this
implies sA As, as asserted.

2.11. LEMMA. Suppose s S, x g(s), y ffi. If (adx)2y=0 then
ad x" y R(S).

Proof We may suppose that ad x y lies in a Campbell-Hausdorff neigh-
borhood so that ad x. y R(S)if and only ifexp (ad x. y) fR(s). Since S is
compact there is a net (2,1 n 6 I) of real numbers with lim 2,’= o and such
that lim exp 2,x exists (in S). Write g, exp 2,x. Then

g;X.y (Ad (-2.x))y y- 2, ad x.y,

hence

lim g-’. (-2-’y)= lim (-2-ay + ad x’y)= ad x.y.

Since lim exp 2-y 1 and since the left and right actions of G on S are
jointly continuous we conclude that

s st slim (exp (-2-y))g slim g,g; (exp (-2-y))g,

st exp (ad x .y)= s exp (ad x .y).

The assertion follows.
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2.12. COROLARY. Suppose that in Lemma 2.10, I a(s)= {0}. Then
(i) sA As,
(ii) aFg(s)a- Fg(s) for all a A,
(iii) ax- xa for all a A and all x Fg(s) with x-Ax A.

(ii)
-1saxa

so

Proof (i) This follows immediately from Lemma 2.10.
Let x FR(s), a A. Then sa a’s for some a’ A and therefore

a’sxa-1 a’sa-1 saa-1 s; similarly, a-lxa FR(S). Thus

aFR(s)a-1 c F(s) aFs(s)a-1,

aFs(s)a-1 Fg(s).

(iii) Since A is generated by every neighborhood of the identity we may
assume that a is contained in a symmetric neighborhood U of 1 in A with

x-1UxU r FR(s)= {1}.
But then x- axa- 1 implies the assertion. (Note that axa- Fs(s) by (ii).)

2.13. We now use the established results to prove the theorem for the case
where Go is solvable.

LEMMA. If Go is a solvable Lie 9roup and s S then sG Gs.

Proof By Lemma 2.6, we may suppose that g(s)does not contain a non-
trivial ideal of fla.

Let {ffiili 0, 1, 2,...} be the commutator chain of fro; i.e., ffo ff and
ff0 / [ffa, b] for > 0. Since ffa is solvable there is an m with flare- :/: bm
{0}. We show successively that for i= m, m- 1, 0, the intersection
s(s) c ff is trivial, s(s) ffh {0}. Having shown this assertion for i= 0,
we can apply Corollary 2.120) to obtain the desired result.
The assertion is immediate for m. Assume now that it is true for all with

m >i> j > 0, and suppose x is a non-zero element of :’g(s) fl0g. Then
ad x. ffa c ff, and therefore (ad X)2 C j+ 1" By induction, ffa+ c g(s)
{0}, hence Corollary 2.12 implies that h exp x commutes with all elements of
the subgroup corresponding to ffa/ , thus ad x.ff+ {0}. From this it
follows (ad x)3tb {0} and by Lemma 2.11. (ad x)2ffa c :g(s)c ffa+ := {0}.
Applying Lemma 2.11. once more, we see ad x. fro c g(s). It follows that
R(s) ffa is an ideal of tb, thus (s) ff {0}, which completes the proof.

2.14. In order to get the full theorem from this partial result we need the
following variant of Iwasawa’s decomposition theorem.

LEMMA. If G satisfies our general assumptions (as formulated in 2.4.) then it
contains a closed connected solvable subgroup A, a discrete central subgroup Z
and a compact subset K such that G K Z A (i.e., Z A is syndetic in G)and
such that the maximal compact subgroup of A is central in G.
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Proof. Since, by 2.4, G Go’D, D being central and discrete, we may
suppose that G is connected.

Let G be the quotient of G by its centrum, G G/centrum G. Then G has
a finite-dimensional faithful representation (induced by the adjoint representa-
tion of G); therefore, by a well-known theorem (cf. Hochschild [11], p. 245,
Th6or6me 4.3.), there is a normal simply connected solvable subgroup B and a
reductive subgroup H such that G is the semidireet product B () H. Thus it is
sufficient to show that every reductive Lie group H can be written as the
product H A2 K2, A2 being a simply connected and solvable subgroup of
H, K2 being a compact subgroup of H. But the centrum of H is a compact
subgroup K3 and the quotient group H/K3 is semisimple with trivial centrum
(cf. Hochschild [11], p. 245, Th6or6me 4.4.); therefore this assertion follows
from the global version of Iwasawa’s decomposition theorem given in 1.4.

2.15. Since the set K in the above decomposition is compact, we see easily
that to every element s in S there are elements k and k’ in K such that k- s and
sk’ lie in the closure ofA Z. (If s lim k.b,, where (k,), (b,) are suitable nets
in K and in A Z respectively, such that k lim k. and b lim b, exist, then,
by the continuity of the action of G on S, we get k-as b. Similarly we can
write s lim (k’, b’,)-* and find b’ e A. Z and k’ e K with sk’= b’.).

2.16. LEMMA. Let G K" A Z be the decomposition of G 9iven in 2.14
and let e be an idempotent in S. Then es sefor every element s in the closure of
A.Z.

Proof By the preceding remark, there are elements k, k- in K such that ek’
and k-le lie in the closure of A Z. By Lemma 2.13 we have ek’AZ AZek’
and k- xeAZ AZk-Xe, hence eAZ eAZe AZe and the assertion follows
by continuity.

2.17. We finally prove statement (i) of Theorem 2.1.

Proof of 2.10). Let e be any idempotent in S. It is obviously sufficient to
show that g- Xeg e for all g in G. Let g Go and k, k’ K such that k- Xe and
ek’ are contained in the closure ofA. Z. Then by 2.16 (with 9- leo instead of e),

ek’g- eg g- egek’ and k- eg- eg g- egk- e;

therefore

g ege e(g eg)e eg- eg.

By Lemma 2.7, this implies that R(e) is an ideal of O. If R(e) {0} then the
assertion follows from 2.10, if not then it follows from Lemma 2.6.
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2.18. COROLLARY. Under our general assumption 2.4, there exists a closed
connected solvable subgroup A, a discrete central subgroup Z and a compact
subset K of G such that:

(i) the maximal compact subgroup of A is central in G;
(ii) all idempotents orS are contained in the closure of A Z;
(iii) G-K’A’Z.

Proof. Lemma 2.14 provides subgroups A, Z and a compact subset K such
that (iii) and (i) are satisfied. Let e be an idempotent in S and choose an element
k in K and a net (an In 6 I) of elements in A Z with e lim k a. Since e is
central in S the elements ekan kae, n I, lie in H(e). Passing to a suitable
subnet if necessary, we may assume that s lim a- exists. By the result of
Lawson (cf. 1.8), H(e) is a topological group, so e lim ekan implies

e lim (eka)- lim a- k- e sk- e.
The closure of A Z is a subsemigroup of S containing both s and k-e, so it
must also contain e. The proof is completed.

2.19. We conclude this section with an example showing that the state-
ments of Theorem 2.1 do not hold for all discrete groups G having a subnormal
subgroup H with g-Hg c H finite for some g G.

Example. Let G be a discrete group, dp: G- Sa the weak almost periodic
compactification map; let H be a subnormal subgroup and g an element ofG such
that the intersection g-Hg c H is a finite set. (Such objects G, H, g can be
constructed easily; for example, let G be the discretization of the affine group
(R, +)()(R/, ), let H be the countable subgroup {(z, 1)lz is an integer}, and
g (0, re).) Then e #- eg for every idempotent e in the closure ofqb(H) in S.

Proof. Let e2 e tk(H). Then e lies in the closure of (H\g-Hg), since
H /- Hg is finite. By Corollary 4.6 of the appendix, the closures of the sets
k(H\g-Ht) and b(#-H#) are open in S and therefore disjoint, since
b(H\#-Hg) c b(#-H#)= 0. (Note that b is injective!) Thus e cannot lie in
the closure of b(g- Hg), whereas g- eg b(g- H#). This proves the assertion.

3. Some structure theorems

3.1. The results and techniques of the preceding chapter can be applied to
obtain more insights into the structure of semitopological compactifications of
locally compact connected groups. A special feature of such compactifications
is an intrinsic tendency towards being "nearly abelian". That is to say, they
have properties one would expect only for the abelian case, (Theorem 2.1 could
be cited as a typical example) and structural questions can often be reduced to
the abelian case. It seems that the more a connected group G differs from an
abelian one the less sophisticated is its weakly almost periodic
compactification, the less can it be "fitted" into a "complicated" semitopologi-
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cal semigroup; this view is also supported by the results of Ruppert [18][19],
[20]. As we shall see below the groups which "differ most" from abelian groups,
namely the connected simple Lie groups with finite centrum, have only trivial
(one-point) semitopological compactifications or are already compact.
As an introduction to this complex of ideas we start with a simple (but

characteristic) example.

3.2. Example. The weak almost periodic compactification of the affine group
G (R, / )() (R/, .). Write S for the weak almost periodic compactification
of G. The adjoint representation of G is a topological isomorphism of G onto a
closed subgroup of the automorphism group of the Lie algebra fro of G, hence
for every net (gn [n 6 I) in G with no convergent subnet there is an x 6 if0 with
either lim 0n" x or lim n" x 0. By 2.10, it follows that R(s) =/= {0} for
every s in the remainder S\G of the compactification S; by Theorem 2.1, R(s)
has to be an ideal of fla. But the only non-trivial ideal of if0 is the subalgebra 9
corresponding to the normal subgroup N (R, / of G. Denote by e the
minimal idempotent of the closure N of N in S. Then e is actually a zero
element of N and S\G eS. By the universality of the weak almost periodic
compactification we have an identity preserving homomorphism g" eS - SG/N
mapping S onto the weak almost periodic compactification SG/N of GIN. On the
other hand, a similar homomorphism fl: S/s - eS exists between Ss and eS; and
ctfl, fig are the respective identity mappings. (A more general version of this
statement is given in Proposition 3.11 below.). It follows that S\G is isomorphic
to the weak almost periodic compactification of the reals (since

(R/, (R, +)).
3.3 Remark. It has been claimed in the book of Burckel [5, p. 52, Theorem

3.17] that in the weak almost periodic compactification S of a locally compact
topological group G the S-closure of a closed normal subgroup N ofG must be
isomorphic to the weak almost periodic compactification of N. (For G abelian
(or for N open in G) this had been shown already by deLeeuw-Glicksberg [15].)
However, Burckel’s proof of this assertion has a gap right in the beginning; in
fact, he makes use of a theorem (Theorem 3.16 in his notation)which was
proved only for the abelian case. The above 3.2 provides a counterexample: the
closure of N is just N w {e} which obviously cannot be isomorphic to the weak
almost periodic compactification of N (e.g., the minimal ideal of the weak
almost periodic compactification of N is isomorphic to the Bohr
compactification of Nmwhich certainly contains more than one point). It will
be shown in the appendix that the assertion becomes true if N is asumed to be
central.

3.4. The most striking example supporting our view that "definitely non-
abelian" groups must have "comparatively simple" weak almost periodic
compactifications is the case of a connected simple Lie group with finite
centrum.
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Example. The weak almost periodic compactification S of a connected simple
Lie group G with finite centrum. If G is compact, then obviously G S.
Assume G to be non-compact and let s S\G. We show first that R(s) {0}.
We may assume by 2.14 and 2.15 that s lies in the closure of a simply connected
solvable subgroup A of G, such that G KA, where K is a maximal compact
subgroup of G. Since G is simple, the adjoint representation G --, Aut ffa maps
A onto a closed subgroup of Aut ffa (cf. 3.7 below, for example). Thus the
assumptions of Lemma 2.10 (i) or (ii) are satisfied and it follows that
(s) {0}.

If FR(s) were compact then I (s)= {0}, hence by Corollary 2.12 (ii),
a-XFR(s)a FR(s) for all a A. But G is a simple Lie group, so this would
imply

F(s) ("]{a-XKa[a A} (’]{g-Kg[g G} centrum G;

thus Fg(s) would be discrete, a contradiction.

3.5. The above almost trivial consequence ofTheorem 2.1 and Lemma 2.10
was established first by Veech [23] using a different method. In fact he proved a
slightly more general version which we state below, as Theorem 3.6. Before
doing so we recall that to every connected semisimple Lie group we can find
closed connected normal subgroups G, G2, Gk, which are simple Lie
groups, and a discrete central subgroup N of the direct product

G X G2 "" Gk,

such that G is isomorphic to the quotient

G x G2 x x Gk/N.

3.6. THEOREM. Let G be a connected semisimple Lie 9roup withfinite centrum,
S its weak almost periodic compactification. Assume that

G G x G2 ...x Gk/N

is the above representation of G and define G to be the one-point
compactification G, {m,} (m, acting as a zero) if G, is not compact and G.*, G
otherwise (i 1, 2,..., k). Then S is isomorphic to the quotient G*x x G x x
G/N. (Note that N is finite since the centrum of G is finite.)

Proof. We may assume that none of the groups Gi, 1, 2, k, is com-
pact and that the centrum of G is trivial, so that G is isomorphic to the direct
product Gx x G2 x x Gk. By 3.4, we know that for every factor G of G we
have G’ G G w {m}. Furthermore, taking over the respective arguments
of 3.4, we infer that for every s in S\G the identity component of Fg(s) is not
compact. If s S\G and e is the minimal idempotent in g(s) then FR(s)
Fg(e) and FR(e) contains one of the factors G, hence s ms for some i.
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The theorem will be proved if we have shown that the map

6 x 6 x x 6 -. S, (x, x2, x)-. x x2 x,

is jointly continuous, because of the universality of $. We proceed by induction.
The inclusion map G $ is obviously continuous for every factor G. Assume
that the map

H x Gs- S, (x, y)- xy,

is jointly continuous for every factor Gs and every normal subgroup H which is
the product of less than j > 1 factors G Gk. Now suppose that H is the
product of exactly j (distinct) factors G =/= Gs. We may assume that indexes are
choosen so that

H G1 G2
Since both the left and the right action of G on S are continuous, the induction
hypothesis implies that the map

H x Gs- S, (x, y)- xy

is jointly continuous at all points (x, y) except possibly at the point (m,
where m ml m2 mj. Let

<h,,[ n I>, <o.I n I>
be nets in H, G respectively, which are defined over the same domain I. Passing
over to suitable subnets if necessary, we may assume that s lim h,9, exists.
We have to show s mint. If s G then o,h, G for all sufficiently large b
(since G is open in S), hence

ross-1 lim gn(g h 1)= lim h .
But by the induction hypothesis,

ms sH sG1 G2
a contradiction. Thus s H Gt \HGt, so we may apply the observation in the
first paragraph of this proofto find an index i, 1 < < j or l, with s ms. If
i= then

s sm lim h.l.m lim h.ms mms,

as required. If 1 < < j, say i= 1, then we apply the induction hypothesis to
conclude that the map

ml G2 G3 Gj x Gs S, (x, y) xy

is jointly continuous. Now ml H ml G2 G3 Gj, so

s ml s lim m hngn (lim ml hn) lim gn ml mmt mms.
The proof is completed.
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3.7. We now want to apply the ideas used above to deduce a general
theorem about isotropy groups. As is to be expected, we shall use Lemma 2.10,
and therefore have to look first what happens if the image of G under the
adjoint representation is not closed. The following lemma is an easy applica-
tion of well-known facts.

LEMMA. Let G be a connected Lie group, a: G Aut fro its adjoint represen-
tation. Furthermore, let G K A Z be the decomposition of2.14, where A is a
closed connected solvable subgroup (whose maximal compact subgroup is central
in G), Z a discrete central subgroup and K a compact subset of G. Then there
exists a closed vector subgroup V ofA such that:

(i) the closure of (V) (in the usual topology of gut fro as a sub-group of
GL(f)) is compact;

(ii) -- (G)--.

Proof. Let A’ be the commutator subgroup of A. Then (A’) is the commu-
tator subgroup of both (A) and -, since the commutator subgroup of a Lie
group coincides with the commutator subgroup of any of its dense analytic
subgroups (cf. Hochschild [11], p. 210, for example). Now the commutator
subgroup of a linear Lie group is closed, (Hochschild [11], p. 246)hence a(A’)is
closed in Aut b. Let N be a closed connected subgroup of A with A’ N and
such that a(N) is closed in Aut ffa; suppose that N is maximal with respect to
this property. Since A is solvable and the maximal compact subgroup of A is
central in G we conclude that N/N c centrum G is simply connected. Because,
by definition, (N) is closed in Aut ff, it is isomorphic to N/N c centrum G
and therefore simply connected. Moreover N is normal in A, since A’ N.
Consider the quotient map

c: a- - a(A)/a(N).
Let R be a one-parameter subgroup of A not contained in N and suppose that
x(a(R)) is not compact. Since a one-parameter subgroup of a locally compact
group is either closed or has compact closure (of. Hochschild [11], p. 212, for
example), this would imply that

a(N. R) x- ’x(a(R))
is closed and simply connected (otherwise x((R)) would be compact), hence
the identity component of a- ((N R)) would be a group satisfying the condi-
tions on N, a contradiction to the assumed maximality of N.

It follows that (A)/a(N) is compact, so is the semidirect product of
(N) with some torus group T (cf. Hochschild [11], p. 155, for example).

Let A. There are elements n N and T with a(g)= (n)t, so

implies
a(g) a(N (a- ’(T) c A)), g N (a- ’(T) c A).
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Thus,
A N" (a- (T) c A) and T a(a- (T) A).

Let H be the identity component of a- (T) c A, fro the corresponding subal-
gebra of fla. The image of a-(T) c A under a is connected (since A/N
(- (T) c A)/A c centrum G is); thus

-(T) c A H. (A c centrum G)
and therefore

a(A) a(N)a(a-I(T) A)= a(N)a(H).
The group H is nilpotent, since a(H) is abelian. But a linear action of a torus

group is semisimple, hence the action of a(H) on is semisimple and therefore
trivial, because O is nilpotent. Thus H is a closed connected abelian subgroup
of G; it can be written as the direct product of a vector group V with some torus
group T’. Plainly, (H)= a-a(T’), so a- a(A)a(H)= a(A)a(V).
Consequently,

a(K)a-- a(G)a--(-,
and the assertion follows.

(Note that the above proof also shows that for G H, with H the solvable
subgroup of the Iwasawa decomposition 1.4 of a non-compact semisimple Lie
group, we have (H)= a(H) by the well-known properties of smisimpl Lie
groups (of. Helgason [10], p. 222 ff., for example).

3.8. LMMA. Let S be a semitopological compactification of a Lie group O
which satisfies the assumptions of Theorem 2.1 (i.e., G Go. D, where Go is the
identity component and D is a central discrete subgroup ofG); write dp" G Sfor
the compactification map. If the identity component of the right isotropy group
F(s) of an element s S is compact then s G G s.

Proof. Suppose s is an element in S such that the identity component
(F(s))o of F(s) is compact. Let G K. A. Z be th decomposition of
Lemma 2.14. By the remark in 2.15 there is an element k K such that k- s
is contained in the closure of (A. Z); dearly F(k-s)=F(s)and
s. G G.s if and only if k-s. G G. k-s. Thus we may assume that
s (l. Z). The maximal compact subgroup T of A is central in G; thus,
taking the quotients G/T and SIT (cf. Lmma 2.3), we may also assume that
T is trivial, A is simply connected. Since (F(s))o is compact, we have, by
Lemma 2.10, 3(s) c t (0 and, by Lemma 2.12(ii),

a-1FR(s)a FR(S) for all a A.

(Note that this also implies a-(fl(s))oa (F(s))o for all a A.) It is readily
seen from the proof of 2.14 that K Z is a closed subgroup of G with K Z/Z
compact. Thus the identity component (K’Z)o of K. Z can be written
(K’Z)o V. K t, where V is a vector subgroup which is central in K. Z.
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(This follows from the well-known fact that the simply connected covering
group of a compact connected Lie group is the direct product of a central
vector group with a compact semisimple Lie group.) Therefore, k- 1K k K
for all k K and consequently

Ko {a-IKala A} ( {a-’Kglg O}
is a compact normal subgroup of Go which contains (FR(s))o. Passing over to
G/Ko and S/Ko we may suppose that (FR(s))o {1}; i.e., (s) {0}. The asser-
tion follows now from Lemma 2.120) (taking if0 instead of I).

3.9. THEOREM. Let S be a semitopological compactification ofa Lie group G
which satisfies the assumption ofTheorem 2.1. (In other words, G Go D, where
Go is the identity component’and D is a central discrete subgroup of G.) Write
clb: G- S for the compactification map and C for the centrum of G. Then G
contains a vector subgroup V with the following properties:

(i) s G G s for all s (V C).
(ii) Ifthe identity component N ofthe right isotropy group fa(s) ofan element

s S is compact and N centrum G is finite, then s G" (VC).
Moreover we have:

(iii) Ifthe image ofG under the adjoint representation : G - Aut O is closed
then V can be taken to be trivial (= {1}).

Proof. Let G K. A. Z be the decomposition of 2.14. By Lemma 3.7
there is a closed vector subgroup V of A such that

and such that- is a torus group. It is plain that V can be chosen trivial if
(G} is closed in Aut , so we only have to show (i} and (ii}.

(i} Let s be an element in (VC), (v,,In e I) a net in VC such that
s lim (v,). Then for every x e 0 we have

s.exp x lim (vn) exp x

lim b(v(exp x)v;

lim b(exp (v .x)).qb(v)

lim exp (v .x).(v).
Since (VC)=- is compact, we can find a suitable subnet

(Vmlm e I’) of

such that (Vm" X) converges to some element y fro. By the continuity of the
left action of G on S it follows that s exp x exp y. s; hence s G G s,
since G is generated by the set exp if0 and C is the centrum. In the same way we
see that G. s s. G.
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(ii) Suppose that s is an element in S which satisfies the assumption of (ii).
Then, by Lemma 3.8, s. G G.s, hence N is normal in G. Since the identity
component of the centrum of N is a normal torus subgroup of G and every
normal torus group of a connected Lie group is central, it follows that the
centrum ofN is discrete. Thus N is semisimple and the theorem of Levi-Malcev
implies that G contains a closed analytic subgroup H with G HN and such
that H c N is finite. If we can prove the assertion for H and b(H) then it also
follows for G and S; thus we may suppose that N (1). But then Lemma 2.10
implies that there is a net (g[ n I) in G such that lim tk(g) s and such that
((g.)) converges to some automorphism p e Aut fla. By Lemma 3.7, we can
write p lim (gt(v.), where (v.) is a suitably chosen net in V, and g e G;we
may assume that (v) is defined over the same domain I as (g.). Now
lim(g.v-)= (g), hence we can find central elements c. such that
lim 9. v- c- 9. By the continuity of the left action of G on S; we have

s lim 9. lim g,,v[ ac (v,,c,,)= g. lim v,,c,,.

The assertion follows.

3.10. COROLLARY. If in the above theorem the centrum ofG is trivial and G
is mapped onto a closed set under the adjoint representation " G - Aut fro, then
S\G 0 {eS e e S\{1}}.

Proof Pick s S\G. By 3.9, FR(s) is not compact, so the minimal idempo-
tent e in FR(s) is not equal to 1 and es s. The assertion follows.

3.11. COROLLARY. Let S be the weak almost periodic compactification of a
non-compact connected simple Lie 9roup G. Then S C G {m}, where C is the
centrum of G and m is a zero element. (By Theorem 4.1 of the appendix, ( is
isomorphic to the weak almost periodic compactification of C.)

Proof. From Lemma 2.14 we can see that the Iwasawa decomposition of G
implies a decomposition G K. A. C, where K is a compact subset, A a
closed simply connected solvable subgroup of G. Moreover, A C {1}. Pick
an element s AC\AC. By Theorem 3.9, and since S K A C, it suffices to
show that s is a zero element of S. Let (a. [n I), (c. [n I) be nets in A, C
respectively, such that lim a.c, s. The adjoint representation " A - Aut I
maps A onto a closed subgroup of Aut I, hence :g(s) I 4: {0}, by Corollary
2.12. Let B be the subgroup of G which corresponds to the subalgebra
R(S) C I of the Lie algebra ff of G. Let e denote the minimal idempotent of/.
Since e A, we have (e) c I :/: {0}, hence F(e)= fro, because R(e)is an
ideal and fro is simple. It follows sS seG {se} {s} and the proof is
completed.
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4. Appendix
4.1. THEOREM. Let G be a locally compact topological group, H a closed

central subgroup. Then the inclusion H G induces an isomorphic imbedding
Sn S of the weak almost periodic compactification Sn of H into the weak
almost periodic compactification S of G.

Proof. By the universality of the weak almost periodic compactification, it
is sufficient to show that there is a semitopological compactification S ofG such
that the inclusion H - G extends to an isomorphic imbedding i: Sn- S. We
construct S as follows.

Define an equivalence relation on the direct product Sn x G by

(a, b) (c, d)if and only if (a, b)= (ch, dh-1) for some h H.

Since H is central and closed in G, the relation is a closed congruence;it is
also open since the map (x, y)- (xh, yh-1) is a homeomorphism for every
h H. Thus the quotient S Sn x G/.. is a locally compact semitopological
semigroup. Denote the equivalence class of an element (a, b) Sn x G with
[a, b] ~. The map G -* S 1, 9 - [1, 9] ~, maps G isomorphically onto an open and
dense subset of S 1. Also, the map Sn- S 1, s - Is, 1] is an isomorphic and
homeomorphic imbedding. If $1 is already compact then we may take S S
and the proof is completed. Suppose S is not compact. Then we define S to be
the one-point compactification $1 w {o9}, where o acts as a zero element. We
only have to show that if a net

(Ix., y,,]~ ln I)

in S has no convergent subnet then, for every element (a, b) Sn G, the nets

([ax., by,,]~ ln I) and ([x.a, y,,b]~ ln I)
cannot converge. If [c, d~= lim [ax., by.] exists in S, then there are ele-
ments h. H with lim ax. h. c, lim by,, h d. But then

lim y. h- b- d

and we may assume that u lim x,,h. exists (since Sn is compact), so

lim [x., y.]~ lim [x.h., yh; ]~ [u, b-ad]
exists in S 1. The proof for lim [x.a, y.b] is completely analogous.

4.2. COROLLARY. IfH is a closed central subgroup ofa locally compact group
G then every weakly almost periodic function on H can be extended to a weakly
almost periodic function on G.

Proof This follows immediately by the Stone-Weierstraf5 theorem.

4.3. Remark. The statements of 4.1 and 4.2 remain valid if we drop the
assumption that H is closed. This follows from Corollary 4.7 of de Leeuw-
Glicksberg [15]. Note that the method in the proof of 4.1 can be used only if H
is central; otherwise the relation would not be a congruence.
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4.4. The following theorem is a generalization of a theorem in de Leeuw-
Glicksberg [15] to not necessarily locally compact groups.

THEOREM. Let G be a Hausdorff topological group, N an open normal
subgroup. Then the canonical isomorphic imbedding i: N --. G induces an isomor-
phic imbedding i*: SN - So ofthe weak almost periodic compactification SN ofN
into the weak almost periodic compactification So of G. Moreover, i* maps Ss
onto an open subset of So.

Proof. As in 4.1, it is sufficient to construct a semitopological
compactification S of G such that the image of N under the compactification
map G --. S is dense in an open subsemigroup of S which is isomorphic to Ss.
Since every automorphism of the topological group N has an extension to its
weak almost periodic compactification Ss, the kernel -1(1)of the
compactification map 4r N - Ss must be invariant under every automorphism
n - g- lng, g G; thus - 1(1) is a normal subgroup of G. We may therefore
assume that 4-1(1) is trivial and, since N is open in S, that N is topologically
isomorphic to 4(N). For notational simplicity, we identify N with 4(N), so that
N is considered as a dense subgroup of SN.

Let H denote the quotient group GIN and let x" G - H be the quotient map.
Since H is discrete, there is a continuous (but, in general, not homomorphic)
section ?" H - G to x, i.e., a map with x(?(h)) h. The topological group G is
isomorphic to the group which is defined on the product space N x H by the
multiplication rule

(n, h)(n’, h’)= (n/(h)n’(7(h))-lT(h)7(h’)(/(hh’))-1, hh’)

(n?(h)n’7(h’)(7(hh’))-1, hh’),
for all n, n’ e N; h, h’ e H. (An isomorphism is given by the map

-,

We extend this rule to the space So Su x H in the obvious way"

(s, h)(s, h’)= (sT(h)n’?(h’)/(hh’)-1, hh’)
for all s, s’ e Su; h, h’ e H. It is readily seen that this multiplication is separately
continuous, hence associative. Also, the canonical imbedding

Sr--* So, s (s, 1)
maps Ss onto a compact open subset of the locally compact space So. If
((s, h)le e D) is a net in So with no convergent subnet then none of the nets

((s, h)(s, h)) and ((s, h)(s, h)), (s, h) So,

can have a convergent subnet. (This follows from the fact that a net ((s,, h,))
has a convergent subnet if and only if h, is constant for all sufficiently large
a--at this point the argument would break down if N were not open in G.)
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Thus the one-point compactification S So w {co}, obtained from So by
adjoining a zero element co, is a compact semitopological semigroup. The
natural imbedding

o --, s, e --,

has all of the properties required above. This finishes the proof.

4.5. COROLLARY. Let G, N be as in Theorem 4.4. Iff: N C is a weakly
almost periodic function on N, then the extension

f: G - C, f(g) f(g) if g N, f(g) 0 otherwise,

is an almost periodic function on G.

Proof. By Theorem 4.4, i*(N) is an open subsemigroup of SG and isomor-
phic to S. It follows that the function

u: G C, z(g) lifgN, u(g) O otherwise,

is weakly almost periodic on G, and thatfhas a weakly almost periodic exten-
sion f*’G C to G. Clearly, f(g)= f*(g)u(g) for all g G, so f is weakly
almost periodic.

4.6. COROLLARY. Let G be a discrete topological group, H a subnormal
subgroup. Then the inclusion i: H-G induces an isomorphic imbedding
i*: Sn SG of the weak almost periodic compactification of H into the weak
almost periodic compactification of G; moreover, i*(Sn) is open in Sa.

Proof Let H < Ha < H2 < <: H. G be a subnormal series. Then the
statement follows from 4.4 by induction. (Details are left to the reader.)

Added in proof. In the meantime the author was able to show that in
statement (ii)ofTheorem 2.1 the assumption that Go is solvable can be dropped.
Thus sG Gs for every element s in a semitopological compactification of a
connected locally compact topological group G. Also, the author noticed that
P. Milnes has already shown (Pacific J. Math., vol. 56 (1975), pp. 187-193) that
Theorem 4.4 of the appendix still holds if N is only assumed to be open (not
necessarily normal).
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