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VARIANTS OF BLUMBERG’S THEOREM

BY
H. E. WHITE, JR.}

1. Introduction

In [4], J. B. Brown showed that the following statement, which is a variant
of Blumberg’s theorem [3], holds for any metric space X that is c-typically
dense in itself [4, p. 244].

1.1 Iffis a real valued function defined on X, then there are subsets D and
E of X such that D is contained in E, D is dense in X, U n E is of cardinality
at least ¢ (=2%) for every non-empty open subset U of X, and f|E is
continuous at every point of D.

Every complete metric space is c-typically dense in itself [4, p. 251], and
every topological space for which 1.1 holds is a Baire space [3, p. 667]. In
Sections 2 and 3 of this paper, we shall show that an argument of Blumberg’s
can be used to prove that 1.1 holds for every space in a class € (the wBc on
spaces) of topological spaces that includes every c-typically dense in itself
metric space. If ¢ = w,, then any metric space for which 1.1 holds is c-typically
dense in itself [4, p. 249]. In Section 5, we shall show that every weakly T; on
space for which 1.1 holds is in €. In sections 4 and 6, we shall study & briefly.

The author wishes to thank the referee for noting that the original version of
Corollary 4.9 needed an extra hypothesis (that cf n > m where cf n denotes the
cofinality of n [7, p. 166]), and making several suggestions that improved the
presentation of the results.

2. An argument of Blumberg’s

In this section, we shall prove a technical result, Lemma-2.1, that can be
used for handling, in the context of metrizable spaces (or o7 spaces), almost
any variant of Blumberg’s theorem. The proof of Lemma 2.1 is just Blumberg’s
proof [1]; however, instead of real valued functions defined on metric spaces,
we consider functions defined on spaces of a slightly more general type and
taking values in first countable spaces. This allows us to prove corollary 2.2,
which is useful in a certain area of topology [17].

The proof of a variant of Blumberg’s theorem for a certain class of metric
(or near metric) spaces consists of two main parts. Given the function f, part
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one consists of finding an “appropriately dense” subset C of the domain X of f
such that f | C has a “weak continuity” property. This first step does not use
the fact that X is metric (or near metric). The second part consists of using the
metric (or near metric) structure of C, together with the “weak continuity” of f,
to find a much “smaller” dense subset D of C and a slightly “larger” set E that
is not necessarily between D and C, such that f | E is continuous at each point
of D. Lemma 2.1 performs the second step.

It is curious that Proposition 1.7 of [16] follows easily from the theorem in
[3], while Theorem 3.1, with m = w, n = w,, and Y metrizable, does not seem
to follow easily from Theorem 1 of [4], by a similar argument.

The cardinal number of a set S will be denoted by |S|. If # denotes a
collection of subsets of S, then: #* denotes F ~ {¢}; ) F (respectively,
() &) denotes

\J {F: Fe #} (respectively, () {F: F € #});

and, for any subset 4 of S, & N A denotes {F n A: F € #}. A sequence (4,,
i < w) will usually be denoted by (4,); the set () {4;: i < w} (respectively,
() {4;:i < w}) will be denoted by | J; 4, (respectively, [); 4)).

Suppose (X, ) is a topological space. We shall denote J by tX and speak
of “the topological space X”. For any subset 4 of X, the closure of A4 is
denoted by cl A and the interior of 4 by int A. We shall denote the collection
of all nowhere dense subsets of X by NX. Suppose " is a subset of NX. We
shall say a subset E of X is /" dense in X if, whenever U € tX* then U n E
contains an element of . Note that a subset K of X is nowhere dense in X if
and only if for every U in tX* U n X is not dense in U. If f is a function
defined on X, taking values in the topological space Y, then we shall denote
by #B(f, A’) the set of all ordered pairs (D, E), where E is a £ dense subset of
X, D is a subset of E that is dense in X, and f | E is continuous at every point
of D.

Now we shall define the class of spaces for which Blumberg’s argument is
valid. A pseudo-base for a space X is a subset Z of tX* such that every
element of tX* contains an element of 2. A pseudo-base is called g-disjoint if
it is the union of a countable number of disjoint subcollections of tX*. A space
with a o-disjoint pseudo-base will be called a on space. A pseudo-base £ for a
on space X is called a standard pseudo-base for X if # = () 2,, where 2, =
{X}, and for each i, 2, , , is a disjoint subcollection of tX* that refines 2,.

A space X will be called tractable if, whenever x € X and cl {x} € NX, then

(*) there is a countable subcollection # of tX* such that x e ﬂ % and
N {dU:Ueu}eNX.

We note that the following types of spaces are tractable:

(1) a first countable Hausdorff space;
(2) aregular space in which every point is a G,;
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(3) a om space X that has a standard pseudo-base £ such that, for each i,
U -@ i = X .

There are spaces (see 6.4) of the third type in which no point is a G;.

If fis a function from the space X into the space Y and x € X, then we shall
say that fis § continuous at x if, for every V in tY such that f(x) € V, there is a
subset 4 of X such that x e int cl 4 and f[4] = V.

2.1 LEMMA. Suppose f is a function from the tractable on space X into the
first countable space Y, and A" is a subset of NX. If

(1) there is a dense subset C of X such that f|C is § continuous at every
point of C, and

(2) whenever U etX, VetY, and Unf [V]+# ¢, then U f~[V]
contains an element of A,

then B(f, K) # ¢.
If, in addition,

() tX cf'[tY],
then there is (D, E) in B(f, A") such that tX n D is metrizable.

Proof. Let W be a function from Y X w into tY such that for each y in Y,
(W(y, i)) is a non-increasing local base at y. Let

I={xeX:intcl {x} # ¢}, G=|) {intcl {x}:xel},

and H = X ~ cl G. It suffices to consider two cases: X = G; X = H.

Case 1. Suppose X = G. In this case, the proof is easy. Of course, D = I.
The set E is constructed as follows. Suppose x € I; because X is a o space, it
satisfies the first axiom of countability at x. Let (S{x)) be a local base at x,
each element of which is contained in int cl {x}. Define a sequence (K (x)) of
elements of " so that for each i,

Kix) = $x) n f TIW(f(x), )]
If

E=Dvu |J{K():xel,i<w},
then (D, E) € B(f, X).

Case 2. Suppose X = H. Because (1) holds, there is a function B from
C x winto tX such that:if x is in C, then, for each i,

x € B(x, i + 1) = B(x, i)
and B(x, i) n C n f~'[W(f(x), )] is dense in B(x, i); and
(i ¢l B(x, i) € NX.
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Let
F={UnfV]:UetX,VetY},

and let y be a function from & * into &  such that y(F) = F for every F in #*.
Let y(¢) = ¢, and let 2 be a standard pseudo-base for X.

Define, by induction, a sequence (S;, D;, ¢;) where for each i, D, is a subset of
C, ¢; is a function from D; into , and S; is a function from D, into tX are such
that, for each i, the following hold: S,[D;] is a disjoint collection such that
U Si[D;] is dense in X; S;,,[D;.,] refines S,{D;]; D; < Dy y; &4 1(%) = &(x)
+ 1for all x in D;; S;,,[D;+, ~ D] refines 2, ,;if x € D;, then

x € §(x) = B(x, &(x));
if x e D;, x' € D;y; ~ D;, and S, (x) = S{(x), then

W(f(x), &+1(X) = W(f(x), ex)) and  S§;.,(x) N K(x) = ¢,

where

Ki(x) = y(f T'IW(f(x), &x))] 0 [S(x) ~ el S;11(x)]).

Let D=|J; D;and E = D u | J; {K{(x): x € D;}. To show that D is dense in
X and E is & dense in X, it suffices to show that Ui S;[D,] is a pseudo-base
for X. To do this, suppose that P € ;. Then there is an x in D; such that
P n S{(x) #+ ¢. Because

() {cl S{x): j =i} e NX,

there is a k such that k > i and

U=Pn [§ix) ~cl S i(¥)] # ¢

Because S, ;[Dy+1 ~ D,] refines #,,,, there is an x’' in D,,, such that
Si+1(x) = U = P
If x € D, then f | E is continuous at x, because for each i,

fIE 0 §(x)] = W(f(x), &(x)).

Finally, if (3) holds, then [ J; S,[D;]] n D is a o-discrete base for f ~'[tY] N
D=tX nnD. |}

The main use of Lemma 2.1 is in proving Theorem 3.1. However, the
following corollaries are also of some interest.

2.2 CoROLLARY. Every first countable Hausdorff on space has a dense
metrizable subspace.

Proof. If X is a first countable Hausdorff on space, let f be the identity
mapping of X into X and let o = ¢. Because tX = f ~![tX], Lemma 2.1
implies that X has a dense metrizable subspace. ||
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If X is regular and has a dense metrizable subspace, then it is a o7 space. As
Example 6.4 shows, the converse of this statement is false. The following result
indicates, however, that many on spaces have metrizable spaces associated
with them, in a rather simple fashion.

2.3 COROLLARY. Ifthe om space X has a dense tractable subspace, then there
is a dense subset D of X and a topology #  such that (D, #°) is metrizable and
W is a pseudo-base for (tX) n D.

Proof. We may assume that X is tractable. Referring to the proof of
Lemma 2.1, let #” be the topology on D generated by

(Ui S[DJ)nD. |

Corollary 2.3 is trivial if X is a Baire space. For let 2 be a standard
pseudo-base for X and let D be a subset of (), [ J 2] such that if (P)) is a
sequence for which P; € &, for each i and (); P, # ¢, then |[D n (); P;| = 1.
Let #” be the topology generated by 2 n D; then (D, #") is a metrizable Baire
space. If, in addition, X is a-favorable (see Section 6), then D may be chosen so
that (D, #") is completely metrizable.

Suppose fis a function from the space X into the space Y and x € X. We
shall say f'is A continuous at x if there is a subset 4 of X such that x € int cl 4
and f'| 4 U {x} is continuous at x. It is clear that if fis A continuous at x, then
fis 6 continuous at x.

2.4 COROLLARY. If f is a function from a regular on space X into a first
countable T, space Y that is A continuous at every x in X, then there is a dense
subset D of X such that f | D is continuous.

Proof. Without loss of generality, we may, and do, assume that, for each x
in X, {x} is nowhere dense in X. Let X* be the set of all points x of X for
which (x) holds. Let G = int X* and H = X ~ cl G. It suffices to consider two
cases, when X = G and when X = H. If X = G, then Lemma 2.1, with ¥ = ¢
and C = X, implies the existence of the required set D. Suppose X = H. It
suffices to show that if U € tX*, then fis constant on some subset of U that is
not nowhere dense in X. Given U, choose x in U ~ X* and a subset 4 of X
such that x eintcl 4 and f|A4 U {x} is continuous at x. Let (V) be a local
base at f(x), and define a sequence (U;) of open subsets of int cl 4 that contain
x such that for each i, cl U;,;, =« U, and fTA n U] < V.. If K= A n [int
(U], then K ¢ NX and f(y) = f(x) for every yin 4. ||

We shall denote the real line by R, the Euclidean topology on R by tR, and
Lebesgue outer measure on R by u*.
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2.5 COROLLARY. Iffis a real-valued function defined on R for which
pU N f7I VD) >0

whenever U, V € tR and U n f ~[V] # ¢, then there are subsets D and E of R
such that D is dense in R, D < E, u*(E ~ U) > 0 for all U in tR*, and f |E is
continuous at every point of D.

Proof. Suppose f'is as hypothesized. Because R is a metric Baire, there is a
dense subset C of R such that f|C is continuous. Lemma 2.1, with
A = {K € NR: p*(K) > 0} implies the existence of the required sets D and
E. 1

In [5], J. B. Brown gives an example that shows the conclusion of Corollary
2.5 is false for some real valued functions defined of R.

3. A generalization of two theorems of J. B. Brown

In this section, we shall prove a statement, Theorem 3.1, that generalizes
Theorems 1 and 1’ of [4].

We shall use m and n to denote cardinal numbers. If X is a topological
space and n > w,, then we denote by nNX the collection of all nowhere dense
subsets of X of cardinality at least n. We denote by nGNX the collection of all
subsets 4 of X such that for every U in tX* U n A is not nNX dense in U.
The elements of nGNX can be described as “generalized nowhere dense” sub-
sets of X. It is convenient to let 0GNX = NX. Note that a subset of a T; space
that has no isolated points is dense in X if and only if it is NX* dense in X. If
m > w and either n = 0 or n > w,, we shall denote by mMnX the collection of
all subsets of X that are unions of subcollections of nGNX of cardinality at
most m. Elements of mMnX can be described as “generalized meager” subsets
of X. In fact, uMOX consists precisely of the meager subsets of X.

Suppose X is metrizable. It follows from 4.3 that oMw,X consists of what
J. B. Brown calls the nowhere typically dense [4, p. 244] subsets of X. And it
is easily verified that every element of wMcX is what J. B. Brown calls no-
where c-typically dense [4, p. 250].

We shall say X is an mBn space if (tX*) n mMnX = ¢. It follows that: a
space is a Baire space if and only if it is an wB0 space; a metric space is an
wBw, space if and only if it is typically dense in itself [4, p. 244]; any c-
typically dense in itself [4, p. 250] metric space is an wBc space.

3.1 THEOREM. Iff is a function from a 6& mBn space X into a first countable
space Y of weight [7, p. 164] at most m, then B(f, nNX) # ¢.

Remark. Theorem 3.1, with n = 0, is a generalization of the “if” part of the
theorem in [2]. If m = @ and n = 0, Theorem 3.1 is essentially Proposition 1.7
of [16]. If m = w and n = w,, then Theorem 3.1 generalizes Theorem 1 of [4];
if m = w and n = ¢, then it generalizes Theorem 1’ of [4].
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As Professor B. J. Pettis observed, Theorem 3.1 implies the following
generalization of itself.

3.2 CorROLLARY. Suppose X is a on mBn space. If for each i, f; is a function
from X into a first countable space Y; of weight at most m, then (); B(f;,
nNX) # ¢.

Proof. Apply Theorem 3.1 to f, where Y is the product of the Y; and
f(x) = (f(x)) for all xin X. |

We shall now prove Theorem 3.1. The proof is essentially the same as the
proof of the theorem in [3]. In particular, the next few lines are similar to
Lemmas 1, 2, and 3 of [3]. Therefore, the presentation is kept brief.

‘3.3 LemMA. If & is a subset of mMnX of cardinality at most m, then
U # e mMnX.

3.4 LeEMMA. Suppose A is a subset of the space X such that every element U
of tX* contains an element V of tX* such that V n A e mMnX. Then
A e mMnX.

The proof of Lemma 3.4 is a straightforward generalization of the proof of
the Banach category theorem (see [13] and pages 201, 202 of [11]).

Now, for any subset 4 of the space X, let M(A4, m, n) denote the set of all x
in A such that every open subset U of X that contains x contains an element
V of tX* such that V n 4 e mMnX. It follows from Lemma 3.4 that
M(A, m, n) e mMnX.

Proof of 3.1. Suppose f, X, and Y are as hypothesized, and let Z be a
standard pseudo-base for X. If

d(f)= {M(f~'[V], mn):VetY},
then, by Lemma 3.3, d(f) € mMnX. So, if
X;=[X~dfNl ol v 2]

then X is a tractable on space that is dense in X.

It is easy to verify that: f | X, is J continuous at every point of X, and if
UetX,, VetY, and Unf '[V]+ ¢, then U U f![V] contains an
element of nMX,. So Lemma 2.1 implies that #(f | X,, nNX,) # ¢. Hence
B(f,nNX) # ¢. |

We conclude this section with a result that characterizes wBn on spaces.

3.5 THEOREM. For any on space, the following statements are equivalent.

(1) X is an wBn space.
(2) Iffis areal valued function defined on X, then B(f, nNX) # ¢.
(3) Iffis afunction from X into w, then B(f, nNX) + ¢.
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Proof. All that remains to be shown is that (3) implies (1). So suppose (3)
holds and X = | J; B;, where: B, n B;=¢ if i #j; and if i > 1, then B; €
nGNX. Define f by letting f(x) =i if x € B;, and let (D, E) be an element of
B(f, nNX). Then there is a k, and a U in tX*, such that B, n U> U n U,
therefore, B, " U is nNX dense in U. So k=0and X # (J{B: 1 <i<w}. |

4. Some useful properties of o spaces

Part of the material in this section will be used in Sections 5 and 6.

We shall denote the cellular number [7, p. 164] of a space X by 0X. A space
X satisfies the countable chain condition if 0X < w. If 0X > w for every U in
tX*, then X is called nowhere CCC. The space X is called weakly T; if for
each x in X, either cl {x} = {x} or cl {x} is nowhere dense in X. Note that any
space that is nowhere CCC is weakly T;.

4.1 THEOREM. Suppose X is a on space.

(1) There is a disjoint subcollection of tX* of cardinality oX (i.e., oX is
assumed).

(2) The density character [7, p. 164] of X equals 0X.

(3) If X is nowhere CCC, then there is a family (F,, o < w,) of closed,
nowhere dense subsets of X such that

X= {Fra<aw}

and if o < B < wy, then F, c Fy.
(4) If X is weakly T, and has no isolated points, then it is the union of a
subcollection of NX that is of cardinality at most c.

The proofs of all four statements in Theorem 4.1 are the same for on spaces
as they are for metrizable spaces. See pages 167, 168 of [7] for proofs of (1)
and (2), when X is metrizable. We shall include a sketch of a proof of (3),
which was given for metrizable spaces in [15].

Proof of (3). Let £ be a standard pseudo-base for X. Because no element of
2 satisfies the countable chain condition, for each i, there is a family (V(i, «),
o < w,) of non-empty open subsets of X such that: if « < f < w,, then
Vi, )n V(i, f) = ¢; if a < w, and P € #;, then P n V(i, a) # ¢. For each o
less than w,, let

F,=X~J{VGQpri<o a<p<aw}
It is easy to verify that (F,, « < w,) has the required properties. ||
We shall now give some applications of Theorem 4.1. The first is a
simplification of the definition of mBn space when n = cf n > m. We shall

denote by HX the collection of all U in tX* for which oV = oU for all V in
tU*. The collection HX is a pseudo-base for X.
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4.2 PROPOSITION.  Suppose X is a om space.

(1) IfX e HX and 0X = n > wy, then mMnX = mMOX.
(2) If cf n > max (0X, m), then a subset A of X is in mMnX if and only if
there is B in mMOX such that A ~ B contains no element of nNX.

Proof. (1) Under the hypothesis of (1), every dense subset of X is nNX
dense. To see this, suppose B is dense in X and W e tX*. By 4.1(1), there is a
disjoint subcollection % of tW* of cardinality at least n. Let A be a subset of
(U ) N B such that |4 n BN U| =1 for every U in %; then A € nNX,
and Bis nNX dense in X. Part (1) follows easily from this. ;

(2) Suppose & is a subset of nGNX of cardinality at most m, and let
A=|) #.If F € #, then because cf n > 0X, there is a disjoint subcollection
AUp of tX* such that ) % is dense in X and | ) % contains no element of
nNX.If

B={J{A~ ) %p: Fe F},
then B has the required properties. |

4.3 COROLLARY. Ifcfn=n>m> w, then mMnX consists of all subsets A
of X for which there is B in mMOX and C in nGNX such that A= B u C.

We note that 4.1(3) and 4.1(4) restrict the cardinals for which a o7 space can
be an mBn space.

4.4 PROPOSITION. Suppose X is a amw mBn space.

(1) If X is weakly T, and has no isolated points, then m < c.
(2) If X is nowhere CCC, then m = .
(3) Ifm > w and X is Hausdorff, then n < 2°.

Proof. Only (3) requires proof. In this case, we may, because of (2), assume
that X satisfies the countable chain condition. By 4.1(2), X is separable. It
follows from Lemma 15 of [7] that | X | <2¢. |

The next application will be used in Section 5. Suppose n > w,. A subset 4
of a space is called n dense in X if |U n 4| = n for every U in tX*. Clearly,
an nNX dense subset of X is n dense. Example 4.10 shows that the converse of
this statement is false, even for on spaces. The following statements indicate
that in some situations the converse is true.

4.5 THEOREM. If X is nowhere CCC o space, then every n dense subset of X
is nNX dense.

Proof. 1t suffices to show that if the hypothesis holds and X is n dense in
X, then nNX # ¢. To show this, suppose that (F,, « < w,) satisfies the
conclusion of Theorem 4.1(3).
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Case 1. Suppose cf n > w,. Because
n<|X| =sup {|F,|:a<ay,
one of the F,sisin nNX.

Case 2. Suppose cf n = w. Let (n;) be a sequence of regular cardinals such
that n =sup {n;: i < w}. For each i, there is an a; less than w, such that
| Fy,| = n; Let

y=sup {o:i<w}+1
Then F, € nNX, because (| F,|, @ < w,) is non-decreasing.

Case 3. Suppose n>cfn=w,. Let (n,, « < w,;) be a family of regular
cardinals, each of which is greater than w, such that

n=sup {n,: a < w},

and let (U,, @ < w,) be a disjoint family of elements of tX*. If x < w,, then by
Case 1, thereis a K, in n, NU,. Then

U {K,: « < o} € nNX.

Case 4. Suppose n = w,. As in the proof of 4.2(1), every dense subset of X
is nNX dense. |

4.6 PROPOSITION. Suppose X is a weakly T, on space. If either (1) cf n > c,
or (2) n > c and cf n = w, then every n dense subset of X is nNX dense.

Proof. Because of 4.5, we may assume that 0X = w. In both cases, it
suffices to show that if X is n dense in X, then nNX # ¢. If (1) holds, then this
follows from 4.1(4). If (2) holds, then the proof is similar to Case 3 of the proof
of 4.5, using 4.1(4) instead of 4.1(3). |

The following statement is an often useful alternative to the continuum
hypothesis.

4.7 MARTIN’S AxioM (topological form). If w < m < c, then every compact
Hausdorff space that satisfies the countable chain condition is an mBO space.

If w, = ¢, then 4.7 definitely holds. In [14], it is proven that it is consistent
with ZFC that 4.7 holds and w, < c. It is shown in [12] that if 4.7 holds, then
¢ is regular; in fact, it is shown that in this case, 2™ = ¢ whenever w <m < c.
In any statement in this paper, “[MA]” indicates that 4.7 is part of the
hypothesis of that statement.

4.8 THEOREM [MA]. If X has a countable pseudo-base and w < m < c, then
mNOX = oMOX.
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The proof of 4.8 is the same as the proof of the theorem on page 170 of [12].

4.9 CorROLLARY [MA]. Suppose X and m satisfy the hypothesis of 4.8. If
cf n > mand X is an wBn space, then it is an mBn space.

Proof. 1t follows from 4.8 and 4.2(2) that under the hypothesis of 4.9, we
have oMnX = mMnX. |

4.10 Example [MA]. There are subsets of R that are ¢ dense, but not cNR
dense, in R.

Using 4.8 and a simple modification of the argument on pages 146, 147 of
[9], we can construct a ¢ dense subset A of R such that |4 n F| < ¢ for every
FincNR. |

4.11 PrOPOSITION [MA]. Suppose X is a weakly T, or space. If n > w, and
cf n # c, then every n dense subset of X is nNX dense.

Proof. Because of 4.5 and 4.6, we may assume that cf n < ¢ and 0X = w.
Suppose X is n dense in X. We first show that there is a set 4 in @MO0X of
cardinality n. If n < ¢, let A be any subset of X of cardinality #n; it follows from
4.8 that A € oMOX. If n > ¢, then by 4.1(4), there is a subcollection & of NX
of cardinality at most ¢ such that | ) #| = n. Let (n,, « < cf n) be a family of
regular cardinals such that for each o, ¢ < n, <n, and n = sup {n,: a < cf n}.
For each a less than w,, there is an F,in & such that |F,| > n,. If

A=) {F,a<cfn},

then 4 € (cf NMOX = ®oMOX and | 4| > n.

Now, if cf n > w, then it is clear that the existence of an element of wMOX
of cardinality n implies that nNX # ¢. So suppose cf n = w. Let (n,) be a
sequence of uncountable regular cardinals, each of which is less than n and
different from c, such that n = sup {n;: i < w}, and (U)) be a disjoint sequence
of elements of tX*. For each i, there is K;in n,NU,; then | J, K;enNX. |

5. Converses

In this section we shall prove some converses of Theorem 3.1. One of them,
Theorem 5.2(1), generalizes Theorems 2 and 2’ of [4]. And Theorems 5.1 (with
n = c) and 5.2(1) characterize the weakly T; ox spaces for which Proposition C
of [4] holds (Proposition C of [4] is just 1.1): they are just the wBc spaces.
This naturally leads to another question. Are the weakly T; on spaces for
which Proposition B of [4] (which is 1.1 with ¢ replaced by w,) holds just the
wBw, spaces? Theorem 5.2(4) implies this is true if Martin’s axiom holds. And,
if X is a nowhere CCC on space, then it follows from Theorems 3.5 and 4.5
that Proposition B of [4] holds for X if and only if X is an wBw, space. So the
question reduces to the following. Must a weakly T; space with a countable
pseudo-base for which Proposition B of [4] holds be an wBw, space?
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If X and Y are topological spaces, f is a function from X into Y, and
n > w4, then we shall denote by #'(f, n) the set of all ordered pairs (D, E) such
that E is an n dense subset of X, D is a dense subset of E, and f |E is
continuous at every point of D. A space X will be called an n Brown space if
2#'(f, n) is non-empty for every real-valued function f defined on X.

The following statement follows from Theorem 3.1.

5.1 THEOREM. Ifn > w,, then every o wBn space is an n Brown space.
We shall prove the following converses.

5.2 THEOREM. If n satisfies any of the following conditions, then every weakly
T, on n Brown space is an wBn space:

1) n=c;

2) cfn>c;

(3) n>candcfn=w;
4 [MA] cfn#c

Parts (2), (3), and (4) of Theorem 5.2 follow from 3.5, 4.6, and 4.11. We shall
now prove (1), starting with a lemma whose proof is omitted.

5.3 LeMMA. If X is a ¢ Brown space and Y is a subset of X such that X ~Y
is either closed or meager in X, then Y is a ¢ Brown space.

Now suppose that X is a weakly Ty, on ¢ Brown space. Because of 4.5, we
may assume that X satisfies the countable chain condition. Because of 4.2(2)
and 5.3, it suffices to show that cNX # ¢. So suppose, to the contrary, that
every nowhere dense subset of X has cardinality less than c. It follows from
4.1(4) that X has cardinality at most c; hence | X | = c. Let £ be a standard
pseudo-base for X, let & denote the os-algebra generated by £, and let .#
denote the set of all real valued functions defined on X that are measurable
(). By Exercise 9 on page 26 of [10], & is of cardinality at most c. Because
each element of ./ is the limit of a sequence of elements of .#, each of which
has finite range, it follows that | #| = c.

The argument on page 148 of [9] shows that there is a function h from X
into R such that

[{x: h(x) = g(x)}| <c

for every g in 4. We shall obtain a contradiction by showing that the
hypothesis on X implies that there is an f'in . such that {x: h(x) = f(x)} has
cardinality ¢. To show this, first pick (D, E) in #'(h, c). Define, by induction, a
sequence (2;) of disjoint subcollections of 2 such that for each i, ] 2; is dense
in X, 2,,, refines 2, and if Q € 2, and x, y € E N Q, then |h(x) — h(y)| <27~
Let Y = (); u Q,, and for each i, let

fix)=sup {h()): yeQ nE} ifxeQe,
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and
fix)=1 ifxeX~J 2.
Then f = lim; f; exists, fis measurable (&), and
E Y < {x: h(x) = f(x)}.

But, because X ~ Y is meager in X, it has cardinality less than ¢. Hence

[{x: h(x) =f(x)} =c. 1

6. Existence of mBn on spaces

Suppose X is a gn space. If X satisfies the countable chain condition and is
an wBn space, then by Lemma 15 of [7], n <2° (If, in addition, X is
metrizable, then n < ¢.) In this section, we shall show (Example 6.4) that there
is a compact Hausdorff space with a countable pseudo-base that is an wB(2°)
space. First, however, we shall identify some wBc spaces.

A space X is called a-favorable [6, p.116], if there is a function
0: tX*— tX* such that: O(U) = U for all U in tX*; if (U) is a sequence of
elements of tX* such that for each i, U;,, = O(U)), then (); U, # ¢. In [6], it is
shown that every locally compact Hausdorff space and every completely
metrizable space is a-favorable.

6.1 PROPOSITION. Every o-favorable, weakly T, on space without isolated
points is an wBc space.

Proof. This proof is similar to the proof of the corollary on page 251 of
[4]. Suppose X satisfies the hypothesis of 6.1. Let 6 denote the function that
exists because X is a-favorable, and let 2 be a standard pseudo-base for X.
Suppose (B;) is a sequence of elements of cGNX; it suffices to show that
X # |J; B;. Define, by induction, a sequence (%) of disjoint.subcollections of
2 such that the following hold for each i: €, is a subset of

U{Zri<i<w}
of cardinality 2°; %, , refines ;; if C € %, and
A(C)={De%;,:D=C}
then |.o/(C)| =2 and () «(C) # C; if C € ,, then C N B, contains no ele-
ment of cNX; and, if C € €; and D € o/(C), then there is U in tX* such that
DcOU)cUcC.Let A= ﬂ,- U %,;. An adaptation of the argument on page

251 of [4] shows that A € cNX and for each i, A N B; ¢ cNX. Hence A ~
UiBi # ¢ and Ui B;+X. 1

For any topological space X, we shall denote the smallest cardinal number
of a non-empty G, subset of X by #X.
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6.2 PROPOSITION. Suppose X is a weakly T,, mB0 ox space. If # X > n and
cf n > m, then X is an mBn space.

Proof. Suppose £ is a standard pseudo-base for X, and & is a subset of
nGNX of cardinality at most m; we shall show that | )] # # X. For each F in
F, there is a disjoint subcollection %y of # such | ) % is dense in X and if
U € Uy, then U N F contains no element of nNX. By hypothesis, there is an x
is

N{U %r: FeF} n[[)iv 2]

If A=) {Pe2?:xe P}, then 4 is a nowhere dense G, set. And, because
|F|<cfn,

IAn[UFN <Y {lAnF|:FeF}<n
Hence A is not contained in () #. |

6.9 COROLLARY. Suppose X is a on space.
(1) If X is a T, Baire space and the set
{x € X: {x} is a Gs}

is meager in X, then X is an wBw, space.

(2) Suppose X is a completely regular, Hausdorff meager space. If BX, the
Stone-Cech compactification of X, is an mBO space, then BX and
yX = B(BX ~ X) are mB(2°) spaces.

Proof. We shall prove (2); the proof of (1) is similar. Let Y be a dense G;
subset of fX that is contained in fX ~ X. It suffices to show that Y is an
mB(2°) space; to do this, we shall show that #Y > 2°. So suppose K is a
non-empty G; subset of Y, and choose x in K. Because K is a G; in X, by
3.11(b) of [8], there is a closed G, subset C of X such that xe C = K.
Because C = X ~ X, by Theorem 9.5 of [8], the cardinality of C is at least
2. 1

6.4 Example. Let Q denote the space of rational numbers. By 6.3(2), yQ is
an wB(2°) space. Because #yQ = 2°, any metrizable subspace of yX is nowhere
dense. And, if Martin’s axiom holds, then yQ is an mB(2°) space for any
cardinal m such thatw <m<c. ||
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