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THE ACTION OF THE STABLE OPERATIONS OF COMPLEX
K-THEORY ON COEFFICIENT GROUPS

BY

KEITH JOHNSON

Introduction

A stable operation of degree 0 on complex K-theory is a natural transforma-
tion

$*: K*( )---K*( )

and may be identified with a map of spectra 4: K--.K. Adams and Clarke [1]
showed that the set of such operations is large, in fact uncountable. Since the
coefficient groups K*(S) r.(K) are shown to be Z for even, 0 for odd,
it is natural to ask what the action of 4 on these groups might be. The present
paper answers this question, both for K-theory and K-theory localized at a
prime.

In [4] and [3], Lance and Clarke respectively considered the corresponding
unstable question, i.e., the action induced in homotopy by a self H-map of BU
or BU,. Our results are of the same form as theorem 4 of [3], but in the stable
case we must consider r,(K) for < 0 as well.
We will define integers p(n), I’(n), tp(n,i), v(n,i) for n E Z/, 0 <_ _< n and

show:

THEOREM 1. If the action of qb: K,,--.K, on 7r,,(K,) Z, is multipli-
cation by k,, then

,--o t,(n,i), ki-m 0 modp""

for all n Z/, m Z. Furthermore every sequence [k,} satisfying these con-
gruencesfor the special cases m In/2] arisesfrom a unique map ofspectra.

THEOREM 2.
k,, then

If the action of ok" K--.K on r,_,(K) Z is multiplication by

,--o v(n,i) ki-m 0 mod l"(n)

for all n Z/, m G Z. Furthermore every sequence [k,] satisfying these con-
gruencesfor the special cases m In/2] arisesfrom a unique map ofspectra.
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The functions "r and P are easily described:

/(n) ((n + [n/p 11)!)

where [x] denotes the largest integer less than or equal to x, and v,(x) denotes
the p-adic valuation, i.e., the largest integer rn for which p" divides x; and
F(n) is the unique integer with v,(P(n)) ,,(n) for all primes p.
The integers t,(n,i) can be described as follows: For a given prime p, let

a,,a2,.., denote the sequence 1,2,3,... ,p ,p + 1,... of integers prime to
p. Then t(n,i) is defined by the equation

(w- a,)... (w- a,) ,--o t(n,i) w’

For the integers v(n,i), we first choose a sequence al..,...,a,,, of integers
subject to the conditions that for each prime p for which %(n) > 0, we have

ai.,, m ai mod pm

where m is the least integer for which p > a. Note that a depends on the
prime p being considered. This is a finite set of conditions, and can always be
satisfied, by the Chinese Remainder Theorem. The v(n,i) are defined by the
equation

(w- a,)...(w- a,,,) v(n,i) w.
i=0

The proof of these theorems is based on the fact that (KoK)o, and KoK are
free over Z. and Z respectively. This was established in [1], and implies that
the Kronecker pairing induces an isomorphism. In 1 we construct explicit
bases for (KoK)o, and KoK and use this in {}2 to prove the theorems.

Section 1

We begin by recalling from [2] the description of the hopf algebra K,K.
There it was pointed out that the natural map K,K--K,K (R) Q is an injection,
and that K,K (R) Q equals Q[u, v, u-, v-q, i.e., finite Laurent series in two vari-
ables [2, Propositions 2.1 and 2.2]. Thus it suffices to describe those series ly-
ing in the image of this map, and this was done in [2] by giving a certain in-
tegrality condition (Theorem 2.3).

For our purposes it is sufficient to only consider KoK, and to give a slightly
different description. Letting w v/u, we see that

KoK (R) Q Q[w, w-q.
Let A denote the ring of polynomialsfE Q[w] which take integral values at the
integers. Proposition 5.3 and Theorem 2.3 of [2] can be restated as the follow-
ing description of KoK in terms of A"

PROPOSITION 3. The image ofKoK in Q[w, w-q equals the union of the sub-
rings (l/w") A for n O, 1,2,
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In [12], Adams and Clarke show that KoK is actually a free abelian group.
This isn’t obvious from the description above, even though A is easily seen to
be free. The difficulty is that KoK f3 Q[w] contains more than just A, for ex-
ample it contains (w’-- 1)/24.
We will see that this problem does not arise in the p-local case, and so we

consider it first. Let us fix a prime p, and let B denote the subring of Q[w] con-
sisting of those polynomialsf for whichf(k) Z, if k is an integer prime to p.
Also let us denote by Gp the p-localization of an abelian group G.

B D__ A, and for any fE B there exists an integer n such that

PROOF. The first statement is immediate. For the second, take n to be the
maximum of the p-exponents of the denominators of the coefficients of the
polynomial f.
The inclusion KoK--Q[w, w-q extends uniquely to an inclusion

(KoK)t,--’Q[w, w-l].

The previous lemma implies the following p-local analog of Proposition 3"

PROPOSITION 5. The image of (KoK)t, in Q[w, w-’] equals the union of the
subrings (1 /w") Bt,.

In contrast with A, the ring B has the following useful property:

LEMMA 6. If W" fE Bt,, andf Q[w], then f Btp.

Proof. It suffices to show that if w". fE B, then there exists a non-zero
integer b prime to p for which b fEB. There certainly exists some non-zero
integer for which b fE B, for example the product of the denominators of
the coefficients of f. Order the non-zero integers with this property by
divisibility and choose a minimal one, b.

Suppose b were divisible by p, and let b p. b’. If (k,p) 1, then we
have b f(k) p b’ f(k) . Z and also k f(k) Z. Thus b’ f(k) Z,
and so b’.f B, contradicting the minimality of b.

This lemma will allow us to construct a basis for (KoK) from one for B.
A basis for Bt can be constructed as follows:

DEFINITION 7. Define polynomials q.(w) Q[w] by

qo(w) 1, q.(w) (w- a3... (w- a.)/(a./ a,)... (a./ a.)

where a,,a2,.., are as defined in the introduction. Note that the p-adic norm
of the denominator of q.(w) is ,,(n).

PROPOSITION 8. [q. In 0, 1,2,... is a basis over Z, for B,p.

Proof. Since
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(a) degree (q.) n,

(b) q.(a,) 0 if _< n and q(ai) 1,i n + 1,

it is clear that any polynomial f of degree n in Bp can be expressed as a Zp
linear combination of qo,..., q.

It remains, therefore, to show that q E B. For this we note that Bt can
be described as thosefE Q[w] for whichf(k) Zt for all integers k prime to
p. Thus we must show that for such k,

((k- a,)...(k- a.)) _> ((a.+,- a,)... (a.+,- a.)).

Since (k,p) 1, we note that

v,,,((k- a,)... (k- a,)) v,,,((k- 1) (k- 2)... (k- a,))
u,((k- 1)t/(k-a.- 1)t)

and

v,((a.+,- a,)... (a.+,- a.)) v.((a.+,- 1)!/(a.+,- a.- 1)!)
v.((a./,- 1)!).

Now (k- 1)!/(k- a.- 1)ta.! is a binomial coefficient, and so is an integer.
Thus

u,,((k 1)!/(k a. 1)!) >. v,,(a.t).

If a./, is not congruent to mod p, then a./, a., and we are finished. If
a./, -= modp, then

v,,((k- a,)... (k- a,)) v,,((k- 1)t/(k- a,)!)
> v.((a. + 1)t)

v.((a./,- 1)[).

PROPOSITION 9.
over Z (p).

[(1/w t"/2) q. ln 0, 1,2,... is a basis for (KoK)t,

Proof. We make use of the subgroups F(n,m) introduced in [1]. Let

F(n,m) (KoK),, f) span(w", w"/’,..., wm)

and let l,t:F(n,m)-Q be the homomorphisms l(f)= am,t(f)= a. if
f i=.a,w. By Lemma 6, any element of F(n,m) is of the form w" fwith
fG Bt of degree m n. Sincefis a linear combination of qo,..., q.,_. we see
that image(l) and image(t) are equal to l(q_.). Z(p) and t(q._.). Z(p)
respectively. Also, ! and t induce isomorphisms

F(n,m)/F(n,m- 1) Image(l), F(n,m)/F(n + 1,m) Image(t).

Thus we see, by induction on n, that

qo,..., (1/w t"/:) q.

is a basis for F(- [n/2], n- [n/2]).
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We return now to the question of finding a basis for KoK. Our construction
is based on the following observation:

PROPOSITION 10. If {X, O, 1,2,... is a subset ofa torsion free abelian
group G with the property thatfor each primep itforms a Z,p, basisfor G,p,
then it forms a basis for G over Z.
Our candidates for basis elements for KoK are the Laurent polynomials

(1/w["/2]) p.(w),

where we define

po(W) and p.(w) (w- at.,). (w- a...)/F(n)

with F(n),at..,..., a,.. as in the introduction.

LEMMA 11. For every prime p and nonnegative integer n, p.(w) E Bt,,.

Proof. If p > n + [n/p- 11, then %(n) v.(F(n)) 0 and the result is
obvious. Otherwise, note that if k is an integer prime to p, then

v.(k- a,,.) >_ vp(k- a ,)

since a,... al mod p" and 0 _< ai _< p’. Thus

v,((k- al,)... (k- a.,.)) _> v,((k- al)...(k- a,)) > %(n) ,(r(n)).

LEMMA 12.
Z(p)

[1/w t"/2] p.(x)In 0, is a basis for (KoK),, over

Proof. By Lemma 11, the prospective basis elements are actually in
(KoK),p. Consider the matrix expressing 1/w" p.(w) in terms of the basis
elements of Proposition 9. Since

1/wt"/x p.(w) F(- [n/2] ,n [n/2]),

it is a Z,, linear combination of qo,..., 1/w"/ q,(w) and so the matrix is
upper triangular. Furthermore the leading and trailing coefficients of both
p.(w) and q.(w) have p-adic norm -r,(n) so that the diagonal entries of the
matrix are all units in Z,. Thus, by Cramer’s rule, the matrix is invertible.
The result follows.

COROLLARY 13. {1/W t"/l p,(w) ]n 0, 1,... is a basis for KoK over Z.

Section 2

Now that we have constructed a basis for (KoK),. and KoK we may con-
clude, as in [1|, Theorem 2.1:

PROPOSITION 14. The Kronecker Pairing induces isomorphism
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and

(KK) Hom,Kp((K,K),Tr,(K))= Hom(KoK,Z)

KoK Hom.,K(K,Kr,K)= Hom(KoK, Z).

PROPOSITION 15. The action of
E Hom(KoK, Z) or 4 Hom((KoK)t,Z,)

on r2i(K) or 7r2,(K), is multiplication by O(w).

Proof. Since 7r,(K) Z[t,t-1], where t is of degree 2, the action of a
homomorphism f: 7r,.(K)--r(K) is multiplication by f(t’). Recall from [2]
that the elements w,u, vEK,K are defined by w v/u, v R(t),
u r/,(t) where r/, and r/L are the right and left actions of 7r,K on K,K. If
4EKK, then its action on r,K is given by

6(x) < 6,n,(x) >

where < > denotes the Kronecker product.

In Proposition 14 the isomorphism Hom,,,c(K,K, 7r,K)--Hom(KoK, Z) is
a restriction to KoK. Using the fact that K,K is an extended 7r,K module [2]
we see that an inverse to this isomorphism is given by

X (f)(x) f(u-’, x)

iff Hom(KoK, Z), x K,K is of degree 2i. If $ E KK is the element whose
image under the isomorphisms of Proposition 14 is f, then the action of on
7r,.(K) is multiplication by

d(t’) < d, n(t’) > < b, v’> f(u-’v’) f(w’).

The p-local case is similar.

Proof of Theorem 1. Identify (KK) with an element of Hom
((KoK) ,Z) via Proposition 14. Since qn (KoK) for all n, we must have

4(w qn) Z for any m.

In other words,

(w-(w a)... (w- an)/(an/l al)... (an/ an)) Z
or

(w-m(w al)o (w a.)) Ep"" Z.
Using the definition of t(n, i), this is

t(n,i). O(w-m) p,tn. Z(p)

or
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tp(n,i). ),-m E p*p". Z(p).

as required.
Conversely suppose that [),,] is a sequence of elements Zt satisfying the

congruences for the cases m In/2]. Then

x, ( t(n,i)

lies in Z,. Define an element of Hom((KoK), ,Z) by

((1/wt"’) q.) x..
Since these elements form a basis for (KoK),, is uniquely defined, and has
the required property.

The proof of Theorem 2 is similar.
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