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ON THE UNIFORM CONVEXITY OF /Y SPACES,
1<p<2

BY

A. MEIR

1. A normed linear vector space E is called uniformly convex (Clarkson
[1]) or uniformly rotund (Day [2]) if for every e, 0 < e < 2,

6(e) fin(e) inf {1 112x + Y)II Ilxll 1, IlYll 1, IIx Yll }

is positive. The function 6(e) is called modulus of rotundity. It was proved by
Clarkson [1] (see also K6the [5], pp. 358-362 and Day [2], pp. 144-149)
that the classical real or complex Lebesgue spaces Lp are uniformly convex
for 1 < p < . Both the proof of this result as well as the explicit determi-
nation of the modulus 6p(e) is easy when p > 2. For, in this case, elementary
arguments yield that for Ilxll < 1, Ilyll < 1 we have

(1.1) x+y x-y
p

<_ 2p
p

Hence, if x y I1 ,
1

The proofs given in [1], [3], [5] for the uniform convexity of Lp and for the
calculation of 6p(e), when 1 < p < 2, are much more complicated. In a recent
paper Jakimovski and Russell [4-1 established an inequality which (when
2 1/2) is of the same form as (2.1) but with p(p- 1)/8 replaced by an
unknown constarrt. When 1 < p < 2, the inequality of [4] yields the uniform
convexity of but not the evaluation of dip(e). The purpose of this paper is
to prove for 1 < p < 2, a more precise inequality by a much simpler argu-
ment. As a corollary it yields not only the uniform convexity of Lp for
1 < p < 2, but also a very simple proof of Hanner’s result [3], namely, that

6p(e) (p- 1)e2/8 + O(ea),

2. We shall prove the following"

as e-,0.
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THEOREM 1. Let 1 < p < 2 and let Lv denote the real or complex Lebesgue
space over a measure space f. Then for every f, g L, we have

(2.1)
1
(Ifl+ll)

p 1
(f + g)

p(p- 1)

COROLLARY 1.

(2.2)

If 1 < p <_ 2, Ilfll 1, Ilgll, 1, then

1
(f + O)

6v(e >
p-1 e2

8

Moreover, this estimate for 6v(e is asymptotically best possible, as e-. O.

Remark. (i). Inequalities (2.1) and (2.2) become trivial for p 1. Indeed,
there exist f, g LI[0, 1] such that

Ilfllx IIllx IIf-4-0)111 1 and llf-llx 1.

Remark (ii). From (2.1) one can deduce also the inequality

(2.3) 2
2 2

f+g
2 p(p "1)
+

v 2

for every f, g e/_r, 1 < p < 2. Observe that for p 2, the equality sign holds
in (2.3), as well as in (2.1).

3. Proof. For the proof we shall need only the following simple facts"
If-1 <u< and 1 <p<2, then

1 1 p(p 1) u2"(3.1) (1 +u)v + - (1- u)v >_ 1 +
2

If , fl are complex numbers, then

(3.2) I -/12 / I //12 (11- I/1)2 4- (11 4-I/1)2,

If0<v<l and 1 <p<2, then

1
(3.3)

1
(1 vp) > (1 v2).

p -
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If F, G, H are non-negative functions in L’, p > 1, and FI-"G > H every-
where, with some r, 0 < r < 1, then

(3.4) H

The inequalities (3.1) and (3.3) can be proven by calculus; (3.2) is the paral-
lelogram rule and (3.4) follows from H61der’s inequality applied to F’(I-’)G".

In order to prove (2.1), let f, g e Lp, 1 < p < 2. We set

Ifl-lgl If/gl If-gl
U-- V= W=

Ifl / Igl’ Ifl / Igl’ Ifl / [gl’

if lfl + gl > 0, otherwise u v w 1. Then we clearly have -1 < u < 1,
0 < v < 1 and, by (3.2), u2 + 1 v2 + w2. Hence, by (3.1),

1 p(p- 1)1
(1 + u)v + (1 u)v > 1 +--- u2

2

lp(p P(P 1)
>_ 1 + "’w2- (1-v2)

2 2

>_ 1 4-
p(p 1) w2 (p 1)(1 v’),

2

where we used (3.3) in the last inequality. Thus we obtained

1
(3.5) (1 + u)’ +

1
(1--u)-[2-p+(p-1)vp]>_

p(p- l)
W2

and, afortiori,

1 p(p- 1)
(3.6) (1 + u)’ + (1 u)’ v’ >_

2 w2’

since0<v< 1.
Substitution of u, v, w into (3.6) and multiplication of both sides by (Ifl

+ I1)2 yields

( 1 )2-, [t 1 ,,_ 1 ’] p(p-1)
12lfl+ll lfl+1 (f+a) >

8 lf-a

Taking square root on both sides, applying (3.4) to the left hand product
with r p/2, and then squaring both sides, we obtain (2.1).

Proof of Corollary 1. If IIfll 1, llOItp 1, then, by (2.1),

1
(f + g) ’ p(p- 1)

tlf- all 2

t, 8
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Since p(1- c)> 1- cp for 0 < c < 1, the last inequality implies (2:2). In
order to prove that the estimate for 6p(e) is best possible, we let f [0, 1]
with the usual Lebesgue measure, f(2) 1 for 0 < <_ 1 and for given e > 0,

O<t< 1/2
9(0=

l-r/, 1/2_<t_<l,

where r/> 0 is so chosen that (1 + e)P+ (1- r/)P= 2. Then it is easy to see
that

r/ / + 0(/32) and
1
(f + 9)

p(p 1) e21 + O(ea),
8

as e 0. This proves our claim.

Remark (iii). Inequality (2.1) could be somewhat strengthened by using
(3.5) instead of the weaker inequality (3.6). We then obtain for every f, 9 L,
l<p<2,

1
(Ifl + I1) -(p- )

1
(f+ 9)

> (2- p)
1
(Ifl+101)

2 p(p- 1)
8

Remark (iv). Inequality (2.1) remains valid also if f and # are Hilbert
space valued functions over a measure space f anl the L’-norm is defined by
( Ilfll)x/. This follows from the fact that the only property of the complex
numbers used in the proof is (3.2), which is true in a Hilbert space if absolute
values are replaced by the Hilbert space norms.

4. By a mild modification of the proof we can obtain the following, more
precise version of Theorem 1 in [4] for the case 1 < p < 2"

THEOREM 2. Let 1 < p < 2, 0 < 2 < 1. Then for every f, # L we have

1
(Ifl+101)

We omit the proof.

1
> -; p(p 1)

2

min(2, 1 2)
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COROLLARY. If f 1, 1, f- > e, then

<1
p-1

v 4 #e2

where # min (2, 1 2).
We conjecture that this estimate is asymptotically best possible as e 0,
2 0. Note that for 2 1/2 it reduces to our earlier inequality (2.2)
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