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ON THE UNIFORM CONVEXITY OF [? SPACES,
l<p<2

BY
A. MER

1. A normed linear vector space E is called uniformly convex (Clarkson
[1]) or uniformly rotund (Day [2]) if for every ¢, 0 < ¢ < 2,

d(e) = Og(e) = inf {1 — [Hx + Yl : IxI < L, Iyl < 1, lIx — yll > €}

is positive. The function d(e) is called modulus of rotundity. It was proved by
Clarkson [1] (see also Kothe [S], pp. 358-362 and Day [2], pp. 144-149)
that the classical real or complex Lebesgue spaces I? are uniformly convex
for 1 < p < co. Both the proof of this result as well as the explicit determi-
nation of the modulus §,(¢) is easy when p > 2. For, in this case, elementary
arguments yield that for ||x||, < 1, ||y, <1 we have
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Hence, if ||x — y|, > ¢,
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The proofs given in [1], [3], [5] for the uniform convexity of L, and for the
calculation of J,(e), when 1 < p < 2, are much more complicated. In a recent
paper Jakimovski and Russell [4] established an inequality which (when
A=1/2) is of the same form as (2.1) but with p(p — 1)/8 replaced by an
unknown constant. When 1 < p < 2, the inequality of [4] yields the uniform
convexity of I but not the evaluation of 6,(¢). The purpose of this paper is
to prove for 1 < p <2, a more precise inequality by a much simpler argu-
ment. As a corollary it yields not only the uniform convexity of I for
1 < p <2, but also a very simple proof of Hanner’s result [3], namely, that
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5,(6) = (p — 1)e*/8 + O(¢®), as e— 0.
2. We shall prove the following:
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THEOREM 1. Let 1 < p <2 and let I7 denote the real or complex Lebesgue
space over a measure space Q. Then for every f, g € I?, we have
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CoroLLARY 1. If1<p<2,|fl,<1,lgl, <1, then
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Moreover, this estimate for 6 ,(¢) is asymptotically best possible, as e— 0.

Remark. (i). Inequalities (2.1) and (2.2) become trivial for p = 1. Indeed,
there exist f, g € I![0, 1] such that

1Al =lglly =1Hf+ gl =1 and |f—gll,=1

Remark (ii). From (2.1) one can deduce also the inequality
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for every f, g € I, 1 < p < 2. Observe that for p = 2, the equality sign holds
in (2.3), as well as in (2.1).

3. Proof. For the proof we shall need only the following simple facts:
If —-l<u<land1<p<2, then
1 1 pip—1)
st 24— (1 —y)? = 72
3.1) 2(1+u)+2(1 wrf>1+ 5w

If «, B are complex numbers, then

(3.2) lo—BIP +la+ Bl =(lal =181+ (| + B
If0<v<land1<p<2, then

(3.3) % 1=z % (1 —v?.
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If F, G, H are non-negative functions in I?, p > 1, and F!~'G" > H every-
where, with some r, 0 < r < 1, then
1-r r
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p p

The inequalities (3.1) and (3.3) can be proven by calculus; (3.2) is the paral-
lelogram rule and (3.4) follows from Hélder’s inequality applied to FP* "GP,
In order to prove (2.1), letf, g e I?, 1 < p < 2. We set

_f=lgl _f+el 1=l
S +1gl |S1+1gl’ If1+1gl’

if | f1+|g| >0, otherwise u =v =w = 1. Then we clearly have —1 <u <1,
0 <v <1 and, by (3.2), u*> + 1 = v*> + w2 Hence, by (3.1),
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where we used (3.3) in the last inequality. Thus we obtained
-1
3.5) %(1+u)"+—;-(1—u)"—[2——p+(p—l)v"]z%w2

and, a fortiori,

(3.6) %(1 + u)? +%(1 —upP — P> p(P;' 1) w2,

since0<v< 1.
Substitution of u, v, w into (3.6) and multiplication of both sides by (| f|

+1g])? yields
”] p(p )If

( If1+2 |g|> - [—Ifl”+ lglP —

Taking square root on both sides, applying (3.4) to the left hand product
with r = p/2, and then squaring both sides, we obtain (2.1).

(f+ 9)

Proof of Corollary 1. If | fll, < 1, ||‘g||p < 1, then, by (2.1),
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Since p(1 —c)=1—c¢? for 0 <c <1, the last inequality implies (2.2). In
order to prove that the estimate for J,(e) is best possible, we let Q = [0, 1]
with the usual Lebesgue measure, f(2) = 1 for 0 <t < 1 and for given ¢ > 0,

o0 1+e 0<t<1p2
—’1, I/ZStSL

where # > 0 is so chosen that (1 + &) + (1 — #)? = 2. Then it is easy to see
that

"1 p(p

p

n=c¢e¢+ O@E? and H%(f+g) )2+0(a3)

as ¢— 0. This proves our claim.

Remark (iii). Inequality (2.1) could be somewhat strengthened by using
(3.5) instead of the weaker inequality (3.6). We then obtain for every f; g € L,

1<p<2,
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Remark (iv). Inequality (2.1) remains valid also if f and g are Hilbert
space valued functions over a measure space Q and the I’-norm is defined by
(o I1f %)/ This follows from the fact that the only property of the complex
numbers used in the proof is (3.2), which is true in a Hilbert space if absolute
values are replaced by the Hilbert space norms.

4. By a mild modification of the proof we can obtain the following, more
precise version of Theorem 1 in [4] for the case 1 < p < 2:

THEOREM 2. Let 1 < p <2,0< A< 1. Then for every f, g € I’ we have

1 2-p p
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P

Al - —”/1f+(1—/1)g

1
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We omit the proof.
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CoroLLaRY. If [ fll, <1, Igll, < L, IS~ gll, > ¢, then

“1f+(1—/1)g

<1-
p

—1
P4 e’

where yu = min (4, 1 — A).
We conjecture that this estimate is asymptotically best possible as ¢— O,
A— 0. Note that for A = 1/2 it reduces to our earlier inequality (2.2)

REFERENCES

1. J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., vol. 40 (1936), pp. 396-
414.

2. M. M. DAY, Normal linear spaces, Springer Verlag, New York, third ed., 1973.

3. O. HANNER, On the uniform convexity of I¥ and IP, Ark. Mat., vol. 3 (1956), pp. 239-244.

4. A. Jakimovski and D. C. RUSSELL, An inequality for the IP-norm related to uniform convexity,
C.R. Math. Rep. Acad. Sci. Canada, vol. 3 (1981), pp. 23-27.

S. G. KOTHE, Topologische lineare Raume, Springer Verlag, Berlin, 1960.

UNIVERSITY OF ALBERTA
EDMONTON, ALBERTA



