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ON FUNCTIONS THAT ARE UNIVERSALLY PETTIS
INTEGRABLE
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LAWRENCE H. RIDDLE AND ELIAS SAAB

I. Introduction

It is very important to recognize when a scalarly measurable function f from
a probability space (f], E, X) to a Banach space is Pettis integrable. A number
of authors studied the above problem and related questions about the Pettis
integral [2], [4]-[13], [16]-[20].

In this paper we are going to study a class of functions defined on a compact
Hausdorff space with values in a dual Banach space and we shall prove in Part
III that they are universally Pettis integrable whenever they are universally
scalarly measurable.

In [11] the notion of Banach spaces having the universal Pettis integrability
property was introduced (UPIP). A Banach space E has the UPIP if for every
compact Hausdorff space K every bounded function f: K E that is univer-
sally scalarly measurable is universally Pettis integrable. It was shown in [11],
[13] that the dual of a separable Banach space has the UPIP. It was also shown
that if E is a WCG Banach space and if f: K - E* is a bounded universally
scalarly measurable function whose range is weak*-separable, then f is univer-
sally Pettis integrable. In this paper we are going to show that if a bounded
function

is universally Lusin measurable, then it is universally Pettis integrable whenever
it is universally scalarly measurable. Several applications are given, namely, if
C is a weak*-compact subset of the dual E* of a Banach space E such that
the identity map

I’(C,o(E*,E))E*
is universally scalarly measurable, then the same is true for the identity map,

I" (w*(conv(C)),o(E*,E)) E*.

Received April 22, 1983
The work of the second named author was partially supported by a fellowship grant from the

University of Missouri at Columbia.

(C) 1985 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

509



510 LAWRENCE H. RIDDLE AND ELIAS SAAB

We also show that if the linear span of such a set C is norm dense in E*, then
E* has the weak Radon-Nikodym property. If

is universally Lusin measurable, we show that f is universally Pettis integrable
if and only if for every Radon probability measure X on K, the set { (f, x):
x E, Ilxll -< 1) is almost weakly precompact in Loo(K, ,). This shows that a
function f" K 1oo that is weak*-scalarly universally measurable is univer-
sally Pettis integrable if and only if for every Radon measure on K the set of
coordinate functions fn of f is almost weakly precompact in Loo(K, X).
The relations between Pettis integrability of a function and the Bourgain

property (see definition) are discussed in detail in Part IV of this paper. The
Bourgain property of a function always implies that the function is Pettis
integrable. The converse is not always true. However, we will show that if K is
a compact metric space and E is a separable Banach space, then saying that a
function f" K E * is universally Pettis integrable is equivalent to saying that
f has the Bourgain property for every Radon probability measure on K.
We would like to thank Professor J. Bourgain for allowing us to include the

proofs of some of his unpublished results which form the basis of Part IV of
this paper.

II. Definitions and notations

Let (2, Y,, ,) be a finite measure space and let f be a function from f] into
E that is Pettis integrable [4], [11]. If A Y,, we will denote by f,fdX the Pettis
integral of f over A.

If E F* is a dual Banach space and the function f is only w*-integrable
[11] we denote its w’integral over a set A by w*-f,4fdh.
The closed unit ball of a Banach space E will be denoted by Be,.
If L is a subset of F*, the norm closed convex hull of L will be denoted by

n(conv(L)) and the w*-closed convex hull of L will be denoted by
w*(conv(L)).

Let C be a w*-compact subset F*. The set C is said to be a Pettis set if the
identity map (C,o(E*, E)) E* is universally Pettis integrable [11]. If, in
addition the set C is convex, then C will have the Weak Radon Nikodym
property [17].

If K is a compact Hausdorff space, we denote by M+(K) the set of all
probability Radon measures on K.

Let M+(K) and let (X, z) be a completely regular space, if f" K
(X, z) is X-Lusin measurable [11], the image of by f is a Radon probability
measure defined by h(X)(B) ,(h I(B)) for every Borel subset of ( X, z).
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All notions and notations used in this paper and not defined can be found in
[4] and [11].

III. Pettis integrability

THEOREM 1. Let E be a Banach space and E* be its dual. Let K be a
compact Hausdorffspace andf a bounded and universally Lusin measurable from
K to (E *, o(E *, E)). Then the following statements are equivalent.

(i) The function f is universally scalarly measurable.
(ii) The function f is universally Pettis integrable.

(iii) For every compact subset K of K such that

f" K1 ..-4 (g*,o(g*,g)

is continuous, the set ((f,x)lK Ilxll 1) is weakly precompact in C(KI).

Proof Case A. f continuous. Consider (iii) (ii). Let T: E C(K)
be defined by Tx (f, x). The operator T is dearly bounded and linear. By
[11] and (iii), it factors through a Banach space not containing 1. Consider the
adjoint T* from M(K) C(K)* to E*. It is easy to check that T*(ek) f(k)
for every k in K and therefore T*(MI+(K)) w*(conv(f(K)). Hence this set
is a weak Radon-Nikodym set (see [11], [13], [17]). This implies that every x**
in X** is universally measurable on

(w*(conv(f(K)), o(E*, E))

and satisfies the barycentric formula [11]. Let X be in MI+(K) and x** X**.
The function x**" (f(K), o(E*, E)) R is f(, )-measurable. Hence x**f is
)k-measurable [1] and therefore f is ,-scalarly measurable. On the other hand

dX.

The second equality holds because x** satisfies the barycentric formula [11]. If
A is any Borel subset of K of positive measure, define / in MI+(K) by
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g(B) h(B n A)/h(A). Then

)t(A)frx**fdt.t
fx**fdX.

This shows that f is Pettis integrable and fAfdX w*- f.fdX for every
Borel subset A of K.

It is clear that (ii) (i). To show that (i) (iii) let

h={(x,f>:llxlll).

Let x,, f) be a net in A. Choose a subnet (x0) of (x,) that converges weak*
to an element x** in X**. This implies that

(x0, f) --. (x**, f ) pointwise.

The function (x**, f) is universally measurable. Therefore the set A is
relatively compact in the space of all universally measurable functions on K
with the topology of pointwise convergence. By [3, Theorem 2F], every
sequence in A has a pointwise convergent subsequence, hence A is weakly
precompact in C(K).

Case B. f universally Lusin measurable. To see that in this case (iii) (ii)
let )t MX+(K) and e > 0. Choose K _c K such that f" K1 (E*, o(E*, E)
is continuous and X(K\ K1)_< e. By case A, f is )-Pettis integrable when
restricted to K1, an exhaustive argument shows that f is Pettis integrable. The
implication (i) (iii) can be done verbatim as in Case A.
The proof of Case A shows that if f is continuous then (i), (ii) and (iii) are

equivalent to:
(iv) The set w*(conv(f(K)) has the weak Radon Nikodym property.
It is worth mentioning that any bounded linear operator T from a Banach

space E to any C(K) space can be represented by a continuous function

f: K (E*, o(E*, E)) such that Tx (f,x) for every x in E (see Dunford
and Schwartz, p. 490). It was proved there that T is weakly compact if and
only if f: K (E *, o(E *, E**)) is continuous. It was also shown that T is
compact if and only if f: K--. (E*, I1" II) is continuous. It follows from
Theorem 1 that T is weakly precompact if and only if f is universally Pettis
integrable. The same method shows that T is an Asplund operator if and only
if f:K --. (E*, II II) is universally Bochner integrable.
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The following theorem deals with weak*-compact sets that are not neces-
sarily convex and is an easy consequence of Theorem 1 and the results of [11]
and [17].

THEOREM 2. Let H be a weak*-compact subset of E*. Then the following
statements are equivalent:

(i) The set H is a Pettis set.
(ii) The identity map I: (H, o(E *, E)) E * is universally scalarly mea-

surable.
(iii) For every x** X* and every weak*-compact subset M of H, the

function x * * restricted to (M, o(E *, E)) has a point of continuity.
(iv) The set {xlH: Ilxll _< 1} is weakly precompact in C(H).
(v) The set L w*-conv(H) has the weak Radon-Nikodym property.

Condition (v) in Theorem 2 implies the following stability result.

COROLLARY 3. Let H1, HE,..., H be n weak*-compact subsets of E*. If
each Hi, 1 < < n, satisfies any one of the equivalent conditions (i) through (v)
of Theorem 2, so does the weak*-closed convex hull L of the union of the
Hi, 1 < < n. In particular L has the weak Radon-Nikodym property.

Proof Let H W ’=lHi. Choose x** in E** and e > 0. If , M+(H),
then there exists for each 1 < < n a weak*-compact subset M c H such
that

and the restriction of x** to (Mi, o(E*, E)) is continuous. Let M U ’]IMi.

Then x** restricted to (M, o(E*, E)) is continuous and )(H\ M) < e. This
shows that x** restricted to (H, o(E*, E)) is universally measurable. Apply
Theorem 2 (v) to conclude that the set L W*-conv(H) has the weak Radon-
Nikodym property.

COROLLARY 4. Let H be a weak*-compact subset of the dual E * of a Banach
space E. If the linear span of H is norm dense in E*, then E* has the weak
Radon-Nikodym property if and only if H is a Pettis set.

Proof. Let (Xn)n>_l be a sequence in Be. By (iv) of Theorem 2, there is a
subsequence (x,k) such that limh, xk ) exists for every h H. Let x* E*
and e > 0. Choose a linear combination Y’.f= ,ih of elements in H such that
Ilx* Ef-_xXhll -< e. This implies that

p

i=1
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For every 1 < _< p, the sequence (,ihi, x,k)) is a Cauchy sequence. Now it
is easy to see that the sequence x*, x,k) is a Cauchy sequence. This shows
that the unit ball of E is weakly precompact and that therefore E* has the
weak Radon-Nikodym property.
As E. Granirer pointed out to us, in the above corollary one cannot replace

norm dense by w*-dense because the dual of any separable Banach space can
be written as the w*-closure of a subspace that is generated by a norm
compact subset.
The following theorem offers a universal converse of Lemma 5 in [11] when

f is defined on a compact space.

THEOREM 5. Let K be a compact Hausdorffspace, let E be any Banach space
and let f: K (E*, o(E*, E)) be universally Lusin measurable. Then the
following statements are equivalent:

(i) The function f is universally Pettis integrable.
(ii) For every , MX+(K), the set (f,x)" llxll < 1} is almost weakly

precompact in L(K, ) ).

Before proving this theorem, we need the following.

LEMMA 6. Let f: (K, ,) E* be ,-w*-integrable and )-w*-Lusin mea-
surable. Then for X-almost every in K

f(t)C=w* A Borel and , (A) > 01
Proof Let K be a compact subset of K such that

/./q (e*, o(e*,

is continuous. Let H c K be the support of the measure restricted to K1.

Claim. If Hx then f(t) C. If not, there exists an x E such that

(f(t),x) > a >

for every Borel subset A with X(A) > 0. The map f(t), x) is continuous
on H. Let V be a w*-open neighborhood of in H such that u V
(f(u), x) > a.
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Notice that A(V) > 0 since H is the support of restricted to K1. Now

x(v) x(v)

This contradiction finishes the proof of the claim.
Since f:K ---, (E *, o(E*, E)) is X-Lusin measurable, the claim and a stan-

dard measure theory argument show that K can be written as K H tA M
where X(M) 0 and f(H)

_
C. Hence f(t) C X-almost everywhere.

Proof of Theorem 5. Let h M(K) and e > 0. Choose K c K such that
K\ K1) < e and f" K ---, E* is continuous. By Theorem 1, the set

H {(f,X)lK’llxll < 1}

is weakly precompact in C(K) and therefore the set {(f, X)Xgl" Ilxll 1) is
weakly precompact in Loo(K, ,) since the inclusion map C(K) ---, Lo(K, ,)
is a contraction. To see that (ii) (i) let MI+(K) and e > 0. Choose
a compact subset K in K such that h(K\ K1) < e and the set

II x II -< 1 ) is weakly precompact in Loo(K1, ). Now consider the operator

T: LI(K1, t) "4 X*

defined by T(g) w* fKgfd, and consider the adjoint operator

It is easy to see that T*(Bx)= {(f,X)lgx" Ilxll 1}. Hence T*(Bx) is
weakly precompact and consequently T* factors through a Banach space not
containing l1. Therefore

T**(BL(q,x))

is a weak Radon-Nikodym set in X* [11]. The function f" K X* takes its
values almost surely in the set

A Borel in K and A (A) > 0)
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by Lemma 6. Since

w* f.fdXr X(A) r**
X(A)

we see that

C C T**(BL.(K,X)).
Let x** be in X**. The function x** restricted to the set C is f(Xlr1)

measurable [11], [13], [17]. Therefore the function x**f restricted to K is )klK
measurable [1]. Since X(K\ gl)< e, this shows that x**f is X-measurable.
Hence f is universally scalarly measurable and therefore f is universally Pettis
integrable by Theorem 1.
As an application of Theorem 5 we offer the following.

COROLLARY 7. Let K be a compact Hausdorff space and let

g" K (l,weak*)
be a universally Lusin measurable map. Then the following are equivalent.

(i) For every x MI+(K) the set { gn (g, en) n > 1} is almost weakly
precompact in L(tx) ((e,) >_ denotes the usual basis of 1).

(ii) The function g is universally Pettis integrable.

Proof For each et > 0, there is a Borel subset B in K such that/( \ B)
< a and such that the set {g,xn: n N} is weakly precompact in L(/x).
Observe that the set A { (g, + e,)X n n N } is weakly precompact in
L(/). Therefore the closed convex hull of A is also weakly precompact in

L(/x) and consequently the set

{(g,x)xs’x --( + e,) }
is weakly precompact in L(/). The Krein-Mil’man Theorem now ensures
that the set ((g,x)xn: Ilxll -< 1) is weakly precompact in L(/x). Finally,
appeal to Theorem 5 to conclude that the function g is /x-Pettis integrable.
Therefore g is universally Pettis integrable. This shows that (i) (ii). To see
that (ii) (i), notice that

(g,, (g,e,,) :n > 1)
is included in the set

((g,x) :x -- 11, Ilxll -< 1)

and apply Theorem 5.
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Corollary 7 has to be compared to the following theorem.

THEOREM 8. Let T: Lx(lx ) -o 1 have the representation T (fukg.dtx)
where (g.) is a uniformly bounded sequence in Loo(l ).

(a) The operator T is Bochner representable if and only if the sequence (g.)
is almost relatively weakly compact in Loo(Ix ).

(b) The operator T is a Dunford-Pettis operator if and only if the sequence
( g. ) is relatively (norm) compact in L1(tx).

Proof A quick calculation reveals that T*x Exng for each x in the
ball of 11. Therefore T*(Btl ) is contained in the closed convex hull of ( 5-gn
n N }. If the sequence (g,) is almost relatively weakly compact in L(/),
then the set T*(Bt) is also almost relatively weakly compact in L(/x) and
consequently T is Bochner representable; but (gn) is dearly contained in

T*(Btl ), so the converse implication also holds. This establishes part (a).
For part (b), recall that if T is a Dunford-Pettis operator, then T* maps

bounded sequences in 11 into sequences with almost everywhere convergent
subsequences. Therefore each subsequence of (g,) has an L(/)-convergent
subsequence; that is, the sequence (g,) is relatively compact in Lx(/x). Con-
versely, if (g,) is relatively compact in Lx(/x), then as above, the set T*(Btl ) is
also relatively compact in LI(). Therefore T* maps bounded sequences into
sequences with Ll(/X)-convergent subsequences, which in turn have almost
everywhere convergent subsequences. Hence T is a Dunford-Pettis operator
and this completes the proof.

Let f: (2, E,/) Y be a Pettis integrable function into a Banach space Y
and let F be a sub-o-algebra of E. A Pettis integrable function g: (2, F,/) Y
is said to be a Pettis conditional expectation of f with respect to the o-algebra
F if g is scalarly F-measurable and if fAgd, fAfdX for each set A in F.
The following theorem provides a sufficient condition for a bounded dual-valued
Pettis integrable function to have Pettis conditional expectation. It naturally
makes use of weakly precompact sets.

THEOREM 9. Let f: (f, Y,, ) E* be a bounded Pettis integrable function.
If the set {<f,x) llxll < 1} is weakly precompact in L(/x), then f has Pettis
conditional expectation with respect to all sub-o-algebras of .

Proof Let I" be a sub-o-algebra of 2 and define an operator

by

T: X --, L=(F, t)

rx ((f, x)lr)
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for each x in E. Since the set ((f, x> Ilxll 1} contains no copy of the
ll-basis in Lo(E, #) and the conditional expectation operator is a contrac-
tion from Lo(E,/) into Loo(F,/x), we may conclude that T(BE) contains no
copy of the ll-basis in Loo(F,/). Consequently T(Be) is weakly precompact in
Lo(F,) and there is a Pettis integrable kernel g:(fl, F,#) E* for the
operator

T*: LI(F,/) E*.

Then (g,x) Tx ((f, x)lF) a.e. for every x in E. Therefore

ftt(g,x)dl f((f,x)[F)dl f(f,x)dl
for every set B in F and hence fsgdtt fsfdl for every set B in F. This
shows that g is a Pettis conditional expectation of f for the o-algebra F.

In view of Theorems 5 and 9, one can ask the following.

Question. If, in Theorem 9, we suppose that the set

((f,x) llxll 1}

is almost weakly precompact in Lo(#), does f have a Pettis conditional
expectation with respect to all sub-o-algebras of E?

If the above were true, then any function satisfying the conditions of
Theorem 5 would have a Pettis conditional expectation with respect to all
Radon measurers on all sub-o-algebras of the Borel o-algebra of K.

IV. The Bourgain property

So far we have seen that the family ((f, x) II x II 1 } plays a strong role in
determining Pettis integrability for a bounded scalarly measurable function f
from f into a dual space E*. We continue this approach in this part, but,
rather than viewing such families as subsets of Lo(), we now consider them
simply as families of real-valued functions on f. A property of real-valued
functions formulated by J. Bourgain [2] is the cornerstore of our discussion.

DEFINITION 10. Let (f, E, ) be a measure space. A family if’ of real-valued
functions on f is said to have the Bourgain property if the following condition
is satisfied: For each set A of positive measure and for each a > 0, there is a
finite collection F of subsets of positive measure of A such that for each
function f in xt,, the inequality supf(B) inff(B) < a holds for some
member B of F.
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Let f: fl E* be a bounded scalarly measurable function. Fix x** in E**
and use Goldstine’s Theorem to find a bounded net (x) in E that converges
to x** in the weak*-topology. Let x be the weak*-integral of f over a set .4
in Y and note that

Now if we could take the last limit underneath the integral sign, then we would
have

proving that f is Pettis integrable. Unfortunately, it is not always possible to
take the limit underneath the integral sign but it is always possible to do so if
the net (x) can be replaced by a sequence. The next theorem, which is due to
Bourgain [2], essentially allows us to do this for some functions f.

THEOREM 11. If (, Y,, ) is a finite measure space and is a family of
real-valued functions on satisfying the Bourgain property, then:

(i) the pointwise closure of xI" satisfies the Bourgain property;
(ii) each element in the pointwise closure of is measurable;

(iii) each element in the pointwise closure of / is the almost everywhere
pointwise limit of a sequence from

Proof. The proof of (i) is completely straightforward. Towards verifying (ii)
and (iii), take a function g belonging to the pointwise closure of ,It and an
ultrafilter U on that has g as a cluster point. For A in and a > 0, let

q’(A; a)= (re ’I’: supf(A)- inf(A) <

It follows from the definition of the Bourgain property that if A has positive
measure and a > 0, then there exists a subset B of A of positive measure with
q(B; a) belonging to U. Now for each a > 0, use Zorn’s Lemma to find a
maximal set P, of mutually disjoint sets of positive measure such that
q’(A; a) U for each A P,. Note that each P is necessarily countable.
Moreover,

(a) the set f \ t P has measure 0 for each a > O, and
(b) if F is a finite subset of positive reals and Q is a finite subset of P for

each a in F, then g belongs to the pointwise closure of q ot_F 0 AQ.qZ(A; a).
The maximality of P, yields condition (a), and condition (b) follows because g
is a cluster point of U.
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Now let (A,,,n)n be an enumeration of P1/m, and set

n
m=l n=l

By condition (a), we have /(f \ B)= 0. Pick some point Om,
Am, and define

fm E g((a)m,n)XAm,n"
n=l

in each set

Each f,, is measurable and a quick computation using (b) shows that the
sequence (fro) converges to g uniformly on B. Therefore g is measurable.

Unfortunately, the functions fm may not belong to t,. To establish (iii),
therefore, use condition (b) to pick for each integer m a function h belonging
to N N lXI(A "l/i) such thati=1 i,n

[hm( Oi,,, ) g( oi,,,)[ < 1/i

for each 1 < i,n < m. The triangle inequality now ensures that (h,,(0))
converges to g(0) for each 0 in B. This completes the proof.

It is worth remarking here that a uniformly bounded family if’ of real-valued
functions has the Bourgain property if and only if the following condition
holds:

(*) For each non-null measurable set A in E and for each pair a < b of
real numbers, there is a finite collection F of non-null measurable subsets of A
such that for each f in if’, either inff(B) > a or supf(B) < b for some
member B of F.
Indeed, the Bourgain property for if’ with a b a clearly implies property
(*); conversely, the Bourgain property for xI, can be obtained by finitely many
successive applications of property (*).

In the sequel we study the family ((f, x) II x II -< 1 } for a bounded function

f: f X* and use the Bourgain property to determine the Pettis integrability
of the function. We shall say that f has the Bourgain property if the family
( < f, x) II x II -< 1) has the Bourgain property.

Example 12. All strongly measurable functions into E* have the Bourgain
property. In particular, all Bochner integrable functions into E* have the
Bourgain property.
To see this, suppose f: f] E* is strongly measurable and let (s.) be a

sequence of simple functions for which

limllf- s.I! 0 a.e.
n
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Let A be a measurable subset of f with tt(A) > 0, and let a > 0. Egorov’s
theorem ensures the existence of a set B with tt(f \ B) </(A) such that the
sequence (sn) converges uniformly to f on B. Choose an integer n so that
Ilf(w) s.()ll < a/4 for all t0 in B. Since tt(A 3 B) > 0 we can find a set C
on which sn is constant and for which/x(A 63 B 63 C) > 0. Let x be in the ball
of E. Then for all w1, w2 in A 63 B 63 C, the triangle inequality shows that

I(f(w,),x) (f(w2),x)l < a/4 + 0 + a/4 a/2.

Therefore

sup,cscc(f,x ) infAcscc(f,x > < a

for all x in the ball of E.
The following theorem gives a sufficient condition for Pettis integrability. Its

converse is not true in general.

THEOPd3M 13. A boundedfunction f f E* that has the Bourgain property
is Pettis integrable.

Proof While no a priori hypothesis about the measurability of f is
assumed, the Bourgain condition does show immediately that (f, x) is mea-
surable for each x in E. Fix x** in the unit ball of X** and fix a set A in .
Let x, be the weak*-integral of f over A, so that

(1) x](x) f,(f, x) dl for all x E.

We must show that x**f is measurable and that x**(x])= fAx**fd#.
Accordingly, let a > 0 and set

((f,x)’[[x[[ _< 1, [(x** x,x])[ <

Goldstine’s theorem ensures that x**f lies in the pointwise closure of ,t,. Since
I, has the Bourgain property, the function x**f is measurable by Theorem
ll(ii), and statement (iii) of the same theorem shows that x**f is the almost
everywhere limit of a sequence (f, x) from q,; that is,

(2) lim (f, x,) x**f a.e.,

where

(3) [x**(x) x,(x.)] < a for each n.

It now follows from equations (1), (2), (3) and the Dominated Convergence
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Theorem that

Ix**(x ) fax**fdl < a.

Since a was arbitrary, we conclude that x is the Pettis integral of f over the
set A.
The following example shows that an E *-valued universally Pettis integrable

function does not have the Bourgain property in general.

Example 14.
property.

A unioersally Pett integrable function without the Bourgain

For each [0,1], define a subset D by

D {t [0,1]’It- sl dyadic rational}

and define f" [0, 1] --+ 1[0, 1] by f(t) X Dt. This function was constructed by
R. S. Phillips in [10].

Claim 1. x*f 0 except on a countable set for every x* in 1* [0,1].

* fix + flz whereProof of Claim 1. Any x* in loo[0, 1] can be written as x*
fll has countable support S and f12 vanishes on null sets.

Let N to tsDt If o N, then Dto S , since Dto S implies
that o D c N, a contradiction. Therefore

xV(to) (ll’ X]Dto) + (f12’ XD,o

+

=0+0

since Dto is disjoint from the support of fll and 2 vanishes on countable
subsets. Thus x*f 0 off N and N is countable. Consequently f is universally
Pettis integrable.

Claim 2. f fails the Bourgain property (with respect to the Lebesgue
measure ,).
To prove claim 2, we need the following lemma:

LEMMA A. Let A c [0,1] and let F tO tADt. Then either )*(F)= 0 or
X*(F) 1 (where h* is the outer measure associated with )).
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Proof of Lemma A. Note that F satisfies the following property"
(*) If x F, r a dyadic rational and x + r [0,1], then x + r F.

This will help us prove that

X*(FNI) X*(F)

for any interval I. To do this it is enough to show the above equality for I a
dyadic interval,

k k+l
2n’ 2

Divide [0,1] into 2 equal intervals I1,---, I2n. Then I is one of these intervals
and

X*(FNI)=X*(FIi), i= 1,...,2",

because F satisfies (*). Hence

2

.*(F) E ,*(F Ii) 2",*(F I) X*(F O I)
x,(/)i=1

If X*(F) 4: 0, then F has a point of density x0, (see [14, p. 194]). Therefore

1 lim
X*(F N I) *(F).

x(i)-,o
x midpoint of I

Proof of Claim 2. Let B1, B2,..., B, be arbitrary non-null subsets of [0, 1].
Without loss of generality we may assume that u i1Bi [0, 1] and that the Bi
are disjoint.

First suppose that for every in [0, 1], there exists some B such that
DtB= .Let

Ei-- {t [0,1]" Ot(] ni---

Then U %1El-- [0,1]. Observe that E c [0, 1] \ Bi. Also, if E, then
D [0, 1] \ Bi. Hence

Fi-- U Dt (2 [O,1]\Bi
tE

for each i. Now there exists some E0 such that k*(Eg0 4: 0; therefore
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X*(F,.0) 4:0 and by Lemma A, ,*(F0) 1 which yields ,*(Bi0 ) 0, a con-
tradiction. Therefore, there must exist [0,1] such that for each
1,2,..., n, there is s Bi with s D. Choose t B\D for each
1, 2 n, and let x /x[0,1] be given by x 8. Then

(f(ti),x) Xo,(’) 0
i.

since " Dr, and therefore inftnff(t),x) 0, 1,2,...,n. On the other
hand

(f(s,), x> Xo,,() 1

since Ds,. This shows that suPt /,(f(t), x) 1, 1, 2,..., n. Hence f
fails the Bourgain property for the Lebesgue measure.

In this sequel we will show that if, in addition, E is separable, any
E*-valued universally Pettis integrable function defined on a compact metric
space has the Bourgain property for any Radon measure ;k on K. To do this
we will characterize the Bourgain property of an E*-valued function f in
terms of the associated family of martingales in the case where E and (fl, Y, X)
are separable. We will use this characterization to show that if the family
{ ( f, x ) II x II -< 1 } is almost weakly precompact in Lo(fl, Y., ) then f has
the Bourgain property.

LEMMA 15. Suppose f: E* and g: E* are equal almost every-
where. Then f has the Bourgain property if and only if g has the Bourgain
property.

Proof Let N be a null set such that f(to)= g(to) for all to not in N.
Clearly both (f, x ) and (g, x) have the same supremum and infimum on the
set A \ N for any set A of positive measure. The conclusion now follows
immediately.

For the rest of this paper we shall assume that (fl, E, ) is a finite separable
measure space. This means that there is a sequence (%) of finite partitions of
2 consisting of sets in E such that

(1) each member of %+ is contained in a member of r, (i.e., %+ refines
%), and

(2) the union of the o-algebras generated by the partitions % is dense in
For example, if f [0,1] and / is Lebesgue measure on the Borel sets

then the dyadic partitions of [0, 1] would satisfy these assumptions. Let
denote the o-algebra generated by % and let o u 1

LEMMA 16 (Bourgain). Suppose A is a subset of f with positive measure and
0 < a < 1. Then there is an integer m and a measurable subset B c A with
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It(B) > (1 a)It(A) such that for eoery uniformly bounded by 1 real-oalued
martingale (g,, En) andfor eoery n > m.

(i) ess inf g(A) < inf gn(B) + a and
(ii) esssupg(A) > supg,,(B) a where g is any almost eoerywhere limit of

the sequence ( g,).

Proof. Choose a,b>0sothatl-a/4<a<l,b<l, and l+a<2b.
Choose an integer m and a set A in Y such that

It(AAAx) < (1 b)z.(A).

Now let

II {E o:It(ENAI\A) > (l

and set W u II. We can easily see that It(W q A \A)> (1 a)It(W). If
we let C f \ W, then

.(c) i-.(w)> l-
\A)r-x--I > 1 -(1 b)It(A)1-a

and

It(E q A \A) < (1 a)It(E)

whenever E is in o and E N C 4: .
We claim that the integer rn and the set B A q A1 C satisfy the stated

conditions. First of all, notice that

It(B) >_ It(A A1) It( \ C) >_ It(A (q Ax) --(I b)It(A)

> It(A) (1 b)2It(A)-(1 b)It(A) > aIt(A) > (i a)it(A).

We next verify condition (i) (the argument for (ii) follows by replacing g, with
-g,). Suppose n > rn and fl is any number satisfying inf g,(B) < fl < 1 + a.
Since g, is constant on the members of r,, there is some element I in r, such
that I N B is non-empty and g, </3 on I. Moreover, we have I c A since
I f) h is non-empty and A is a union of sets in r,. But because I C 4: ,
we see that

It(I A) It(i) It(I 0 A \A) > aIt(I).

Now suppose ess inf g(A) > fl + a. Because g, is the conditional expectation
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of g with respect to the o-algebra E,, we have

> (/3 + a)g(I A) g(I\A) (/3 + a + 1)g(I A) g(I)
> (fl + a + 1)au(I)-

Hence (fl + ct + 1)a- 1 < fl, and this implies fl > 3 a, a contradiction.
Therefore ess inf g(A) _< fl + a, and the proof is complete.

Let f: f E* be a bounded weak*-scalarly measurable function and
define an E *-valued martingale (f., E) by

w*-flfdla,
L(.) Z

where w*-fAfdl is the weak*-integral of f over the set A. Without loss of
generality we may assume that Ilfl] -< 1 pointwise. Then for each x in E, the
sequence (( f,, x), E,) is a real-valued martingale, uniformly bounded by 1,
with lim,(f., x) (f, x) a.e., where the exceptional null set may, of course,
vary with x.

LEMMA 17. Let E be a separable Banach space. Then f has the Bourgain
property if and only if the family { (f,, x) n N, IIx II -< 1) has the Bourgain
property.

Proof Let (Xm) be a dense sequence in E. For each integer rn there exists a
null set N satisfying

lim (f(o), Xm)

for each 0 that is not in the null set Nm.

follows easily that for each x E,
Because the sequence (x,) is dense, it

lim (f(t0), x)

for each t that is not in the null set N U=Nm.

First suppose that the family {(f, x):n N, Ilxll 1) has the Bourgain
property. When the ball of E* is equipped with the weak*-topology the space
of functions from f into Be. is compact for the topology of pointwise
convergence. Therefore, there exists a pointwise weak*-cluster point g: 2 E *
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of the sequence (f,,). This means that the family ((g, x) Ilxll 1) belongs to
the pointwise closure of the family (fn, x) :n N, Ilxll -< 1 }. Consequently,
the function g has the Bourgain property by Theorem 11 (i). A moment’s
reflection, however, shows that (f(0), x) g(0), x) for each 0 not in N
and for each x in E. Hence f g almost everywhere. Now invoke Lemma 15
to see that f has the Bourgain property.

Conversely, suppose that the family {(f, x) Ilxll -< 1} has the Bourgain
property. Let A be a set of positive measure and let a < b. Choose a < 0 such
that a + a < b a. There exist non-null subsets A1,... Ak of A such that for
each x in the ball of E either supA,(f, x) < b a or infA,(f, x) >_ a + a for
some i.
According to Lemma 16, there is for each set A an integer m and a

non-null subset Bi of A such that
(a) ess inf,,( f, x) _< infB,( fn, x > + c and
(b) ess supa,(f, x) > supB,(f, x) a for every x in the ball of E and for

every n > m. Let

m max(m/: 1 < < k).

Let n > m, let x be in the ball of E, and note that there exists an A such that
either

b a >_ supa,(f, x) >_ ess sup,(f, x) >_ sup,(f, x) a

or

a + a < infA,(f, x) < ess inf,(f, x) < infs,(f,, x) + a.

That is, either b > sups,(f, x) or a _< infs,(f, x).
B1,..., Bk will work for the set A for the family

Therefore the sets

((f,,x) :n > m, Ilxll 1).

However, the functions fl,---, f,,- are just simple functions, so that for each
1,..., m 1 there exists a set C on which fi is constant and (A N C,.)

> 0. Thus the sets BI,..., B,, C A,..., Cm_ A will work to show that
the family

{(f., x) :n e N, Ilxll 1}

has the Bourgain property,

THEOREM 18. Let E be a separable Banach space and let f f E* be a
bounded weak *-scalarly measurable function. If the family

{(f,x) llxll < 1}
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is almost weakly precompact in Loo(#), then f has the Bourgain property, and
hence f is Pettis integrable.

Proof Observe first that the family {(f, x>" Ilxll 1} has the Bourgain
property if and only if for each a > 0 there exists a set A in Z with
#(f \ A) < a such that the family

( (f, x)x" Ilxll 1)

has the Bourgain property. To see this, take a set B in Y with/x(B) a > 0
and apply the Bourgain condition to the non-null set A rq B, where A satisfies
the above hypothesis. Without loss of generality, therefore, we may delete the
"almost" and assume that ((f, x) Ilxll -< 1) is weakly precompact in Loo(# ).
We will also assume that Ilfll -< 1.
By Lemma 17 it suffices to show that the family

{(f,,x) n N, Ilxll 1}

has the Bourgain property. Suppose it does not. Then an argument due to
Bourgain [2] produces a sequence (xn) in the ball of E, a system (An, m), n
N, 1 < m < 2n, of sets of positive measure, and constants 8 > fl such that

(1) An+l,2m_ C An,,, and An+l,2m C An, m,

(2) (f(w),Xn+) < 8 if W An+l,Zm_l,
(3) (f(w),Xn+) > /3 if w An+,Zm-

We sketch the inductive step in the construction. Let A 5’. and a < b be
reals for which property (*) (page 520) cannot be obtained. For each m
1,...,2n, Lemma 16 provides an integer k and a subset Bm c An, of
positive measure such that for k > k and x in the ball of E,

essinfa.,.,(f, x ) < infs,.(f, x) + a,

ess supa.,(f, x) > sups.(f, x) a

where a > 0 has been chosen so that a + a < b a. Set

j=max(km’l <m<2n)

and for each m 1,..., 2 choose a subset C of B that has positive measure
and is contained in a member of the partition rj.. The negation of the Bourgain
property produces some integer k and xn+ in the ball of E such that

infcf,, xn +t) < a and supcf, x +t) > b

for all m 1 ,2n. Since fk is constant on each member of rk, it is clear
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that k > j and therefore

essinfA.,,.(f, Xn+t) < infs(f,x+t) + a < a + a ,
ess SUPA.,,.(f, X,,+) >_ sups.(f, X,,+) a > b- a fl

for each m 1,..., 2n. Consequently, the sets

mn+l,2m_ {o T_ An, m" (f(co),X.+l) < )
and

An+,2m { An, m" (f(),Xn+) > fl}

have positive measure.
2"- 2"-x for each integer n. Then theLet O U m=xAn,2m_X and E U m=xAn,2m

sequence of pairs (On, En) is independent in the sense of Rosenthal [15]. More,
however, is is true in this case, for we actually have

for every pair of disjoint finite non-empty subsets G and B of integers and for
every null set N. Rosenthal’s argument (see [15]) therefore shows that the
sequence ((f, xn)) is a copy of the/1-basis in the Loo(/)-norm, rather than in
just the supremum norm. Since this contradicts the assumption that the family
((f,x):llxll <-1} is weakly precompact in Loo(/ ), we conclude that the
family

((f,,x)" n N, Ilxll 1}

has the Bourgain property.

COROLLARY 19. Let K be a compact metric space, E a separable Banach
space and f: K E* a bounded function. Then the following statements are
equivalent:

(i) The function f is universally Pettis integrable.
(ii) For every M1+ (K), f has the Bourgain property for (K, Y, ) where

Y is the Borel o-algebra of K.

Proof The implication (ii) (i) is Theorem 13. To see that (i) (ii). Fix

M+(K). Then , 1 + 2 where X is diffuse and 2 is purely atomic.
The function f: (K, , X 2) E * is Bochner integrable and therefore it has

the Bourgain property for (K, Y., 2) (see Example 12). The measure space
(K, , 1) is separable. By Theorem 5, ((f, x) Ilxll -< 1) is almost weakly
precompact in Loo(hx). Hence f has the Bourgain property for (K, Y,, ).
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It is easy now to see that f has the Bourgain property for (K, Y,, X), because
if A Z and X(A) > 0, then either I(A) > 0 or X2(A) > O.

THEOREM 20. Let K be a compact Hausdorff space and let f" K - E* be
bounded and universally Lusin measurable when E * is equipped with its weak*-
topology. Then the following statements are equivalent:

(i) The function f is universally scalarly measurable.
(ii) The function f is universally Pettis integrable.

(iii) For every Radon measure on K, the set

((f,x)’xeE[[x[[ < 1}

is almost weakly precompact in Loo(K, X). If in addition K is metric and E is
separable, the above statements are equivalent to:

(iv) The function f has the Bourgain property for every Radon probability
measure on K.
As Example 14 shows, (ii) does not imply (iv) if the separability condition is

dropped.
The authors would like to thank Professor J.J. Uhl, Jr., for fruitful discus-

sions concerning this paper.
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