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HIGHER ORDER SWEEPING OUT

BY
N.A. FrRiIEDMAN! AND E.S. THOMAS

1. Introduction

Let T act in a measure space X with measure m and m(X) = 1. Wesay T
sweeps out [3] if m(A4)> 0 implies m(U*_,T¥4)=1 for all increasing

sequences (k,). We will say T is lightly mixing if m(A4) > 0 and m(B) > 0
imply

liminfm(T"4 N B) > 0.

n— oo

Lightly mixing implies mildly mixing [5] and weakly mixing [2]. In particular,
if T is lightly mixing, then T is mixing on a sequence of density one [3], [6]. It
is shown in [1] that the conditions for sweeping out and lightly mixing are
equivalent. The term sequence mixing is used in [1] but might be confused with
mixing on a sequence.

The definitions of higher order sweeping out and higher order lightly mixing
are given in §2. In §3 it is shown that k-sweeping out is equivalent to lightly
k-mixing, k > 1. The examples of transformations that are partially k-mixing
but not partially (k + 1)-mixing [4] are also examples of transformations that
are lightly k-mixing but not lightly (k + 1)-mixing, k > 1. The construction in
[1] for kK = 1 is generalized in §3 to obtain transformations that are lightly
k-mixing but not partially k-mixing, k > 1.

A transformation T uniformly sweeps out if for each set A of positive
measure and & > 0 there exists N = N(4,¢) such that the measure of the
union of any N iterates of A is greater than 1 — &. If 7 is mixing, then T
uniformly sweeps out [3]. It is not known if the converse is true. Higher order
uniform sweeping out is introduced and in §4 it is shown that (2k — 1)-mixing
implies uniform k-sweeping out, k > 1.
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2. Definitions

Let (X, #, m) be a measure space isomorphic to the unit interval with
Lebesgue measure. Let T be an invertible ergodic measure preserving transfor-
mation mapping X into X. A transformation T is partially k-mixing [4] if
there exists 8 > O such that for all 4,0 <i < k (¢, = 0),

k k
(2.1) liminf m( N T"A,) > Bl Im(4,).
Liy1— 00 i=0 i=0
Given o, 0 < a < 1, T is a — k-mixing [4] if (2.1) holds for 8 = a but not for
B > a. If a = 1, then the limit in (2.1) exists and T is k-mixing.

We shall say that T is lightly k-mixing if for all A, of positive measure,
0<i<k(t=0),

(2.2) liminf m

liy1 =2

k
N T’fA,.) > 0.

i=0
If T is lightly mixing (k = 1), then T is weakly mixing and also mildly mixing
[5]. In particular, there exists an increasing sequence s of density one such that
T is mixing on s [3], [6]. A transformation that is lightly mixing but not
partially mixing was constructed in [1]. This construction will be extended in
§3 to obtain a transformation that is lightly k-mixing but not partially
k-mixing.

Let d, be positive integers and A; sets of positive measure, 1 < i < k. Let

d® = (d,,d,,...,d,), AP = (A4, A,,..., 4,).
A k-fold intersection is denoted by
(23)  I(T,d®, 4®) =TH(4, N T (4,0 -+ NT%4,)...).

Ifd =t—1t_,,1<i<k((ty=0), then

k
(2.4) N T4, = I(T,d", A®).

i=1

3. Sweeping out

Let d¥ =(d, :1<i<k), n=>1,and assume that the entries of d{* are
positive and that d{® is increasing. That is, 0 <d, ,<d, ., 1 <i <k,
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n > 1. We will say that T k-sweeps out if for all increasing d{*) and A, we
have

0
(3.1) m| U I(T,d», 49)| = 1.

n=1

The following result is proved in [1] for k = 1, where lightly mixing is called
sequence mixing.

(3.2) THEOREM. A transformation T k-sweeps out if and only if T is lightly
k-mixing.

Proof. Suppose (3.1) is not satisfied for some d{¥’ and 4%). Define B by

4

(1) B=| UIT,d»,4®)
n=1

Hence m(B) > 0 and m(I(T,d{", AY)YN B)=0, n > 1, so T is not lightly
k-mixing. Conversely, if T is not lightly k-mixing, then there exist increasing
d{®, A% and B of positive measure such that

(2) liminfm (I(T,d¥, 4%) N B) = 0.
n-— oo
Choose n; such that

(3) m(I(T,d, A0) N B) < m(B)/5, i=1.

From (3) we obtain

(4) m

iCs

1(T,dP, 4%)| <1 - 3m(B)/A4.

1

Thus 7" does not k-sweep out.

(3.3) Example. In [4], transformations T,, k > 1, were constructed such
that 7, is (1 —j/(k + 1)) —j-mixing, 1 <j < k + 1. In particular, T, is
(1/(k + 1) — k)-mixing but not partially (k + 1)-mixing. Moreover, there
exist p, ;> 0,1 <i <k + 1, such that for every set 4,

(3.4) lim m(Tg+(... (T AN AYNA)...)NB)=0,

where B = A€ if k is even and B = A if k is odd. Thus 7, is partially
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k-mixing and hence lightly k-mixing but (3.4) implies 7, is not lightly
k + 1-mixing, k > 1.

(3.5) Example. Given a positive integer k, we will now construct T that is
lightly k-mixing but not partially k-mixing by extending the case for k = 1 in
[1]. The idea is to start with a partially k-mixing transformation S and form
the product T of S with itself countably many times. It is straightforward to
check that T is not partially k-mixing by considering cylinder sets. However,
one also sees that T is lightly k-mixing for cylinder sets. To prove that T is
lightly k-mixing, we will approximate measurable sets by cylinder sets as in [1].

Let S be a — k-mixing and define the product transformation

T=

—

S, S=S8ix=1.

i
1

1

Thus T is defined on the direct product space (Y, #, n), where ¥ =12, X,
F=T12,%;,and p=T12m;, X,= X, B,=%, m;=m, i > 1.

Since S is a — k-mixing, there exist increasing d{¥> and A4, of positive
measure, 0 < i < k, such that

k
(1) lim m(1(S,dP, 4A0) N 4,) = a[Im(4,).
i=0

n— oo

Let F,;=A; XA, X -+ XA, X XX XX ---,0<1i< k, where 4; appears [
times. Now (1) implies

k
(2) lim p(I(T,d{®, F®) 0 F, ;) = o' TTp(F,)).
n-—» o0 i=0
Since &' — 0, (2) implies T cannot be partially k-mixing. It remains to verify
that T is lightly k-mixing.

Fix F, with u(F,) > 0,0 < r < k. We need to show

k
(3) lim inf u( N T“E.| > 0.

lLy1— >0 r=0

The proof is a generalization of the proof for k = 1 in [1]. Since there are
several modifications, as well as some omissions in [1], the proof will be given
in detail.

Let B, 0 < B; < 1, satisfy

(@) T18,=v> (2k+1)/(2k +2).
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Let € denote the class of finite dimensional cylinder sets in % ; hence € is
dense in & . Fix F € #. We now show there exists C(1) € € such that

p(C(1) <p(F) and p(FAC(1)) < (1 - By)u(F).
Let G be a subset of F satisfying § < p(F — G) < ¢ where
e=15(1 - B)u(F) and 8=1(1 - B)u(F).
Let C(1) € € be chosen so that
w(GAC(1)) < where 1 = (1 — B,)u(F).
In the next few computations, let us suppress the index, writing C instead of

c(D).
Then, first of all,

p(C) < p(C - G)+p(G) <n+p(F) - p(F-G)
<p(F)+n—38<p(F),
as desired. Secondly,
p(FAC) = p(F = C) +p(C— F) = p(G— C) + p(F = G— C) + p(C — F).
Since the last term is no greater than p(C — G), the inequality continues:

<p(G-=C)+p(C—-G)+p(F—-G—C)<p(GAC) + p(F - G)
<n+e=(1-B)n(F),
which is the second requirement on C = C(1). This latter inequality implies

p(CA)NF) = Bip(F).
Let F(1) = C(1) N F. Choose C(2) € € such that

(5) p(C()AF(1)) < (1 - B)u(F(1)).
Replace C(2) by C(2) N C(1) if C(2) ¢ C(1). Hence (5) still holds and
(6) p(C(2) N FQ1)) = Bu(F(1)) = BB (F).

Let F(2) = C(2) N F(1). Proceeding inductively, assume we have F(i — 1) and
choose C(i) € € such that

(7) p(C()AF(i - 1)) < (1 = B)p(F(i - 1)).
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Replace C(i) by C(i) N C(i — 1) if C(i) ¢ C(i — 1). Define
F(i)=C(i)nF(i —1).

We assume
i-1
(8) w(FG = 1) = T] ga(F).
j=
Now (7) implies (8) holds with i — 1 replaced by i. Let
e} [oe}
(9) C,=(C(i) and F_ = ()F(i).
i=1 i=1

We conclude that u(C,) = u(F,) = yu(F) and C_ C F except possibly for a
null set.

The sets C(i) will now be considered in more detail. Let C(i) have
dimension N, as a cylinder set, i > 1. We have C(i) = U ;C(i, j), where j is in
a finite index set and C(i, j) is a product of N, sets in # for each j; hence

Ni
(10) Cli,j)y=T1cG, j,)x XX XX ---.
I=1

Therefore C(i, j) = G(i, j) N H(i, j), where

Nl
(11) GG, j)=TICG j, )X XX XX -,
=1
N,
(12)  H@U,j)=XxXXx---xXx [l c@,jl)xXx---.
=N, +1

By subdividing the C(i, j) if necessary, we can assume the G(i, j) satisfy
G(i,a)N G(i,b)=0 if G(i,a)+# G(@i,b). Since C(i) c C(1), we have
U,G(i, j) © C(1). Define U(i,a) = U ;H(i, j), where the union is over those
H(i, j) with G(i, j) = G(i, a). Let

(13) J(i) = {a: p(U(i,a)) > 2y — 1}.
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Now we have

(14)  w(c() = u(UG(. ) n HG. )
su( U G(i,a))+u( U G(i,a)ﬁH(i,a))

aeJ(i) a&J(i)
sn( U G(i,a))+(27—1)u( U G(i,a))~
aeJ(i) a&J(i)

Now since u(C(1)) < p(F), it is easy to check that yu(C(1) < u(C(i)). This,
together with (14), implies

(15)
wic) < U G(i,a))+(2Y—1)(M(C(1))—u( U G(f,a>)).
acJ(i) acJ(i)
From (15) we obtain
(16) wemy2<u{ U 6(ia))
aeJ(i)

Now consider F = F,, 0 < r < k, and the corresponding sets G,(i), C.(i, j),
G.(i, j), H,(i, j), J.(i), etc. For each i we can assume C,(i) have the same
dimension N, 0 < r < k. Now

(17) réoTtr(aeLJJ,(i)C'(i’a)) c rr:]OT"(Lj)C,(i,j)).

Note that for each i and r, J,(i) # &, by (16). Choose a, € J,.(i) for each i
and r, and define S(i, r) = {s|G,(i,s) = G,(i,a,)}. Then

N7 U )

r=0 seSi,r)

—u(Ar( U G,(,-,s)nH,(,-,s)))

r=0 sES(i,r)

(18) b

— ﬁT'r(G,(i,a,)m U H,(i,S)))

r=0 sES(i,r)

=p rk\ T"(G,(i,a,)))ﬂL

r=0

rkWT'r( U H,(i,s)))

r=0 seS(,r)

=p éOT"(G,(i,ar)))u( N T”(Ur(i,a,)))-

r=0
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By (13),

k k
(19) u( Qor'rw,(i,a,))) > £ u(bGi.a)) -k

>(k+1)2y—-1) -
=v(2k+2) -2k +1)
=p>0.

Thus (18), (19), and S being a — k-mixing imply
k

ﬂ ( U C,(i,s)))zliminfpy

r=0 seS(i,r)

(20)  liminf o

L1t -0

A 7v6,, a,>)

r=0
k
> pa" T14(6a,).

Summing, for one r at a time, over the different disjoint G,(i, a)’s, a € J,(i)
gives, by (16),

(21) liminfp

nr{ U i a)))>p MITHED) s

aeJ(i)

Therefore

(22) hmmfpn( N 7C.(i )) = hmmf,u( ﬂOT‘ (UC(l s)))

r=0

Since C,(i) = C,(o0) as i = oo, (22) holds with C,(i) replaced by C,(c0),
0 < r < k. Now C,(o0) C F, except for possibly a null set, 0 < r < k, so we
obtain (3) as required. Thus T is lightly k-mixing.

(3.6) Example. Consider § = T, in Example (3.3). Thus § is a; — j-mixing,
a,= (1 —j/(k+1)),1<j<k. Hence Example (3.5) yields T that is not
partially 1-mixing but is lightly j-mixing, 1 <j < k.

Given 1 </ < k, we do not have an example of a transformation that is
partially j-mixing only for 1 < j </ and lightly j-mixing only for j < k. In
particular, for / =1 and k = 2, we do not have a transformation that is
partially 1-mixing, not partially 2-mixing, but is lightly 2-mixing.

A long-open problem is whether mixing implies 2-mixing. A more basic
problem is whether mixing even implies lightly 2-mixing. The transformation
T, in Example (3.3) is -mixing but not lightly 2-mixing. We do not know if
there exists T that is a-mixing and not lightly 2-mixing for a > 1.
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The argument in Example (3.5) can be extended to yield the following result.
The only change is that in (20), a™ will be replaced by [T a,.

(3.7) THEOREM. If T, is a; — k-mixing, a; > 0, i > 1, then T =127, is
lightly k-mixing.

Note that Theorem (3.7) does not depend on the size of «;. However, if
lim,a; = 0, then T will not be partially k-mixing. If «; = a, i > 1, then it is
possible that T will also be a — k-mixing. This depends on the timing of the
a-mixing of the T;’s. To illustrate this behavior, we will construct 7" and R that
are both }-mixing and T X R is also $-mixing. This example can be extended
to obtain 7, that are all 3-mixing, i > 1, and 12,7, is also 3-mixing.

(3.8) Example. The transformations will be constructed on the unit interval
X with Lebesgue measurable sets 4 and Lebesgue measure m. T and R will
both be 1-mixing. However, while T is 3-mixing for certain intervals, R will be
mixing very well. Then while R is i-mixing for certain intervals, T will be
mixing very well. Thus while one transformation is 3-mixing, the other
transformation will be essentially mixing with respect to certain intervals. The
result of the construction is that for any intervals I;, 1 < i < 4, we will have

n— oo

4
(1) liminfm(T", N L)m(R"I; N I,) >} l_Ilm(I,.).

Let p=m X m, A=1I X I, and B = I, X I,; hence (1) implies

(2) litginfp((T X R)"A N B) = ip(A)p(B).

Measurable sets in # X # can be approximated arbitrarily well by disjoint
rectangles I X J for intervals I and J. Thus (2) will also hold for A4,
Be #X %

Both transformations are constructed using the same induction step. It
consists in first mixing only half the space and then mixing the whole space.
The induction step is diagrammed in Fig. 1.

The construction is described in terms of towers and cutting and stacking
[3], [4]. A column C is an ordered set of disjoint left-closed right-open intervals
of the same length. A tower G is an ordered set of disjoint columns. An
interval in a column in G is referred to as a level in G. We picture levels in a
column arranged vertically as rungs on a ladder. If x is not in the top level in a
column in G, then T;(x) is the point above x.

We let SG denote the tower formed by independent cutting and stacking of
G [3], [4]. The set consisting of the union of levels in columns in G is also
denoted by G. The transformation 7(G) = lim,, _,  T¢«; is defined on G. An
M-tower G is a tower with two column heights that are relatively prime. In this
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G |% |Gy |%

Ca |4 |G,
Gs|4 |G
Ge| |Gy
G| | |G | | %
Ge % | G
Fio. 1

case T(G) is mixing. Thus if G is an M-tower, then for ¢ > 0 there exists
t* = 1(G, €) such that for all levels I and J in G,

1) Im(T(G)' 1N J)m(G)/m(I)m(J) —1| <e, 1*<ut.

Let t** > ¢* The definition of T(G) implies there exists n so large that if T
extends 7., then for all levels I and J in G,

(2) Im(TINJT)m(G)/m(I)m(J) — 1| <e, t*<t<t**

The stacking construction for introducing periodicity in a tower will now be
briefly described. Only towers with rational widths will be considered. In this
case the columns in a tower G can be cut into subcolumns of equal width w.
These columns are then stacked to form a single column C,; of width w. Each
level in G is a union of levels in C;. Let p be a positive integer. We cut C; into
p equal subcolumns and stack them to form a column C of width w/p. Let h

be the height of C,. If T extends T, and I is a level in C;, then the
construction implies

(3) m(T"IN1)>1-1/p)m(I).

Since each level J in G is a union of levels I in C,, (3) also holds for J in G.
We denote C,(G) = C. Thus C,(G) is a column obtained by converting G to a
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column, cutting this column into p equal subcolumns, and stacking these
subcolumns.

The induction step in Figure 1 will now be described. We begin with
M-towers G,;, i = 1,2, of equal measure and ¢ > 0. There exists ¢, such that if
G = G, and I and J are levels in G, then (1) holds with ¢* = ¢,,.

Choose p so that 1/p < e. Form C;, = C,(Gy;). Thus (3) implies there is a
positive integer A, so that if T extends 7T, and J is a level in Gy, then

4) m(T"JNnJ)> 1 —e)m(J).

We now convert C;, into an M-tower as follows. Cut C;, into g equal
subcolumns and add one extra level to the last subcolumn to obtain an
M-tower G,; with g columns. The measure of the extra level is certainly less
than 1/4 and can be made arbitrarily small by choosing ¢ large.

Since G5 is an M-tower, we can choose t; > (G, €) so that ¢; > ¢, and if
I and J are levels in G;, then (1) holds with G = G,; and t* = ;. We can
now choose n so large that if G;, = §"G; and T extends Tj; , then (3) implies

(5) Im(TINJT)Ym(Gp)/m(I)m(J) —1| <e, t=1t,

where I and J are levels in G,;.
Now choose n so large that if G,, = S"G,; and T extends T; , then

(6) Im(T'INJT)m(Gy)/m(I)m(J) —1| <e, t,<t<t,

where I and J are levels in G,;.

We now want to mix G,, with G,, while preserving the previous mixing. Cut
each column in G, in half and form two copies g, = G,4/2, j = 1,2, i = 1,2.
Let G5 = (811> 812) and G,5 = (821, 82)- Thus G5 is a half-size copy of G,
next to a half-size copy of G,,, i = 1,2. Choose ¢, > t(G,s, €) so that 1, > t,.
In particular, levels in g,; mix with levels in g,, at ¢,. To preserve ;-mixing
during [#;, ¢,], we will continue to mix g;; separately, j = 1,2. Thus we can
choose n so large that if

Gy = (Sngu, S"g12)

and T extends T, then (5) implies
(7) |m(T TN JT)m(gy)/m(I)m(J) —1| <e, t<t<t,,
where I and J are levels in g;;. Also, (6) implies

(®) Im(TTNJT)m(g)/m(I)m(J) —1| <e, t, <t<t,,
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where I and J are levels in g,,. Here we used the fact that g;; is a copy of G,
and g,, is a copy of G,,.

Choose t; > t(G4,€) so that #; > ¢,. Now choose n so large that if
Gy = $"G,s and T extends T; , then

(9) |m(T'INJ)m(Gy)/m(I)m(J) — 1| <e, t,<t<t,,

where I and J are levels in G,s.

The induction step will now be used to construct T and R. Let G, be an
M-tower and let G,; = G}, = G,/2 and G,, = G}, = G,/2. Let e = ¢,. Apply
the induction step to obtain G, = G,;,2<j <6, G}; = G,;, 4 <j <6, and
t;=1t,0<i<3.

For convenience we set T;,; = Tgx. The towers defining R will be denoted
by H, and we let Ry, = Ty,

We have T, i = 1,2. If T extends Ty i = 1,2, and I and J are levels in
G, then the induction step guarantees

(10) m(TInJ)>Q —e)m(I)m(J)/2m(Gy), to<t<t;.

If I is a level in G, then 1/2 is a level in G},. Hence (4) of the induction step
implies there is a positive integer 4 = hy; such that

(11) m(T"INT)> (1 —¢)m(I)/2.

We will now begin defining R so that R is mixing well for [#,,,¢;5]. Let
H, = G,. Choose n so large that if H; = S"H, and R extends Ty, then for
levels I and J in H,,

(12) Im(RINJ)m(Hy)/m(I)m(J) —1| <g, t,o<t<t;.

During [#,4, %3], (10) and (12) imply T is essentially i-mixing and R is
essentially mixing for levels in G, = H,,. Condition (11) is used to verify T is
not a-mixing for a > 3.

Now let H}, = H,/2 and H}, = H, /2 Apply the induction step with € = ¢,
and G, = H,/2, i = 1,2. We obtain Hl =G;,2<j<6, sz =G,,4<]
<6,and r;=1¢,0 <i <3 Wecan choose o > 3

We have Ry, i =1,2. If I is a level in H, then I/2 is in H,l, i=1,2.
Therefore the induction step guarantees that if R extends R, i = 1,2, then
for levels I and J in H,,

(13) m(RINJ)=21 —¢e)m(I)m(J)/2m(H,),rio <t < ry5.

Since HJ, = H,/2, the continuation of mixing in H} to form Hj;, also
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guarantees 3-mixing for levels I in H, during [#,5, r;,]. Thus we also have
14) m(RINJ)=>=1 —e)m(I)m(J)/2m(H,), t;53<t<ry,
for levels I and J in H,,.

If I is a level in H,, then I/2 is a union of levels in H},. Hence (4) implies
there is a positive integer & = h,, such that

(15) m(R'AT)> (1 - e)m(I)/2.

Now we have ry; > rj, > 5 > tg,.

For the kth stage in the construction, assume we have r,; > r, g > t,4 > 1,,.
We also have g, > 0, towers G, i =1,2, of equal measure, and ¢, >
t(G¥s, &,). If T extends T, 4, then

(16)  |m(TINI)m(GE)/m(I)m(J) — 1| <g, t, <<t
where I and J are levels in G;.

Now r,, > t,, so we can choose n so large that if Gi;*' = S"GX and T
extends T ., ; ;, then

(17)  m(TT N T)m(GE)/m(I)m(J) = 1| <&, b3 <t<r,

where I and J are levels in GX. Also ry; > t,, so we can choose n so large
that if G5! = S"GX; and T extends Ty, , ,,, then

(18)  |m(TINI)m(GL)/m(I)m(J) — 1| <e,, t, <t<rg,

where I and J are levels in GX.

Let g, , < &. Choose t, ., o > max{t(Gi*', &), i = 1,2} so that ¢, ,
> r;.3- We now apply the induction step with e = ¢, ., G; = Gi*, i =1,2.
We obtain Gf*1 = G1,2<J<6 Gst= G2,4<j<6 and 1,,,,,1<i
<3 IfI and J are levels in G§, or G21, then I/2 and J/2 will be in GE*1,
i = 1,2. The induction step implies that if T extends T, ,, ;¢ i = 1,2, then for
levels I, J in G,l, i=1,2,

(19) m(TTNJT)= 1 —e)m(I)m(J)/4m(G ), t110 <1<ty

If I is a level in G,, then I/2 is a union of levels in G{;. Hence (4) implies
there exists h = h, ., such that

(20) m(TNT)> (1 —¢e.,,)m(I)/2.

We now have #,,, 3> t,,,0> 13> 1y, The (k + 1st stage of the con-
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struction for R is now obtained by repeating the analogous kth stage of the
construction for T, with G replaced by H, to obtain (16)—(20) with T replaced
by R and r,, ; replacing ¢, ..

If ¢ is in [2,4, 3], then (17) and (18) imply

(21) m(T'INJ) =1 —¢e)m(I)m(J)/2m(GL),

where I and J are in GX™!, i = 1,2. This is because /2 and J/2 are in Gk,
i=1,2. Since we assume m is normalized so that lim,_ m(Gf) =
lim, ,  m(H{) =1/2, (21) implies T is essentially mixing for t;; < t < 1y,
and levels in GX™!, i = 1,2. These levels are arbitrarily small for k large.
Hence finite unions of these levels are dense in 4. In particular, we conclude
that 7 is essentially mixing for ¢,; < ¢ < r,; for all intervals, as k — oo.

Since R is constructed in the same way that T is, we conclude R is
essentially mixing for r,, <t < ¢, 5 for all intervals, as kK — 0.

From (19) we conclude that T is essentially 3-mixing for 7, ,, o <t <1#,,;
and levels I,J in G%, i =1,2. By induction, this holds for all k. So we
conclude that as k — oo, T will be essentially 3-mixing for ¢ in [z, o, ¢, 5] for
all intervals.

Since R is constructed in the same way that 7T is, we conclude that as
k —> o0, R is essentially i-mixing for ¢ in [r.,,r,;] for all intervals. The
following diagram is helpful. The ’s and 1’s indicate where T and R are each
essentially 3-mixing and mixing. In particular, (1) is satisfied so T and R have
the desired properties.

4. Uniform sweeping out

Let k be a positive integer. A transformation T wuniformly k-sweeps out if
given A, of positive measure, 1 < i < k, and ¢ > 0 there exists N = N(A4®), ¢)
such that for all increasing d{¥), 1 < n < N,

N
(4.1) m| U I(T,d#, 40)|>1-e.

n=1
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In [3] it is shown that mixing implies uniform 1-sweeping out. This result is
generalized as follows.

(4.2) THEOREM. If T is (2k — 1)-mixing, then T uniformly k-sweeps out,
k=1

The proof of (4.2) depends on the following lemma.
(4.3) LeMmMA. If Tis (2k — 1)-mixing, then given ¢ > 0 and A;,1 <i < k,

of positive measure there exists N = N(A®, €) such that n > N implies

(4.4) -!5 Yy

i, j=1

<eg,

k 2
(1(7. 40, 4) 0.1(7, a0, 40)) = [Tm(4)

for all increasing d®¥,1 < i < n.

Proof. Since T is (2k — 1)-mixing, there exists M = M(A™®, ¢) such that if
a;, 1 <i <2k, satisfy |a, —a;| 2 M, i #j, then

<eg/2.

i=1 i=1

(1) ’m( rk] T4, N rk] T“M«Ai) —(i=Ik]1m(A,.))2

(This is a trivial reformulation of the definition of higher order mixing in §2.)
Now choose N so large that

() (M2 + k2(2M + 1)) /N < /2.

Consider increasing d{¥, 1 < i < n, where n > N. Denote the (i, j)* term in
(4.4) by A(i, j). Call A(i, j) bad if A(i, j) > ¢/2.

If A(i, j) is bad, then (1) implies some pair of the exponents d, ;, (d,, +
dis)s--os(diy+ -+ +d, 1),d; s, ....(d; + --- +d; ;) must differ by less
than M. Since the d{¥ are increasing and since the entries are positive
integers, all entries of d*) are at least r. In particular, if i > M and j > M,
then the only way A(i, j) can be bad is that one of the first k exponents is
within M of one of the last k exponents.

Thus we fix i = a > M and count the number of possible j > M such that
A(i, j) could be bad. Since d;; increases as j increases, there are at most
2M + 1 values of j such that |d;, — d, ;| < M. Iterating this argument, we
see that there are at most k(2M + 1) values of j for which d;; can be within
M of any of the first k exponents. The same estimate applies to each of the last
k exponents. Thus for fixed a > M, there are at most k2(2M + 1) values of
J > M such that A(a, j) is bad. Summing over a, we see that there are at most
(n — M)k?(2M + 1) values of i > M and j > M such that A(i, j) is bad.
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Thus if E is the number of bad A(i, j)’s,1 < i, j < n, then
(3) E<M?*+(n— M)K2QM + 1).

Now A(i, j) < 1 for all i, j. Hence we can use (2) and (3) to estimate the sum
in (4.4) as follows.

(@) L z= MG ) 5 25 (B + (02 = E)e/2)

2 _ 2
SM +(n MZk (2M+1)+s/2
n
2 2
M +k]E,2M+1)+€/2

<eE.

Now Lemma (4.3) will be used to prove Theorem (4.2). Given A%, we let
IT = [T ,m(A,) for convenience and let n = (eI1)2/2. Let N = N(A®, n) as
in Lemma (4.3). Let

B,

14

C=

1

i

B,=1(T,d®,A®) and C= (

We need to show m(C) < .
Let b, denote the characteristic function of B, and let f = (XY_,b,)/N. Since
C N B;,=0,1<i < N, Holder’s inequality implies

O n(O) | [/~ Wan|< 1/ T < =TI

Now we have
y - 2 Y
2 IIf—HII§=f(F 'Zlbibj__ﬁn Zlb,-+H2) dm.
l,j= i=

By the choice of N, the first integral on the right in (2) is within n of IT2
Hence (2) implies

3) If - n||2<2n2——nf(2b)dm+n

)
= Zlm(Bi)_HI + .
N i=1
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Since T is (2k — 1)-mixing, T is also (k — 1)-mixing. Hence, taking § =
¢’I1/8, there exists P = P(A®,8) such that,if d, ; > P for j =1,...,k, then
|m(B,) — II| < 8. Since the d(*) are increasing and all d, ; are positive, the
above condition will be satisfied if i > P. We assume that N has also been
chosen large enough so that P(1 — 8)/N < 8. Let K denote the number of

terms |m(B,) — II| which exceed 8. We continue the estimate (3):
< %%(KHN— K)8) +1

<3§(p(1-s)+zv-s)+n

Taking square roots yields ||f — II||, < elI. Combining this with (1), we see
that IIm(C) < €ll, hence m(C) < e. This was the desired inequality, and the
proof of the theorem is complete.

(4.4) COROLLARY. If T is mixing of all orders, then it is uniformly sweeping
out of all orders.

The converse of Theorem 4.2 is open. In fact, we do not know if uniform
sweeping out of all orders implies mixing.
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