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Introduction

In the study of analytic subgroups of an analytic group, sometimes it is
important to know the structure of the product of two analytic subgroups and
the closure of this product. There are two fundamental theorems in this aspect"
one is a theorem of Mostow’s and another is known as the Auslander-Wang-
Zassenhaus theorem. Mostow’s theorem (cf. [5]) says that if D is a closed
uniform subgroup of a solvable analytic group G such that D contains no
non-trivial normal analytic subgroup of G, then DN is closed in G and D N N
is a closed uniform subgroup of N, where N is the nilradical of G. (Let Y be a
subset of a topological space X. Then we denote by Y the closure of Y in X.
Let Z be a subgroup of a topological group K. Then, by definition, Z is a
uniform subgroup of K or Z is uniform in K if K/Z is compact. If K is an
analytic group, then the maximal nilpotent normal analytic subgroup of K is
called the nilradical of K.) Clearly, Mostow’s theorem holds for discrete
uniform subgroups. A natural question is what happens if the discrete sub-
group D is not uniform. In fact, in this case, it is easy to find examples of D so
that DN is not closed in G and D N N is not uniform in N. However, in these
notes, we prove the following result.

THEOREM 1. Let G be a simply connected solvable analytic group with
nilradical N. If D is a discrete subgroup of G such that DN is dense in G, then D
is nilpotent.

By definition, if D is a discrete subgroup of a locally compact group G and
if a: G G/D denotes the canonical map, then D is called an L-subgroup of
G provided that for every neighborhood U of the identity element e of G the

Received May 23, 1983.
1We would like to express our thanks to the referee for pointing out some errors in the earlier

version of this article.

(C) 1985 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

687



688 TA-SUN WU

closure of a(( g G" gDg-1 (3 U (e } }) is compact in G/D. As an applica-
tion of Theorem 1, we give a variation of a proof of a theorem of S.P. Wang
concerning L-subgroups (cf. [8]).

THEOREM 2. Let G be a solvable analytic group with nilradical N. If D is an
L-subgroup of G, then D (3 N is uniform in N.

The Auslander-Wang-Zassenhaus theorem (cf. [6]) states that if G is a Lie
group, R is a closed connected solvable normal subgroup of G, and H is a
closed subgroup of G such that H0 is solvable, then (RH)0 is also solvable. (If
Z is a subgroup of a topological group K, then we denote Z0 the connected
component of Z containing the identity.) In these notes, we use the theorem
above to prove the following result.

THEOREM 3. Let G be an analytic group with radical R, let H be a closed
subgroup of G, and let F RH. If R(Fo) denotes the radical of Fo, then
F R(Fo)H and Fo R(Fo)Ho. (By the radical of an analytic group K, we
mean the maximal solvable normal analytic subgroup of K.)

Using this theorem, we are able to prove that if H is a uniform and
unimodular subgroup of a locally compact group G, then G is unimodular.
This result was known for those groups that satisfy the second axiom of
countability (cf. [4]). Since it appears in [9], we will not give the detail here.
The letter R, Q, Z denote the collection of all real numbers, rational num-

bers, integers, respectively.

I. Discrete subgroups of simply connected solvable analytic groups

Our main result in this section is the following theorem.

THEOREM 1. Let G be a simply connected solvable analytic group with
nilradical N. IfD is a discrete subgroup of G such that DN is dense in G, then D
is nilpotent.

Since the notion of semisimple slitting is used intensively in the proof, we
shall recall some of its results as follows (cf. [1]):

Let G, N, D be as in Theorem 1.
(1) There exists a group G and an abelian analytic group T of automor-

phisms of G such that the differential of each element of T is semisimple (i.e.,
completely reducible), Gs G N T (the semidirect product), and G, M > T,
where M is the nilradical of G. G is called a semisimple splitting of G.

(2) G and M generate G, and N
_
M.

(3) Let p: M > T M be the projection. Then P G, the restriction of p
to G, is a homeomorphism of G onto M.
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If Z is a subgroup of an algebraic group K, then the smallest algebraic
subgroup of K containing Z is called the algebraic hull of Z and is denoted by

(4) Let Ho Ah(D N). Then, D N is uniform in Ho, Hz is a closed
analytic subgroup of N, Ho is normalized by D. And hence, DR DHo is a
closed subgroup of G.

(5) Let p.: M > T ---, T be the projection. Then, T can be so chosen that
To p.(DR) acts on DR by conjugation. Hereafter, we always assume that T
is so chosen. Put Ds DR To and let Mo be the maximal nilpotent normal
subgroup of Ds. Then, Ds Mo > To and Mz is contained in M.

(6) p]DR, the restriction of p to DR, is a homeomorphism of DR onto Mo.
If Z is a subgroup of a group K, then we denote [Z, Z] the subgroup of K

generated by elements of the form aba-lb-1 with a, b in Z.
(7) [Ds, Ds] is contained in Ho.
(8) If K is a vector subgroup of D normalized by DR, then K is a normal

subgroup of D.
Now, we are ready to prove our theorem. We shall use the same notations as

above.

Proof of Theorem 1. If Ho is trivial, then so is D N. Together with the
fact that [G, G] is contained in N (since G is a solvable analytic group), we see
that [D, D] is trivial. In particular, D is nilpotent. So, from now on, we shall
assume that Ho is not trivial.

Since Ho is a simply connected nilpotent analytic gp, the last non-trivial
term V of the lower central series of Ho is a vector group. Because Ho is
normalized by D and V is a characteristic subgroup of Ho, V is normalized by
D. So, we have an action of D on V by conjugation. Let d be an element of D.
If v is an element of V, we denote dvd-x by I(d)(v). Then, I(d) is an
element of GL(V). Denote by I(d)u the unipotent part and I(D) the
semisimple part in the Jordan decomposition of I(d). We also denote the
collection of I(d), I(d) u, I(d) as d ranges over D by I(D), I(D) ,, I(D) s,

respectively.
By a result in [6] (Corollary I of Theorem 2.3), D (q V is a discrete uniform

subgroup of V. Since D N is a discrete uniform subgroup of HD. Thus,
D ( V is a free abelian subgroup of V generated by an R-basis

for V [2, III 1.2]. Let VQ be the Q-span of vl,...,v,, and let V1 be the
eigenvalue one Q-subspace of VQ relative to I(D),. We claim that D V is
not trivial.

Lying in the center of Ho, V is pointwise fixed by I(d) for every d in
D N. Together with the fact that D/(D ( N) is abelian, I(D) is an abelian
group; and hence, I(D), is an abelian group. On the other hand, since D V
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is clearly I(D)-invariant, I(D) lies in GL(n, Z) relative to ; and hence,
I(D), lies in GL(n, Q) relative to N’ [3, pp. 62, 63]. Let L be the Q-span of the
elements of the form I(d)u id, where id denotes the identity matrix. By the
commutativity of I(D),, we see that L is a Lie subalgebra of M(n, Q)
consisting of nilpotent matrices. It follows that there is a non-zero element v0
of Vt? anniliated by L [7, Theorem 3.5.2]. Clearly, v0 is in V1. Expressing o0 as
a finite Q-linear combination of ol,..., v,, we see that there is a large enough
integer a such that ao0 is a non-zero element in D C V. This proves that
D c3 V is nontrivial as we claimed.

Since V is pointwise fixed by each element of I(D),, one checks directly
that V is I(D)-invariant; and hence, D r3 Vx is I(D)-invariant. Together with
the fact that D C V is pointwise fixed by each element of I(D)v, we conclude
that

(9) D ("1 V is I(D)-invariant, and I(g)l(D t VI)- I(g)l(D (q V) for
every g in D.
From this, we claim that D ( Vx is TD-invariant. That is, if x =mt is an
element of D with m in MD and in TD, we must prove that

t(D C3 V)t- D V1.

To this end, let x, m, be as above, and write x dh with d in D and h in
Ho. Let {Wl,...,w,,) be a Q-basis for V1 and let W be the R-span of
Wl,..., wm. Expressing each w as a finite Q-linear combination of , ,,
one sees that there is a large enough integer b such that bwl,..., bw are in
D Vx. By the linearities of I(d) and l(d)s, (9) shows that W is I(d)s-
invariant and I(d)l W I(d)l W. Moreover, since clearly W is contained in
V and V lies in the center of Ho, h acts on W trivially. Consequently, W is
I(x)-invariant and

(10) I(x)l W I(d)1 W,

where I(x) denotes the action of x on Gs by conjugation.
Clearly, the above discussion of x holds for every element in DR, applying

(8) to the vector group IV, IV is therefore invariant under the action of every
element in (DR) by conjugation. In particular, W is I(m)-invariant and
I(t)-invariant, where I(m), I(t) denote the actions of m, on G by conjuga-
tion, respectively. Since IV is a vector subgroup of the simply connected
nilpotent analytic group M and m is contained in M (since Mo is contained in
M), one checks directly that m acts on W unipotently. On the other hand,
since To is contained in T, by the semisimplicity of T, acts on IV semisimply,
Moreover, by (7), mtm-lt-1 lies in He. Since W is contained in the center of
Ho, mtm-t-1 acts on W trivially by conjugation; that is, I(m)l W and
l(t)] IV commute. Consequently, l(rn)l IV is the unipotent part and I(t)l IV is
the semisimple part in the Jordan decomposition of I(x)l W. Thus, (10) forces
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that m acts on W trivially; and hence, I(x)l W I(t)l W. Together with (9)
and (10), we obtain

t(D n V1)t -1 D n V,

as we wished. And thus, D n V1 is To-invariant.
Next, we claim that To is dense in T from the hypothesis DN is dense in G.

To see this, let t be a fixed element of T, and let U be any open neighborhood
of the identity in T. Since N is contained in M, the fact that DN is dense in G
implies that G is contained in MD. Together with the fact that G is generated
by G and M, we have G MD. It follows that there is an element m in M
and an element d in D such that mid lies in MUt since MUt is an open
neighborhood of tl in Gs. On the other hand, d can be expressed as a product
m2t2 with m2 in Mo and t in To. Consequently, mm2t is an element in

MUtx with mm 2 in M, t in T, and Utx contained in T. It follows that 2

must be in Utx. This proves our claim that To is dense in T.
Since D N V is discrete, and hence closed in Gs. The results that D n V is

To-invariant and To is dense in T therefore imply that D N V1 is T-invariant.
It follows from the connectedness of T and the discreteness of D Vx,
D N V is pointwise fixed by every element of T. In particular, D 3 Vx is
pointwise fixed by every element of To; or equivalently, every element of To
acts on D N Vx trivially by conjugation.

If o is any element of To, then there is an element x0 in DR such that
xo moto with m0 in Mo. By the above discussion of x, we see that W is
I(to)-invariant. Since o acts on D V trivially, bw,..., bw lie in D q V1,
and W is the R-span of wx,..., wm, the linearity of I(to) (over reals) therefore
implies that o acts on W trivially. Moreover, by the above discussion of x, we
also see that m 0 acts on W trivially. Consequently, x0 acts on W trivially.
Since the above discussion holds for every element in To and every element in
DR, W is a nontrivial (since D V is non-trivial) vector group contained in
Ho and contained in the center of (DR) s, where (DR) Ds.

Let

f: (DR)s (DR)s/W

be the canonical map. (Note that (DR)s/W= (DR/W) > To.) If f(Ho) is
trivial, then Ho coincides with W. Thus, DR/Ho is isomorphic with

D/(D n D/(D n N).

Since the later is an abelian group and Ho 14/" is contained in the center of
DR, DR is nilpotent; and hence, D is nilpotent.

Suppose that f(Ho) is not trivial. Then, again since bwx,..., bw are in
D ( V, and W is the R-span of w, w,,, we see that D V1 is a discrete
uniform subgroup of W. It follows that DW is closed in (DR)s. Thus, f(D) is
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topologically isomorphic with D/(D W); in particular, f(D) is a discrete
subgroup of f((DR)s). Similarly, one obtains that f(D N) is a discrete
subgroup of f(Ho). Moreover, one checks directly that f(Ho) is a simply
connected nilpotent analytic group and f(D n N) is a discrete uniform
subgroup in f(Ho). Therefore, we may consider the last non-trivial term of the
lower central series of f(Ho) and go over exactly the same agreement as above
to obtain a non-trivial vector group contained in f(Ho) and contained in the
center of f((DR)s). Continuing this process, due to the finite-dimensionality of
Ho, the process must terminate at a stage in which a similar argument in the
last paragraph applies. So, we may conclude that D is nilpotent. This proves
the theorem.

Remark. In fact, we have proven that DR is nilpotent; and hence, so is D.

2. L-subgroups of solvable analytic groups

As an application of Theorem 1, we give another proof of the following
result of S.P. Wang (cf. [8]).

THEOREM 2. Let G be a solvable analytic group with nilradical N. If D is an
L-subgroup of G, then D 6 N is uniform in N.

Proof Let G’ be a universal covering group of G and let f: G’ ---> G be the
group coveting. Then f-l(D) is an L-subgroup of G’ (Lemma 1.5 in [8]). Let
N’ be the nilradical of G’. If f-I(D) N’ is uniform in N’, since f(N’) N,
we see that D N is uniform in N. So, we may assume in addition that G is
simply connected.

If DN is closed in G, then (DN)/N is topologically isomorphic with the
discrete group D/(D N); and hence, N is open in DN. Since the closedness
of DN in G implies that D is an L-subgroup of DN (Lemma 1.8 in [8]), we
have that D N is an L-subgroup of N (Lemma 1.6 in [8]). Consequently,
D N is uniform in N by Theorem 2.6 in [8]. And the theorem is proved.

Next, suppose that DN is not closed in G. We shall prove that this is
impossible.

Let F DN, and D’ D F0. As we saw before, D’ is an L-subgroup of
F0. Because F0 is open in F, and N

___
F0,

D’N (D n Fo )N (DN ) Fo -oo Fo.

Suppose that D’N is closed in F0. Then, the last result implies that D’N F0;
and hence, Fo (D ( Fo)N (DN) F0; i.e., F0 is contained in DN. By the
openness of Fo in F again, DN is closed in F; and hence, DN is closed in G, a
contradiction. This shows that D’N is not closed in F0. Next, we observe that



PRODUCT OF SUBGROUPS IN LIE GROUPS 693

F0 is not nilpotent. For if it is, N c__ F0 and [G, G] c_ N imply that [G, G]

___
F0;

i.e., F0 is a normal nilpotent analytic subgroup of G containing N. Thus,
F0 N. Again, the openness of F0 in F shows that DN DFo is open in F;
and hence, DN is closed in F (and therefore in G). This contradiction proves
that F0 is not nilpotent.

Replacing F0 and D’ by G and D, respectively, the last paragraph tells us
that we may assume in addition that DN G, DN is not closed in G. and G is
not nilpotent. By Lemma 3.6 in [8], we may assume also that G lies in some
general linear group so that N is unipotent.

Using the same notations in the beginning of Section 1, since To(Mz) Mz,
To(Ah(Mo)) Ah(Mo)" Thus, by the semisimplicity of To, there is a sub-
space V of L(M) complementary to L(Ah(Mo)) that is invariant under the
differential of each element of To. (If K is any analytic group, then L(K)
denotes the Lie algebra of K). We claim that there is a non-zero element o in
V such that exp Ol lies in N. Clearly, it suffices to show that Ah(Mo) n N 4: N.
To see this, suppose that Ah(Mn) N N. Then, N is contained in Ah(Mo)-
Since G DN, by (3), NMn M. Consequently,

(11) M=Ah(Mo).

By Theorem 1, D is nilpotent; and hence, D Mo To (a direct product).
Thus, Ah(Mo) To and also Ah(Mo) To,, (by the proof of Theorem 1 To is
dense in Ta). Thus, (11) implies that Gs M Ta; and hence, G is nilpotent.
In particular, G is nilpotent, a contradiction. So, Ah(Mo) N 4: N; and
hence, there is a non-zero element v in V such that exp 01 lies in N.
On the other hand, the set {x L((Ah(D))o): expx D} generates a

discrete subgroup Dz of L((Ah(D))o) (Proposition 2.5 in [8]). By Margulis’
Lemma [8], there is a neighborhood U of 0 in L(Ah(G)) such that

(t !: (Adexptvl)Dz C3 V= (0}}

is unbounded. Consequently, there is a neighborhood W of the identity
element e of G such that

A { I" exp(tv)D exp(tv1) -1 W { e } }
is unbounded.
If d is an element of D, writing d mdtd with md in Mo and d in To,

then we define a(d): M M by a(d)(m)= mdtd(m ). Denote by M/a(d)
the orbit space relative to the above action a of D on M, and by m* the orbit
of m (m M). If g is an element of G, we define r(Dg) (p(g))*. Then, we
have a homeomorphism r: G/D - M/a(D) (p. 240 in [1]).
On account of the facts that D is discrete, exp V is closed in M, and every

element of M can be expressed uniquely as a product m exp o with m in
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Ah(Mo) and v in V, a standard sequential argument shows that a(D)exp V is
closed in M, (expV)* is closed in M/a(D), and the map s: V (exp V)*
sending v to (exp v)* is a homeomorphism.

Since D is an L-subgroup of G, &(epAo) is compact in G/D, where a:
G G/D is the canonical map. Thus, r(a(xpAvl)) is a compact subset of
(expV)*; and hence, s-l(r(a(expAvl)))is a compact subset of V. Clearly,
this implies that A must be bounded, a contradiction. And hence, the theorem
is proved.

3. Products of closed subgroups and radicals

In this section, we shall consider the product of a closed subgroup H of an
analytic group G and the radical R(G) of G. We shall use the Auslander-
Wang-Zassenhaus Theorem [6, 8.24] which states that if R is a solvable closed
analytic normal subgroup of the Lie group G and H is a closed subgroup of G
such that Ho is solvable, then (HR)o is also solvable. Our result is the
following.

THEOREM 3. Let H be a closed subgroup of the analytic group G. If F
R (G) H, then F g(Fo)H and Fo g(Fo)Ho, where R(Fo) is the radical

of Fo.

Proof Let B H q F0. Since R(G) is contained in Fo, R(G) is contained
in R(Fo). Thus, R(G)H

_
R(Fo)H

_
F. It follows from the definition of F

that

(12) R(Fo)H= F.

Together with the fact that F0 is open in F and the equality (R(Fo)H) n Fo
R(Fo)B, we may conclude that

(13) R(Fo)B Fo.

Let f: Fo Fo/R(Fo) be the canonical map. Since f(Bo) is an analytic
normal subgroup of the semisimple analytic group f(F0), f(B0) is closed in
f(Fo). Suppose that f(Bo)4: f(Fo). Then, there is a non-trivial semisimple
closed analytic normal subgroup E of f(Fo) so that f(B0) n E is discrete and
f(Bo)E f(Fo) (cf. [2, XI. 2.2]). From (13), f(B)= f(Fo). Together with the
discreteness of f(B0) n E, and the observation that

f(Fo)/(f(Bo) 0 E)
is a direct product of

f(Bo)/(f(Bo) E) and E/(f(Bo) E),
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and f(B)E f(Bo)E f(Fo), we have

(14) f(B) C E E.

Let C B f-l(E). Then f(C)= f(B) E; and hence, f(C) E by
(14). It follows that f-l(E) R(Fo)C. Since f-l(E) is connected, we obtain
that

(15) f-l(E --(R(fo)C)o

On the other hand, by the definition of C, CO is contained in Bo; and hence,
f(Bo) E contains f(Co). The discreteness of f(B0) E therefore forces the
connected group f(Co) to be trivial; i.e., CO is contained in R(Fo). In
particular, CO is solvable. Applying the Auslander-Wang-Zassenhaus theorem,
(R(Fo)C)o is solvable. By (15), f-X(E) and hence E are solvable. Thus, E
must be trivial since E is semisimple, a contradiction! Therefore, f(Bo)=
f(Fo); i.e.,

(16) R(Fo)Bo Fo.

Together with the fact that F0 is open in F and R(Fo)Bo is contained in
R(Fo)H, we may conclude that R(Fo)H is an open subgroup of F; and hence,
F R(Fo)H by (12).
By the definition of B, Bo is contained in Ho; and hence, F0 is contained in

R(Fo)Ho by (16). On the other hand, being a connected subgroup of F,
R(Fo)Ho is also contained in F0. Consequently, Fo R(F0)Ho. This com-
pletes the proof.
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