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1. Introduction and main theorem

A bounded linear operator S on a separable Hilbert space H is said to be
subnormal if S has a normal extension N to a Hilbert space K D H. In case S
has no normal part then S is said to be a pure subnormal operator. Further, N
is called the (essentially unique) minimal normal extension if the only reducing
space of N which contains H is K. (For the basic properties of subnormal
operators, see Halmos [3], Chapter 21, and for a detailed exposition of the
subject, see Conway [2].) Since H is invariant under N then H* = K © H is
invariant under N *. As in Conway [1], the operator T = N *|H*, is called

the dual of § = N|H. Further, one can express N and N* as operator
matrices

In Olin [6], p. 228, it is shown that since S is pure with minimal normal
extension N then T is also pure with minimal normal extension N *. Further
(1), p. 196), T is the dual of S with spectrum o(T) = {z: z € 6(S)}. Simple
calculations with the matrices of (1.1) show that

(1.2) S*S — SS* = XX*, T*T-TT*=X*X

and

Re(S) 3Xx

(1.3) Re(N)=3(N+N*)= [ 1x* Re(T)

] on K=He®e H*.

Since S and T are pure subnormal (hence also hyponormal) operators, both
Re(S) and Re(T) are absolutely continuous operators on H and H*',
respectively; Putnam- (8], pp. 42-43.
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THEOREM 1. Let S be a pure subnormal operator on H with the minimal
normal extension N on K D H, and let T be the dual of S. Suppose that

(1.4) D2 is of trace class, where S*S — SS* = D(2 0).
Then

(1.5) Re(N), on K, has an absolutely continuous part, which, on the
corresponding absolutely continuous subspace of K, is unitarily equivalent to
Re(S)®Re(T)onK=He® H*.
More generally, if a and b are real and a® + b> > 0 then aRe(N) + bIm(N)
has an absolutely continuous part which is unitarily equivalent to [aRe(S) +
bIm(S)] ® [aRe(T) + bIm(T)).

Proof. 1t follows from (1.3) that Re(N) is the sum of Re(S) & Re(T') and
the selfadjoint perturbation
1[ 0 X]
2{x* ol

The square of this last operator is (XX * & X *X). In view of (1.4) and (1.2),
(XX *)/2 is of trace class. Thus, X and hence also (X *X)'/? are of trace
class. As was noted above, Re(S) ® Re(T') is absolutely continuous, and so
(1.5) is a consequence of the well-known Rosenblum-Kato theory [10], [4]; for
example, see also, [5], p. 540 and [8], p. 101. The last part of Theorem 1 readily
follows by replacing S by e’’S, where ¢ is real, and the proof is complete.

In general, a pure subnormal operator for which (1.4) holds does not have a
minimal normal extension N for which Re(N) is absolutely continuous. That
is, in general, the absolutely continuous subspace of Re(N) may be a proper
subspace of K. Perhaps the simplest example showing this is that of Sarason
cited in [3], p. 307, where S is a unilateral weighted shift with weights
{27/2,1,1,...}. Here the selfcommutator S*S — SS* even has finite rank
and o(N) consists of the unit circle together with the origin. In particular, 0 is
in the point spectrum of N and hence also in that of Re(N).

Earlier, Wermer [11] (Theorems 1 and 2) gave an example of a pure
subnormal S having a minimal normal extension N possessing a pure point
spectrum (as has been noted also by Olin [7] and Radjabalipour [9]), so that
the eigenvectors of N span K. In particular, Re(N) must also have a pure
point spectrum. In this example, of course, the condition (1.4) cannot be
satisfied.

It will be shown in Section 2 below that under the hypothesis (1.4) of
Theorem 1, Re(N) may have, in addition to the absolutely continuous part
claimed in (1.5), not only a point spectrum as in the example of Sarason
above, but also a purely singular continuous spectrum. Finally, it will be
shown in Section 3 that if (1.4) is relaxed to the requirement that D'/2 only be
of Schmidt class, or equivalently, that D is of trace class, then it is possible

that Re(N) has a purely singular spectrum, so that its absolutely continuous
component is missing.
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2. An example

It will be shown that there exists a pure subnormal operator S, in fact, an
analytic Toeplitz operator, having a selfcommutator D satisfying (1.4) and a
minimal normal extension N for which Re(N) has both an absolutely continu-
ous part and a purely singular continuous part.

Let f # const belong to H®, so that

(2.1) f(t) ~ i c.e™#c, and |f(¢)| < const (a.e.) < oo,
n=0

and let § = T, denote the corresponding Toeplitz operator. See [2], p. 272, [3],
p. 136 or [8], pp 128-132. Relative to the basis {e, }, e, = ei™ (n = 0,1,2,...),
for H?, with normalized Lebesgue measure on the unit circle, 7, has the
representation as a bounded matrix

(22) 4=(c¢;;),i,j=12,..., and ¢,=0 for n=-1,-2,....
With respect to the standard orthonormal basis {¢,} in /2, where ¢, =

1,0,0,...), ¢, =(0,1,0,0,...),...,it is seen from a straightforward calcula-
tion (for example, see [8], p. 131), that

1A% = |A*D,N1% = lc,)® + |epual® + .
so that

(23) A*A — AA* = B*B, where B=(c.;_1),i,j=1,2,...

Thus, in order that S satisfy (1.4), (B*B)*/? must be of trace class. However,

t(B*B)* = ¥ |(B*B%,,4,) = Y. (B*B)" ¢,

n=1 n=1
00 0 172 0 00 00
- E(Ear] s E L= ool
n=1\k=n n=1k=n n=1
Consequently, the condition
0
(2.4) Y nlc,| < o
n=1

is sufficient in order that (1.4) be satisfied. Since (2.4) implies that Z|c,| < oo,
it is seen that, in particular, (2.4) assures that f(¢) of (2.1) is bounded, and
even continuous, on [0,2].
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The minimal normal extension N of S = T; on H 2(0,27) is multiplication
by f(¢) on L%(0,2). For convenience, suppose that all ¢, are real, so that
Re(N) is the operator on L2(0,27) of multiplication by g(¢), where

(2.5) g(t) = Y ccosnt#cy, -c,real
n=0
It will be shown that g(z) of (2.5) can be chosen so that, in addition to (2.4),
(2.6) g(t) =gQRw —1),0 £t < 7w, and g(?) is strictly increasing on [0, 7],

and, further,

(2.7) g”(¢) is continuous on [0,27], g’(¢) = 0 on [0, =] and g’(¢) = 0 on
a subset of [0, 7] of positive Lebesgue measure.

First, let C be a Cantor set on [0, 7] of positive measure. If the sequence of
removed open intervals of [0, 7]\ C is denoted by I, I,,..., then X|I,| <=,
Next, for each n = 1,2,...,let f,(¢) on [0, 7] satisfy:

(2.8) f,/(t)iscontinuous,0 < f,(¢t) < land |f/(¢)| = 1on[0, #]; f,(¢) > 0
on I, and f,(¢t) =0on [0, 7]\ I,.

That such functions exist is clear. Next, let

(2.9) we)= ¥ (6,

n=1

so that A(¢) = 0 on C and h(¢) > 0 on [0, #]\ C. Also, A’ is continuous and
can be obtained from term by term differentiation of (2.9). If g(¢) is defined
by

(2.10) g(1) = jo‘h(s) ds, 0<t<m,

then g € C?[0, 7] and g’(t) = h(¢t) on [0, 7]. Extend the domain of g to
[0,27] by putting g(27 — ¢) = g(¢) for 0 £ t < 7. Clearly,

(1) = 3 £1(t)/n?

n=1

and g”(7) =0, as a left hand derivative of g’ at t = #. Consequently, the
extension of g to [0,2#] has a continuous second derivative there. Further, it
is seen that (2.6) and (2.7) are satisfied. Clearly, g(¢) has a Fourier series of
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the form (2.5) and, since g € C2[0,27], |c,| < |b,|/n? (b, real, n =12,...),
where ¥b? < oo. In particular,

el 5\1/2 2\1/2
2 nlel s Tib/n s (L1/n%) “(L67) " < oo,
n=
so that (2.4) holds.

Since g(t) = g(2w — t), it is seen that g is strictly increasing on [0, 7] and
strictly decreasing on [, 2]. In addition, it is clear that the operator Re(N),
multiplication by g(¢) on L2(0,2), is (unitarily equivalent to) the direct sum
of multiplication by g on L2(0, 7) with itself. Also, if u,v € L*(0, ), it is
seen that

j:g(t)ku(t)ﬁ(t) dt = Lquﬁdu, M =g(x),

where the strictly increasing continuous function p = p(x) on [0, M] is the
inverse of g(¢) on [0, #]. Consequently, Re(N) is unitarily equivalent to
Q © Q, where Q is multiplication by x on L2(u). Since g’ is continuous on
[0,7] and is O on the set C C [0, 7], then [.|dg| = [-g'dt = 0. If Z = g(C),
then |Z]| =0 and p(Z) = |C| > 0, and so the operator Q has a purely
singular continuous component, as was to be shown.

3. Another example
There will be given a pure subnormal analytic Toeplitz operator S for which
(3.1) S*S — SS* = D is of trace class
and for which
(3.2) Im(N) is purely singular,

where, as before, N is the minimal normal extension of S. (It is convenient
here to consider Im(N) rather than Re(N). If S; = —iS has the minimal
normal extension N, then, of course, Re(N;) = Im(N).)

If A again denotes the matrix corresponding to S as in the beginning of
Section 2 it is seen from (2.3) that

(B*B) = ¥ 1(B*B) 4,2 = ¥ ( flckiz) = 3 nle %,

n=1 n=1\k=n n=1
so that relation (3.1) above becomes

[>2]
(3.3) Y njc,|? < .

n=1



REAL PARTS OF NORMAL EXTENSIONS 245

It will be shown that there exists a real-valued function g(¢) having a Fourier
series

(3.4) g(t) = i c,sinnt (withX|c,| < o)

n=1
satisfying (3.3) and such that the operator of multiplication by g(¢) on
L*(0,2) is purely singular.

The series (3.4) will be obtained as an adaptation of a certain lacunary series
arising from Riesz products of the form

0
(3.5) TT1Q + a,cosn;t),
i=1
where, for i = 1,2,...,
(36) nmy/nzqg>3,-1<a,<1,a;#0 and Y a?= co;

see Zygmund [12], pp. 208-209. For use below, it may be noted that the first
condition of (3.6) assures that

(3.7) Migp =M =Ry = "0 =N > 1y

[12], p. 208. Also, if p,(?) is the (nonnegative) k-th partial product of (3.5), so
that

k K
p(t) =TI + ajcosnt) =1+ Y vy,cosnt,
i=1

n=1

then
(3.8) Y,=0ifn#n,+n,+n,..., wherei>i’'>i”....

In addition, the series

0
(3.9) lim p,(¢) =1+ Y ycosnt
k—c0 n=1
is the Fourier-Stieltjes series of the nondecreasing continuous function

(3.10) F(1) = Jim ['pu(s)ds = 1+ S (y,/n)sin nt;

n=1

that is, if y,/2 =1,

(3.11) Yo=" [TeosmdF(s), n=0,1,2,....
0
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Finally, and what is crucial here relation (3.6) implies that
(3.12) F'(t)=0 ae. ([12], p. 209).

Note that for any sequence n, < n, < ... and for any fixed positive integer
i, the number of sums of the form n, + n;, + n,, + ..., where i > i’ > i” >
..., is not greater than 3/, Next, choose the n, so sparse that n; < n, <
n,,1/n; 2 q > 3, and so that, in addition,

ceey

(3.13) i 3/n; < .
i=1

Then, choose the a; so as to satisfy (3.6). By (3.11), |v,| < const, and hence by
(3.7), (3.8) and (3.13),

(3.14) S 11al/n 5 (const) 3 3/n, < co.

n=1 i=1

In particular, the series of (3.10) is absolutely convergent. Moreover, by (3.14),

(3.15) Y n(v,/n)* < (const) L|v,|/n < oo.

Now, choose a second sequence analogous to { a,}, say { «}* }, in such a way
that the corresponding sequence {y,*} is not identical with {y,}. (Since
Y, = @; (see [12], p. 209), this can be done in many ways.) If F*(¢) denotes
the function corresponding to F(t) let g(¢) = F(t) — F*(¢), so that, by
(3.10), g(2) has the form (3.4) with

(3.16) c,=(Y,—v¥)/n forn=1,2,....

Clearly, g() # const. Also, since (y, — v,*)? < 2(y2 + v,*?), relation (3.15)
implies (3.3).

Since g(?) is the difference of continuous monotone functions, g(t¢) is
continuous and of bounded variation on [0,2#]. In addition, by (3.12),
g’(t) = 0 a.e. Consequently, the operator of multiplication by g(¢) on
L?(0,27) has no absolutely continuous part. Since g(¢) = Im(f(¢)), where

f(¢) is given by (2.1) with the ¢, defined by (3.16) (and ¢, = 0), then the above
operator is just Im(N).

4. Remarks

The following result is similar to Theorem 1.
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THEOREM 2. Under the hypotheses of Theorem 1, the absolutely continuous

part of N*N(= NN *) is unitarily equivalent to the absolutely continuous part of
S*S ® T*T.

The proof is similar to that of Theorem 1 and will be omitted. It may be
noted that the absolutely continuous parts of S *S and of T *T may be absent
as, for instance, is the case when S is an isometry.

Added in proof. Necessary and sufficient conditions in order that the
Hankel matrix B = (c;,;_;) considered above be of trace class (ie., that
tr(B*B)!/2 < ) have been obtained by V. V. Peller, Nuclearity of Hankel
operators, Steklov Institute of Mathematics (LOMI Preprint E-I-79), Leningrad,
1979. See also the survey by S. C. Power, Hankel operators on Hilbert space,
Research notes in mathematics, vol. 64, Pitman Adv. Pub. Program, Boston-
London-Melbourne, 1982.
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