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DUALITY IN SPACES OF OPERATORS AND SMOOTH
NORMS ON BANACH SPACES

BY

GILLES GODEFROY AND PIERRE DAVID SAPHAR

Introduction

This work deals with the spaces of operators between Banach spaces and
their duality, from an infinite-dimensional point of view. We use isomorphic as
well as isometric tools. In particular we investigate and use the fruitful
interplay between metric and weak topological properties of Banach spaces.
Let us summarize the content of this paper.

In Section 1 we use the technique of [6] for obtaining a general representa-
tion (1.3) of the space K(X, Y)**, X and Y being reflexive spaces. Our
method leads to an improvement (1.5) of a classical result of .4. Grothendieck,
and of a result (1.6) of [3].

In Section 2 we define and use the unique extension property (U.E.P.) which
turns out to be the natural tool for lifting the M.A.P. from E to E* (2.2). A
geometrical lemma (2.4) enables us to find a usable condition for obtaining the
U.E.P. (2.5).

In Section 3 we show that many spaces have the U.E.P. However, the class
is not stable by 1-complemented subspaces (3.1). We find a surprising char-
acterization (3.3) of the dual norms on the James space. We notice that there is
a space with a Frechet-differentiable norm but no equivalent Hahn-Banach
smooth norm (3.4), and we present a renorming problem.

Section 4 presents an isomorphic version (4.3) of the results of Section 2. We
obtain, in particular, an extension of a result of [35].

In Section 5 we use the smoothness of the norm of K(X, Y) (X and Y
reflexive) for showing that such a space is "far" from being a dual space if it is
not reflexive ((5.2) and its corollaries)). This improves Theorem 2 of [6]. We
show also that if X is reflexive, the space L(X), equipped with the operator
norm, has an unique isometric predual (5.11).

This work contains many examples which show as far as possible that our
results are sharp. Let us mention that, unless otherwise specified, the Banach
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DUALITY AND SMOOTH NORMS 673

spaces we are considering are not assumed to have any of the approximation
properties.

Notations

All the normed spaces considered in this work are real. A normed space X
will be considered, without special notation, as a subspace of its bidual X**.
The closed unit ball of X is denoted by X1. Two linear topologies on a vector
space are said to be compatible if they have the same continuous linear forms.
For two Banach spaces X and Y we denote by L(X, ) (resp. K(X, Y)) the
space of bounded (resp. compact) linear operators from X to Y. If X Y we
simply write L(X, Y) L(X), K(X, Y) K(X). The topology z defined on
L(X, Y) is the topology of the uniform convergence on the norm compact
subsets of X. A Banach space E is said to have the approximation property
(A.P.) if the identity on E, id e, is in the z-closure of the space of linear
operators of finite rank on E, R(E). For any real number A > 1, one says
that E has the h-bounded approximation property (,-B.A.P.) if id e
,R(){. The 1-B.A.P. is called the metric approximation property (M.A.P.)

One says also that E has the compact approximation property (C.A.P.) (resp.
the 1-compact approximation property (1-C.A.P.)) if id e K(E) (resp.
ide K(E){). We denote by ,r (resp. e) the projective (resp. injective) tensor
norm on E (R) F. The tensor product E (R) F endowed with ,r (resp. e) and
completed, will be denoted X (R),,Y (resp. X (R)Y). For basic facts on tensor
products, a useful reference is [30, Chap. IV.2]. The other notations we use are
classical or will be defined before use.

1. Representations of K(X, Y)** and the C.A.P.

Our first result is a reformulation of the main construction of [6]. For two
Banach spaces X and Y we denote by w* the weak star topology on
L(X**, Y**) induced by the duality with X** (R),,Y*. Then, we have the
following:

PROPOSITION 1.1. Let X and Y be two Banach spaces such that X** or
Y* has the Radon-Nikodym property. Then K(X, Y)** is isometrically isomor-
phic to the w*-closure of the space Z (K**IK K(X,Y)} in the space
(L( X**, Y**), w*).

Proof Let us recall the method of [6]. We assume first that X** has the
R.N.P. Let I’ be a set such that there exists an isometric injection j:
Y I(F). Let J be the corresponding injection (J(K) =jK) from K(X, Y)
into K(X, I(F))= X* (R),/(F). Since X** has the R.N.P. and /(F) the
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M.A.P., one has

(x* x**

We define the following operators:
is the canonical injection from X** (R),Y* into its bidual L(X**, Y**)*;

s (from K(X, Y) into L(X**, Y**)) is given by s(T) T**;
Q s*i.
It is easy to show that the following diagram is commutative:

L(X**, Y**)* X**

J*
K(X, Y)*, X** (R),.I(F)*

Therefore the operator Q is a quotient map. Moreover, if u denotes the
canonical injection from K(X, Y) into K(X, Y)**, one has

Q*(u(K)) s(K) K** for K K(X, Y).

It suffices now to use (1), the fact that Q* is an isometric (w*-w*)-
continuous injection from K(X, Y)** into L(X**, Y**), and the w*-density
of u(K(X, Y)) into K(X, Y)** for obtaining the conclusion.

In the case where Y* has the Radon-Nikodym property, a similar proof can
be given, which this time uses a quotient map from/1(1") onto X. rq

Let us emphasize a special case:

COROLLARY 1.2. Let Y be a reflexive Banach space, and X any Banach
space. Then K( X, Y)** is isometric to the z-closure of the space Z ( K** [K

K(X, Y)} in L(X**, Y).

Proof By a result of Grothendieck (see [24], p. 31) the dual of
(L(X**, Y), z) is a quotient of X** (R).Y* Therefore, the w* and z-topologies
on L(X**, Y) are compatible, and thus the closed convex sets are the same
for the two topologies. This observation, together with 1.1, shows 1.2. In
particular, one has:

COROLLARY 1.3. Let X and Y be reflexive Banach spaces. Then K( X, Y)**
is isometric to the z-closure of K( X, Y) in L( X, Y). In particular, if X or Y has
the C.A.P., then K(X, Y)** L(X, Y).
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Remark 1.4. If X Y is reflexive and has the C.A.P., then of course
K(X)** L(X). Let us note that in this case, the implication C.A.P. =
1-C.A.P. (see [3] and 1.6 below) is immediate by the w*-density of the unit ball
of K(X) into the unit ball of K(X)**, and the trivial fact that Ilid xll 1. On
the other hand, if K(X)** is "canonically" isometric to L(X), that is, if
Q*(K(X)**) L(X), then necessarily X has the C.A.P. This shows that
Lemma 5.1 of [20] is a necessary step in the proof of Theorem 5.3 of [20].

Let us now show that the Proposition 1.1, together with a simple application
of the local reflexivity principle, give an improvement of a classical result of A.
Grothendieck (see [24], Theorem 1.e.15).

THEOREM 1.5. Let X and Y be two Banach spaces such that X** or Y* has
the Radon-Nikodym property. Let C be a convex set in K(X, Y). We let
C*= {K*IK C). Let T L(Y*, X*) be in the closure of C* in
(L(Y*, X*), ). Then for every e > O, T belongs to the -closure of { K*
C*lllg*l[ < IITI[ /

Proof By a result of Grothendieck (see [24], p. 31), the dual of
(L(Y*, X*), ) is a quotient of Y* (R).X**. Therefore, if (K*) is a net in C*
such that

then

lim (Ka*Yi* x? * ) E (TYi*, x? * ),
a

for every family (x/**, Yi*) in X** x Y* such that
Now, 1.1 shows that the net (K* *) converges to T* in (K(X, Y)**, w*), and
thus T* is in the closure of C in ((K(X, Y))**, w*).
Now, let C be a convex subset of a Banach space E and let x be in the

closure of C1 in (E**, w*). Then, for any e > 0, x belongs to the closure of
the set

(tit C1, Iltll < Ilxll + e) in (E**, w*).

Let us prove this easy result for completeness:
Let U be a convex w*-closed neighbourhood of x and V U C. Let

B, (tit

We have to show that l/" n B, . Let 6 be the operator from E E into E
defined by q,(x1, x) x x. We have x Vw" c B/ and thus 0 belongs
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to the weak-closure of (V Be/2). But this implies that there exist x V,
x2 B/2, with Ilxl x2ll < e/2, and thus V t3 B 4= .

This shows that T* belongs to the closure of (K C[ [[K[[ < [[ T[[ + e} in
(K(X, r)**, w*) and thus there is a net (T) in C with [[ T[[ < [[T[[ + e and

lim E(Yi*, T**x**> E(Yi*, T*x’*),
B

for every family (x/**, Yi*) in X** Y* such that Y’-Ily*II" IIx**ll <
But again, this means that by Grothendieck’s result [24, p. 31], T is in the
closure of the set co(T*) in (L(Y*, X*), z).

One says that E* has the C.A.P. with conjugate operators if there exists a
net (T,,) of elements of K(E) such that z: T* id e.- Let us deduce from 1.5
an improvement of Prop. 1 in [3].

COROLLARY 1.6. Let E be a Banach space such that E* or E** has the
Radon-Nikodym property. If E* has the C.A.P. with conjugate operators, then
E* and E have the 1-C.A P.

Proofi By assumption, ide. is in the z-closure of C* (K*IK K(E)}.
By 1.5, ide. is in the z-closure of {K*]K* C*, IIg*ll < 1 / e) for every
e > 0 and this clearly shows that E* and E have the 1-C.A.P. 1

Remark 1.7. Corollary 1.6 is proved under the assumption that E* has
the R.N.P.--in [3], by an adaptation of the proof of Theorem 1.e.15 in [24].
Our proof should be considered as an adaptation of Grothendieck’s original
proof in [19]. Let us notice that the assumption that E* has the C.A.P. with
conjugate operators is also needed in [3]. It is an interesting problem to decide
whether or not this hypothesis is actually necessary. Concerning this question,
we have the following claim: There exists a separable dual X* and an operator
T K(X*) such that T does not belong to the z-closure of the space of
conjugate compact operators. Here is the proof. There exists a reflexive
separable Banach space G and a compact operator T on G such that T is not
in the norm closure of R(G). Using [36, Prop. 3.1] it is possible to build a
reflexive separable Banach space Z, A K(G, Z), B K(Z, G)with T BA.
Then, on the reflexive separable Banach space E G Z one may define [21]
two compact operators K and K2, such that infllK2K SII > 0, the in-
fimu being taken on all operators S on E of finite rank. By [25], there exists
a Banach space Y such that Y** has a basis and Y**/Y is isomorphic to E*.
We have Y*** Y* Y +/- and there exists an isomorphism U from +/- onto
E. We let X Y** and we denote by P the projection from Y*** to Y +/- with
kernel Y* and by j the canonical injection from Y - to Y***. We define the
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operators

S U- 1K,U and T jSP (i 1,2).

Let us assume that T_ lim K* in (K(X*), ,r) with K, K(X). Since X
has the A.P., one has T_--limR* in (K(X*), ,r) with R, K(X) and
rank(R) < + . But then lim[[ T2T R*TI[ 0 and thus

,liml[SS PRjSII 0

This is clearly a contradiction which shows that T2 is not in the ,-closure of
the space of conjugate compact operators on X*.

Remark 1.8. The "James-tree space" JT (see [23]) is a separable dual space
such that JT**/JT is isomorphic to /2(F), with F uncountable. Therefore
JT** has the R.N.P. but JT* has not.

Remark 1.9. It is not clear whether or not the C.A.P. for E* always implies
the C.A.P. for E.

Remark 1.10. The recent and interesting Theorem 1.1 in [27] is another
extension of Grothendieck’s result, rq

2. The unique extension property

There is a Banach E with the M.A.P. and such that E* is separable and
does not have the A.P. (see [25]). On the other hand, if E has the M.A.P. for
every equivalent norm, then E* has the M.A.P. (see [22]). The same conclu-
sion holds if E has the X-B.A.P. for a fixed , R and each equivalent norm,
and if E* has the R.N.P. (see [7]).
We will show now, along the same fines, that the M.A.P. for E* can be

obtained from the M.A.P. for E equipped with one given norm, as soon as this
norm is "smooth enough".
The smoothness condition we are considering is very simple (2.1). The

interesting point is that this condition is satisfied in many natural situations
(see 2.5 and Section 3.).

LEMMA 2.1. Let E be a Banach space. The following are equivalent:
(1) The only operator T L(E**) such that IITII-< I and Tie ide is

T id e**;
(2) For every surjective isometry U of E, the only T L(E**) such that

Tie U and II TII -< 1 is T U**.
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A Banach space E which satisfies these conditions is said to have the unique
extension property (U. E.P. in short). One says also that the norm of E has the
U.E.P.

Proof If U is a surjective isometry of E and if T L(E**) is such that
IITII-< 1 and TI U, we let V= (U**)-IT. It is clear that V satisfies
II vii -< 1 and V[ E id E. It follows that (1) and (2) are equivalent. []

Let X be a Banach space. We denote by Wop the weak operator topology on
L(X); that is, (T) L(X) converges to T in (L(X), Wop) if

lim (T,x, x*) (Tx, x*) for x e X, x* X*.

Let us compare the U.E.P. with properties of convergence of operators, and
show that the U.E.P. permits lifting the M.A.P. and the 1-C.A.P. from a
Banach space E to E*.
We consider the following properties for a Banach space E:
(,) For every net (T) in the unit ball of L(E), such that lim T U in

(L(E), Wop ) where U is a surjective isometry, lim T* U* in (L(E*), Wop);
(, ,) The same property holds with (T) in the unit ball of K(E) and

U= id e.
With this terminology, one has

THEOREM 2.2. Let E be a Banach space.
(i) U.E.P. (,) (, ,), for E.
(ii) If ( ) holds and E has the M. A.P. (resp. 1-C.A.P.) then E* has the

M.A.P. (resp. 1-C.A.P.).
(iii) If E* or E** has the R.N.P. and if E has the M.A.P. then U.E.P.,

( ) and ( ) are equivalent for E.

Proof (i) (,) = (, ,) is obvious. Let E be a Banach space which has
the U.E.P. and (T) a net in the unit ball of L(E), such that lim T U in
(L(E), Wop), U being a surjective isometry of E. To show that U.E.P. (,)
we have to show that

lim(x*, T,**x**) (x*, U**x**) for (x*, x**) E* E**,

which means that (T**) converges to U** in (L(E**), w*). By w*-compact-
ness, it is enough to show that U** is the only w*-cluster point of the net
(T**). But if V is such a cluster point, then clearly VII < 1 and VIe U.
Thus V U**.
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(ii) We show it only for the 1-C.A.P. Let (K) be a net in K(E) with
IIgll -< 1 and lim K ide in (L(E), "r). Since is finer than Wop, by (, ,)
we have lim,, K* ide, in (L(E*), Wop). Since the weak and strong operator
topologies are compatible, ide, belongs to the closure of co((K*)) for the
strong operator topology. The result follows.

(iii) We must show that (, ,) U.E.P. By (ii), if (, ,) holds and E has
the M.A.P., then E* has the M.A.P. If, moreover, E* or E** has the R.N.P.,
we have the representations

/(e)

Let T L(E**) be such that IITII 1 and Tie id e. Since K(E)**
L(E**), we may write T lim K in (L(E**), w*), with (K) in the unit
ball of K(E). This means that

(2) limK* *x** Tx * *

in (E**, w*) for every x** E**. Since Tie ide, (2) shows that lim K
ide in (L(E), Wop). Now, by (, ,), one has lim K* ide, in (L(E*), Wop ),
which means exactly that

(3) limK* *x** x**

in (E**, w*) for every x** E**. Now (2) and (3) show that T id e**. []

Let us point out an important special case.

COROLLARY 2.3. Let E be a separable Banach space.
(i) If E has the M.A.P., then U.E.P., (,) and (, ,) are equivalent.
(ii) If E has the 1-C.A.P. and (, ,) holds, then E has the 1-C.A.P. for

every equivalent norm.

Proof (i) By 2.2 it suffices to show that if E has the M.A.P., (, ,) implies
that E* is separable. But if ide lim, R, in (L(E), ) with IIR,I[ < 1 and
rank(R,) < oo (note that the unit ball of L(E) is z-metrizable), by (, ,) we
have ide. lira, R in (L(E*), wol), and thus the norm-closed linear span of

* (E*) is E*.O,>_lRn
(ii) Suppose that E has the C.A.P. and (, ,) holds. Then, we can prove as

above that E* is separable. By (, ,) it is clear that E* has the C.A.P. with
conjugate operators. Then, 1.6 shows that E has the 1-C.A.P. for every
equivalent norm.

We now need a device for showing that a Banach space enjoys the U.E.P.
This device is our next lemma, 2.4, which seems to have independent interest.
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Let us recall that a subspace X of E* is norming if

Ilxll sup{t(x)lt X, Iltll 1} for x E.

Moreover, for any Banach space E, we denote by B(t, a) the closed ball of
E** with center E and radius a > 0.

LEMMA 2.4. Let E be a Banach space. The following are equivalent.
(i) For all x E**, f’lu eB(u, IIx nil) (x).
(ii) For all x E** \ E, f’lueB(u, IIx ull)f’lE .
(iii) E* contains no proper norming subspace.

Proof. (i) = (ii). Obvious.
(ii) ** (iii). Let Y be a closed subspace of E*. Then Y* is isometric to

E**/Y +/- One checks easily that the norm of the restriction of E to Y
satisfies Iltl YII d(t, Y+/-). But Y is norming if and only if, for each E,
Iltl,ll Iltll, and thus if and only if for all E, Iltll d(t, Y-). Therefore,
there exists a proper norming subspace in E* if and only if there exists
x E**\ (0} such that for all t E, IIx- tll >-Iltll, and this proves
(ii) ** (iii).

(ii) = (i). Let x be in E**, and be the u.s.c, hull of x, considered as a
function on (E*, w*). )2 is easily seen to be concave, and an application of
the Hahn-Banach theorem [11, Lemma 1] shows that for El*,

(t) inf (t(u)+ IIx- ull).
uE

Therefore, by [11, Lemma 2], we have

y [") B(u, IIx nil) IlY ull IIx nil, Vu E
uE

Let yE** be such that )3<)2. The function (x-y)+)3 is u.s.c.
and bigtger than (x y) + y ’= x. Thus (x y) +fi > 2, and this implies
(x y) > 2 ) >_ 0. But (x y)^> 0 means that 0 Cl,eB(u, II(x y)

u ll). By (ii), this implies that x y 0, which is (i).

We now have:

PROPOSITION 2.5. Let E be a Banach space such that E* contains no proper
norming subspace. Then E has the unique extension property.
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If T L(E**) satisfies IITII 1 and Tie

Z(x) 1 n(t, IIx- tll),
tE

and thus, by Lemma 2.4, T(x) x and T id e**.

id e, then for every

Remark 2.6. By 2.2 and 2.5, E has the convergence property (.) as soon
as E* has no proper norming subspace. Let us point out that the family (T)
of (.) is not assumed to consist of commuting operators. This result should be
compared, for instance, to the example of [31, p. 410].

Remark 2.7. It is shown in [12] that E* contains no proper norming
subspace if and only if E satisfies the following geometric condition: For every
closed bounded convex set C, and every x q C, there exists a finite family of
balls { B, B2, B ) such that x B for every and C [Ji=lBi I-I

3. Examples and counterexamples

Examples of spaces with the U.E.P. We will make use of 2.5 and for this
we need a practical tool for showing that E* contains no proper norming
subspace. The tool is as follows: Let C(w*, w) be the set ofpoints of continuity
of id: (E*, w*) (E*, w). It is easy to check that any weak* strongly
exposed point of E* is an element of C(w*, w) and also that C(w*, w) is a
subset of any norming subspace of E*. It follows that if C(w*, w) generates a
subspace which is norm dense in E*, then E* contains no proper norming
subspace and E has the U.E.P. In particular, the following spaces have the
U.E.P.:

(a)
(b)

(c)

(d)

(e)

(0

Hahn-Banach smooth spaces (see [32]), by [13, Lemme-def 5];
in particular, Banach spaces which are M-ideals in their bidual (see
Section 4 below);
Banach spaces with a Frechet-differentiable norm on E\ {0} (by
Smulyan’s lemma, see [4]);
more generally, Banach spaces with the Mazur intersection property
(see [9], or Remark 2.7);
Banach spaces K(X, Y), where X and Y are reflexive Banach spaces
equipped with the operator norm (see Section 5);
separable polyhedral Lindenstrauss spaces (see [10] and [26]).

Let us notice that it is formal to prove that a space E has the U.E.P. if and
only if it is "uniquely decomposed" in the sense of [17], that is, if and only if
there exists an unique projection on E*** of norm one and of kernel E +/-.
This is the link between the present work and [17].
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Examples of spaces without the U.E.P. It is clear that if there exists a
norm-one projection from E** to E, then E does not have the U.E.P. Thus,
for instance, a non-reflexive dual space does not have the U.E.P.

Several classes of spaces with the U.E.P. are stable by subspaces and
quotients, for example (a) and (b), or just by subspaces, for example (c). The
following result shows that the class of spaces with the U.E.P. has no good
properties of stability. It can also furnish a counterexample for several
properties of smoothness.

PROPOSITION 3.1. There exists a Banach space E with the U.E.P. which
contains a norm-one complemented hyperplane Y without the U.E.P.

Proof. Let J be the quasi-reflexive Banach space defined by James (see
[24, p. 25]). Let E J* R be equipped with the supremum norm; then the
dual norm of E* J** R will be II(x**, a)ll IIx**ll / lal. We define in
E, e (0, 1), and in E*, e’ (0, 1). Without special notations we consider
J* (resp. J**) as a subspace of E (resp. E*). By the Bishop-Phelps theorem,
there exist x’* J** \ J and x’ J* such that IIx’* II.x’ll
(x’, x’ *) 1. We define y*, y* J* by

e* et*y* x’* + Y2* x’* 2

and C by

C co( Et* t2 ( +/-y* } V ( +/-Y2* ) }.

C is clearly balanced w*-closed bounded and convex and thus it is the unit
ball of an equivalent dual norm on E* which is noted II IIx, as well as its
predual norm.

For every x* J* and x** J** one has Ilx*ll Ilx*[Ix and IIx**ll
IIx** II x. If we let

2 2 (x’ el)Yl= -5(x’+el), Y2= -5

it is easy to check that Yi* (i 1,2) is weak* strongly exposed in C by yi

(i 1, 2). By w*-density of J1 in Jx**, the set SE,(JI* *) of the weak*
strongly exposed points of Jl** is contained in J. Since J has the R.N.P. one
has J (SE,(J1 )) (see [34]).
Now let us consider an element u** of J** which is weak* strongly

exposed in Jl** by u* J* of norm 1. We will prove that u** is weak*
strongly exposed in C by u*. First, one has Ilu*llx Ilu**llx <u*, u**> 1.
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Every sequence z* C may be written as

Zn* knoX**
__

Alet + ()k- Y3)Y* + ()kn4-

with x* * Jl* *, ] > 0 and E=o,] 1. One has (u*, e’ ) 0 and

(u*, y*) (u*, xd’* ) , (u*, +u**) _+1 (i 1,2).

This implies that if (u*, z*) converges to 1, we must have o 1 and thus

II z* x* * 111 0 and (u*, x* *) 1.

Since. u** is weak* strongly exposed in Jl** by u*, this implies that

and thus

liar* u** ]11 0.

This means that u** is weak* strongly exposed in C by u*. A similar--and
easiermproof shows that el* is weak* strongly exposed in C by e1. It follows
that the norm-closed linear span of the weak* strongly exposed points of
C, which contains J, x’* 1/2(y* + Y2*) and e* is equal to E*. Therefore
(E, II II ) has the U.E.P.
Note that if Po is the projection on E* of image J** and such that

Po(e’) 0, one has Po(C) c C. Thus Ileollx 1. If P is the projection on E
of image J* and P(e) 0, one has P* Po and thus IIPII1 1. Finally, the
subspace Y J* of (E, II II ) is a non-reflexive dual space and thus it does
not have the U.E.P. ]

Remark 3.2. There is one situation where a nonreflexive Banach space
E is a dual space if and only if it does not have the U.E.P.; namely, if
dim E**/E 1. Indeed, if such an E does not have the U.E.P., then by 2.5,
E* contains a proper norming subspace X. Since dim E**/E 1, one has
E** E X -L The projection r: E** E of kernel X +/- has norm one
since X is norming. Thus X* E**/X +/-= E.
Applying this remark (and 2.3) to the space J of James (see [24, p. 25]) leads

to the following surprising result:

PROPOSITION 3.3. Let II II be an equivalent norm on the space J ofJames.
Then ( J, [I II) is isometric to a dual space if and only if there exists a sequence
(T.). in L(J) with 11T,, 11 < I and

(a) T. converges to ids in (L(J), Wop ),
(b) T.* does not converge to ids. in (L(J*), Wop ).
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Let us mention that the above method fails in general, even if dim E**/E
2. For instance if E J J is equipped with the norm sup([[ 1, [[ 2)

where [[ [I is a dual norm and [[ I[ 2 is not, it is easily seen that E is not a
dual space, even though it does not have the U.E.P.

A space with the U.E.P. which is "far"from being Hahn-Banach smooth. We
have already noticed that the Hahn-Banach smooth spaces have the U.E.P. In
other words, if every f E* \ (0) has an unique extension of the same norm
to f E***, then every surjective isometry of E has an unique extension to a
contraction of E**. The next result shows that, despite the formal analogy
between the two properties, the U.E.P. is much more general than Hahn-
Banach smoothness.

PROPOSITION 3.4. Let o be the first uncountable ordinal. Define E
cg((O, o1)). We have the following result:

(i) There exists an equivalent norm on E which is Frechet differentiable on
E \ (0) [33]. In particular this norm has the U.E.P.

(ii) If K is a compact space which contains a subset which is not Borel, there
is no equivalent norm on Cg(K) which is Hahn-Banach smooth. In
particular, there is no Hahn-Banach smooth equivalent norm on E.

Proof Only (ii) has to be proved. Suppose that we have found an equiv-
alent norm on Cg(K) which is Hahn-Banach smooth. It follows that for this
norm the w* and the w topologies coincide on the unit sphere of Cg(K)*. By
[5], this implies that the weak* and weak Borel o-fields coincide on Cg(K)*,
and in particular on (exlx K }. Since this set is discrete, every subset of it is
weak Borel and thus weak* Borel. This means that every subset of K is Borel.

Finally, it is well known that a subset A of (0, 01) which is cofinal, as well
as (0, o1) \ A, is not Borel in (0, 01). D

A renorming problem. Let E be a non-reflexive Banach space. We define
the Godun index 3’(E) of E by

,(E) sup[inf{llPII IP is a continuous projection from E** to E }]

where the supremum is taken over the set of equivalent norms on E. It is
proved in [18] that 3’(E) > 2 for any non-reflexive Banach space E. This is
clearly the best possible result in full generality (take E so that dim E**/E
1). On the other hand, it follows from [8, Lemma 2.9] that if dim E**/E <
then 3’(E) < 3. The following question is therefore natural.

Question 3.5. Let E be a Banach space such that E**/E is infinite
dimensional. Is it true that ,/(E) o?

Let us notice that at least we have the following result.
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PROPOSITION 3.6.
3’(E) o.

There exists a separable dual Banach space E such that

Proof. Let F be a separable reflexive space without the A.P. By [25] there
exists a Banach space Y such that Y** has a basis and Y**/Y is isomorphic to
F. One has Y*** Y* Y +/- and thus Y*** does not have the A.P., since Y -is isomorphic to F*. By [7] this implies that for any , > 1, there exists an
equivalent norm Nx on Y** such that (Y**, Nx) does not have the X-B.A.P.
Since Y** has the R.N.P. and the B.A.P., by Theorem 1.1 of [27] this implies
that 3,((Y**, Nx)) > . Therefore E Y** works. O

Remark 3.7. If we denote by N the norm which corresponds to ? n,
and if we define the/2-sum Z (En (E, N))2, then Z is not complemented
in Z**, although it is the 12-sum of spaces which are all isomorphic to dual
spaces. The space Z, of course, is not isomorphic to a dual space.

Let us conclude this section by a question which is--at least formally--
weaker than Question 3.5.

Question 3.8. Let E be a Banach space such that E**/E is infinite
dimensional, and let , > 1. Does there exist a norm Nx on E such that the
Banach-Mazur distance from (E, Nx) to any isometric dual space is > ?? O

4. An isomorphic version of the results of Section 2

In this section we will establish some extensions of the convergence results
of Section 2. It turns out, unfortunately, that we need to replace the metric
condition II TII -< 1 by a (very strong) algebraic condition: the commutativity
of the T’s (see 4.7).

Let us recall that the characteristic r(X) of a subspace X of E* is defined
by

r(X) inf sup
xE\(0) x, X\(0}

For the definition and some of the properties of the Banach spaces which are
M-ideals in their bidual, see [20]. Let us prove:

LEMMA 4.1. Let E be a Banach space which is an M-ideal in its bidual. Then
for any proper subspace X of E* one has r( X) < 1/2.

Proof It is enough to show that for every f E** of norm 1, we have
r(Ker f) < 1/2. By the Hahn-Banach theorem, it means that for every e > 0 we
have to find x* E* with IIx*ll -< 1/2 / and x* (Ker f n E*)w*.
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Actually, any x* E* such that Ilx*ll x + e and f(x*) > 1/2 e/2
satisfies this condition. Indeed, if not, there is a net (x) in E* n Ker f such
that limx,*=x* in (E*,w*). If x’** is a cluster point of (x*) in
(E* * *, w*), it is clear that x’ * * x* + t, with E ", and that x’ * * (f)

0. Moreover,

and thus ]]tll 1/2 . Since x’ * * x*, we have

t(f)l If(x*)l > 1/2 e/2 > Iltll

and this is impossible since llfll 1.

Remark 4.2. Let Y be a Banach space with an unconditional shrinking
basis, such that IIell---]]idr-PII 1, if the (Pn)’s are the projections
associated with the basis. It is shown in [35] that any subspace or quotient
space of satisfies the conclusion of 4.1. Therefore, the following results will
apply also under this assumption. We shall not repeat it in the statements.

PROPOSITION 4.3. Let E be a separable Banach space which is an M-ideal in
its bidual. Let (Tn), be a sequence offinite rank operators on E such that:

(i) supll T, II < 2;
(ii) T,,Tk T,T,,, for each n and k;
(iii) limll Zx x 0, for each x E.

Then we have limll T,*x* x*ll 0 for each x* E*.

Proof By [31, p. 775], we have limll Tn*X* x*ll 0 for every x* in the
norm-closed subspace I’ of E* generated by I..JnxTn*(E*). But it is easily
checked that r(F) > (supl[ TII) -1 and thus r(F) > 1/2. It follows that F E*.

A first consequence is an extension of Corollary 1 in [35].

COROLLARY 4.4. Let E be a Banach space which & an M-ideal in its bidual
and let ( e,) be a basic sequence. If the basis constant of (e) is strictly less than
2, then (en) is shrinking.

Proof The space X generated by (e,) is an M-ideal in its bidual since the
class is hereditary. It suffices now to apply 4.3 to the sequence (P,) of
projections associated with (e,). rq

What can be done for bettering an approximating sequence in an M-ideal?
Here is an answer.
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COROLLARY 4.5. Let E be a separable Banach space which is an M-ideal in
its bidual. The following are equivalent.

(i) There exists a sequence (T) offinite rank operators on E such that:
(a) TT TT, for each n and k;
(b) suPllZnll < 2;
(c) limTnx, y*) x, y*) for each x E and y* E*.

(ii) For every sequence of scalars en) with 0 < e < 1 and lim e 0, there
exists a sequence (R) offinite rank operators such that:
(a) RR, Rinf(n,, for each n and k with n 4: k;
(b) IIRnll < 1 + e for each n;
(c) limllRx x limllRn*y* y* 0 for each x E and
y* E*.

Proof (ii) (i) is obvious. (i) means that lim T, ide in the weak
operator topology. Since the weak and strong operator topologies have the
same dual, there exists a sequence (S,) of convex combinations of the T,’s
such that limllSnx xll 0 for every x E. The family (S,) is still commut-
ing. Now 4.3 shows that E* has the 2-B.A.P. and even the M.A.P., since E*
has the R.N.P. But this implies (see [31, p. 316-318]) that a sequence (Rn)
satisfying (ii) can be constructed. D

Example 4.6. The example of the summing basis of co shows that 4.4 is
sharp, and that the assumption (i) is necessary in 4.3.

Example 4.7. Let us denote by (e*)i>l the unit basis of/1, and let e > 0
be given. We define a sequence (P,), >_t of projections on co by

Pn(x) ((X))j>_l for x co,

where

f j> n,
ifj<n.

It is easily seen that (a) IIPII 1 + e for every n and (b) the sequence (P*)
of L(I1) does not converge in the weak operator topology. More precisely, if
B L(I) belongs to the w*-closed convex hull of the W*-cluster points in
L(I) of the sequence (P**), then liB idll e.

This example shows that the assumption (ii) in 4.3 is actually necessary.

Example 4.8. If A is a Shapiro subset of an abelian discrete group F (see
[15, Prop. 26] or [16]) and if G , then the space C(G)/Cr\A(G) is an
M-ideal in its bidual. A typical example is the space C(T)/Ao(D) which
corresponds to F Z and A Z-.
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The convolution with the Fejer kernel provides us with a sequence of
operators on C(G)/Cr\A(G)--since Cr\A(G) is an ideal--which satisfies the
assumptions of 4.3, with II TII 1. The same sequence shows, of course, that
the dual L

_
A(G) has the M.A.P. Let us notice that the existence of a basis is

not clear for the spaces which belong to this class, or for their duals.
Let us conclude this section with another question.

Question 4.9. Does there exist a subspace E of co with the A.P., such that
E* does not have the A.P.?

5. Projective tensor product of strongly exposed points and
its applications

Several lemmas, similar to 5.1 below, have been proved in recent years by
various authors (see [28], [29]). We prove it for completeness; the proof closely
follows the method of [6, p. 46].

LMMA 5.1. Let X and Y be Banach spaces, x X (resp. y Y) with

Ilxll Ilyll 1. Assume that x (resp. y) is strongly exposed in the unit ball of
X by x* X* (resp. y* Y*). Then x (R) y is strongly exposed in the unit ball
of X (R) .Y by x* (R) y*.

Proof We may assume that IIx*ll Ily*ll 1. Let e be in ]0, 1[ and
]0, e/2[ such that

X1, {t, x*) > 1 r/ Ilx tll < e/2,
s Y1, {s, y*) > 1 r/ Ily s e/2.

Now consider z X (R),,Y, l[ z II 1, such that (z, x* (R) y*) >_ 1 /2. We
have to maximize [[z x (R) YI[,. We may clearly assume that z EzXjtj (R)

sj, with t X, s Y, , >_ 0 and Ezxh. < 1. Consider the set

I= (j[1 <j < n, (tj, x*)(sj, y*) < 1- 1}

and denote I’ (1, 2,..., n ) \ I. We have

,(t, x*)(s, y*) >_ (z, x* (R) y*) >_ 1 ,/2.
jl

Thus,
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This implies

1- E’) + (1-)Eh >1-2-
j.I j.I

Finally,

therefore

. < /< e/2;
jI

(4) z- EXt(R)s[ <e/2.
j.l’

It is easy to check that one has also Y’.j. I,)kj > 1 e/2. If j I’, one has

(t, x*)(s, y*) >_ 1

and since each term of the product is less than, or equal to, one,

(t.,x*) >1- and (s,y*)>_l-,/

which implies

Ilx tjll e/2 and Ily- s.ll
Therefore

IIx Y tj (R) s.ll e for j I’.

Now, by convexity, one has

x (R) y )tj , Xt (R) sj
j j-I’

Finally,

(6) _, )ttj (R) sj-
, )tt (R) s

j-I’ j-I’

-1 1
)tj. -1< 1-e/2

The inequalities (4), (5) and (6) show that IIz x y II

-l<e.

< 5e/2.

From this lemma we will deduce the next result.
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THEOREM 5.2. Let X be a reflexive Banach space and Y a Banach space such
that Y* has the R.N.P. and contains no proper norming subspace. Then:

(i) The span of the weak*, strongly exposed points of the unit ball of
(X (R)Y)* is norm dense in (X (R)Y)*;

(ii) The span of the weak*, strongly exposed points of the unit ball of
K( X, Y)* is norm dense in K( X, Y)*.

Proof. For any Banach space Z, we denote by SE,(Z) the set of the
weak* strongly exposed points in the dual unit ball Zt*. Since X is reflexive,
the span of SE,(XI* ) is dense in X*. Since Y* has the R.N.P., one has YI*
=--W*(SE,(YI*)) and thus the space span II(SE,(y1,)) is a norming sub-
space of Y*. It has to be Y* itself by our assumption. Thus the space
span(SE,(Y*)) is norm dense in Y*. We consider the subset f] SE,(XI*) (R)

SE,(YI* ) of the unit ball of X* (R)Y*. It is clear that the space span(fl) is
norm dense in X* (R),Y*.
For (i), we denote by 11(X, Y*) the space of integral operators from X to Y*

(see [19] or [30, Chap. IV, 5]). Let Q be the canonical quotient map from
X* (R),Y* onto (X (R)Y)* II(X, Y*). Let x* (R) y* f] with x* (resp. y*)
weak* strongly exposed in XI* (resp. YI*) by x X (resp. y Y). We claim
that Q(x*(R) y*) is weak* strongly exposed by x (R) y in the unit ball of
(X (R).Y)*. Indeed, let II I1 denote the norm of this space, and (Tn) be a
sequence in the unit ball of (X (R)Y)* such that

(T,, Q(x* (R) y*), x (R) y) 0.

There exists t X* (R),,Y* with Q(t)= T and [[tnl[, I[Tnlli (see [6, Re-
mark 1, p. 43]). Therefore, (Q(t x* (R) y*), x (R) y) -+ O, and it follows, by
5.1, that

II t. x* (R) y* + 0.

This implies that Q(f]) consists of weak* strongly exposed points of the unit
ball of (X (R)+Y)*. Since Q is onto and span() dense in X* (R),Y*, the result
follows.
The proof of (ii) is similar; X has to be replaced by X*, and the quotient

map we have to consider is Q: x (R),Y* -> K(X, Y)* as in [6] and in the proof
of 1.1. The rest of the proof follows the same lines. []

Examples 5.3. The above result can be applied to the spaces Y which
belong to the classes (a) to (f) described in 3.1, which all satisfy the assump-
tions of 5.2. Concerning the Mazur intersection property (d), it is not known
whether it implies that Y* has the R.N.P. if Y is not separable. However, the
characterization of [9] shows that the proof of 5.2 can be completed under this
assumption.
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A first corollary is"

COROLLARY 5.4.
have the U. E. P.

Under the hypothesis of 5.2, the space X (R)Y and K( X, Y)

This is indeed clear by 2.5, 3 and 5.2.
Another consequence of the proof of 5.2 is the following:

THEOREM 5.5. Let X and Y be two reflexive Banach spaces. Let T1, T2
L(X, Y) be in the z-closure of K(X, Y). Then for every e > O, there exists
K K(X, Y) such that Zl Kll > T1 T21I + II T2 KII e.

Proof. If Y is reflexive, the proof of 5.2 actually shows that the unit ball of
K(X, Y)* is the norm-closed convex hull of the set fl’ of its weak* strongly
exposed points. If T1 and T2 are in the z-closure of K(X, Y) into L(X, Y),
then by 1.3, T and T2 belong to K(X, )**. Let us assume that there exists
eo > 0 such that

II Z KII II Z TEll + T2 KII e0 for K K(X, Y).

If we consider T and T2 as functions on the unit ball of K(X, Y)* equipped
with the w* topology and if we use the notations of the proof of 2.4, by [11,
Lemma 1] this implies that

(7)

But if u is weak* strongly exposed in the unit ball of K(X, Y)*, then u is a
point of w*-continuity of T and T2. Thus Tl(U ) Tl(U ) and TE(u) TE(u).
Therefore (7) implies

Tx(U) ZE(u) + liT1- TEll- 0

and thus

sup(T1- T2) < lIT1- TEll- o.

But since c-- II(f,) is the unit ball of K(X,Y)*, supn,(T TE) IIT TEll
and this is a contradiction. []

It is easier to understand the meaning of Theorem 5.5, through its corollaries.
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COROLLARY 5.6. Let X and Y be reflexive Banach spaces. The following are
equivalent.

(i) K( X, Y) is reflexive.
(ii) Every family (B),, ofclosed balls in K(X, Y) such that f’IeB

for every finite subset F of I, satisfies fq B .
Proof. (i) (ii). Clear by w-compactness of the balls.
(ii) = (i). If K(X, Y) is not reflexive, there exists an operator

TK(X,Y) \K(X,Y).

We consider the family of balls, in K(X, Y),

= BI(K, a) {K’ K(X, Y)I IlK- g’ll a},

where K K(X, Y) and a > IlK-TII. By 1.3 and the local reflexivity
principle, the intersection of any finite subfamily of is non-empty.

If (ii) holds, this implies that n . If Ko n, one has

IlK Kol < IlK TII for VK K(X, Y).

But, by 5.5, there exists g K(X, Y) such that

Ko- Kxl > IT- Kxl + IT- Kol/2

and this is a contradiction.

In particular, we have the following improvement of Theorem 2 in [6].

COROLLARY 5.7. Let X and Y be reflexive Banach spaces. Then,if K( X, Y)
is not reflexive, it is not norm-one complemented in its bidual. Afortiori, it is not
norm-one complemented in L( X, Y).

Proof. Indeed, let (Ba)a.l be a family of closed balls of K(X, Y) with the
finite intersection property and B the closure of B in (K(X, Y)**, w*). By
w* compactness, f’)aiBa =#: . If P is a norm one projection defined on
K( X, Y)** with image K(X, Y), it is clear that P(fq z/,)= fq zB. By 5.6,
this implies that K(X, Y) is reflexive. The last assertion is clear, since
K(X, Y)** is isometric to a subspace of L(X, Y). []

Remark 5.8. In particular, if X is an infinite, dimensional, reflexive Banach
space, such that K(X) is not reflexive--e.g., X with the C.A.P.--then K(X)
is not 1-complemented in L(X). This leads to:
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Question 5.9. Does there exist an infinite dimensional Banach space X
such that K(X) is reflexive?

Of course, such an X would have to be reflexive. Let us notice that if there
exists a reflexive Banach space X such that L(X) K(X) span(id x)
(another open question), and without the C.A.P., then the corresponding
K(X) would be reflexive.
We conclude this article with another application of 5.1.
Let us recall that E is said to be unique predual if there is an unique

projection P: E*** E* with IIPII 1 and KerP w*-closed. This implies
that every Banach X, where X* is isometric to E*, is iSometric to E. One now
has:

PROPOSITION 5.10. Let X and Y be two Banach spaces with the R.N.P. Then
X (R),Y is the unique predual of L(X, Y*).

Proof Since X and Y have the R.N.P., X and Y1 are the norm-closed
convex hulls of their strongly exposed points. By 5.1 this property is shared by
X (R),Y, and one concludes the proof by [14, Lemme 9]. D

Remark 5.11. There exist (see [2]) Banach spaces X0 and Y0 with the
R.N.P. such that X0 (R),,Y0 contains c0. We have the easy claim: On every
separable space Z containing Co, there exists an equivalent norm, I, such
that (Z, I) is not a unique predual. Here is a proof. By Sobczyk’s theorem,
we may write Z -- V c0. We let sup(ll II, II I1), where II II is
some norm on V. One now has (Z,I I)*= V*tl. If a is a countable
ordinal and Z V oocg((1, a)), then Z* is isometric to Z*. But there exists
no Banach space with a separable dual which contains all the cg((1, a)) for
a < w, (see [1]), and thus there is an a0 such that Z0 is not even isomorphic
to Z.

This claim shows in particular that there will be a norm on X0 (R),Y0 such
that this space is not unique predual, and therefore 5.10 is sharp.

Remark 5.12. Corollary 5.11 furnishes a large sample of Banach algebras
with an unique isometric predual. However, it can be proved that the algebra
L(I), equipped with its canonical norm, has two isometric preduals which are
not isomorphic. The answer to our last question is probably positive.

Question 5.13. Does there exist an algebra of operators--that is, a w*-
closed subalgebra of L(12)uwith more than one isometric predual? rn
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