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1. Introduction

Since they were first introduced by Fischer [1], Fitting classes and the
associated injectors of a finite soluble group have provided one of the most
fruitful topics in the theory of finite soluble groups; a useful introduction to
the subject is contained in the essay by Hawkes [4]. However, there have been
few attempts to obtain a similar theory in infinite groups, particularly in the
case of groups which are not locally finite and in which, therefore, one has
little hope of using any form of Sylow theory. One positive result that has been
obtained is the existence and conjugacy of nilpotent (hypercentral) injectors in
polycyclic groups (%;-groups) [8]. Our aim here is to give a general theory of
Fitting classes of %;-groups and investigate the extent to which this will give
rise to the existence and conjugacy of injectors.

An & -group is one possessing a finite normal series in which the factors are
abelian groups of finite rank whose torsion subgroups are Cernikov groups.
Our terminology is taken from Robinson [7, Part 2, p. 137]; %,;-groups have
also been called soluble groups of type A, by Mal’cev [6]. One of the properties
of &;-groups that will be of crucial importance throughout is that they are
nilpotent-by-abelian-by-finite [7, Theorem 3.25].

Throughout we shall work within a subclass ¢ of ¥, which contains %,
the class of all finite soluble groups, and which is {S, D,}-closed; that is, if
GeX and H < G then H € X and if N;, N, € X then N, X N, € X'.

We shall occasionally refer to specific subclasses and one should note the
following possibilities for X"

Q) H=9,

(2) A= P, the class of polycyclic groups,

(3) A= F, the class of finite soluble groups

(4) A= &, the class of Cernikov (or extremal) soluble groups,
(5) A= M, the class of soluble minimax groups.
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If X is a {S, D,}-closed subclass of &, containing % then a Fitting class
of H-groups (or a KFitting class) is a subclass & of X such that

(F1) if G € & and A is an ascendant subgroup of G, then 4 € &,

(F2) if G € X and G is generated by normal Z-subgroups, then G € %,

(F3) if G €X and G is the union of an ascending chain of ascendant
Z-subgroups, then G € Z.

If X'= % or #, then condition (F1) reduces to the usual S,-closure and (F3)
can be omitted. For )= %, the definition gives the usual definition of a
Fitting class of finite soluble groups.

Condition (F2) ensures that the join of all normal Z‘subgroups of a
H-group G is also a normal %subgroup of G. This unique maximal normal
%-subgroup of G is called the Zradical of G and is denoted by G,. We see
from the following result that conditions (F2) and (F3) could be replaced by
the single condition: if G € X" and G is generated by ascendant Z-subgroups,
then G € Z. Although this may be considered a more natural definition of a
Fitting class it is usually easier to check separately that conditions (F2) and
(F3) are satisfied.

LeEMMA 1.1. Let & be a X-Fitting class and G € A". Then:
(i) IfAascGand A € X, then A < Gy,

(i) Gg= (A|A is an ascendant Z-subgroup of G),

(iii)) If B asc G, then By= B N Gy.

Proof. Part (i) appears in [7, Lemma 1.31.] and (ii) is an immediate
consequence.

(iii) Since B N G4 asc Gg, we have B N Gy € . Also B N Gx<B and so
B N G4 < Bg. Conversely By € Z and Bg<B asc G so that B, asc G. Hence
By < Gy and we obtain By = B N Gg.

By considering the characteristic of a Fitting class in Section 2 we are able
to show that a J<Fitting class & either contains all locally nilpotent J£groups
or consists entirely of 7-groups for some set of primes = and, in this case, &
contains all locally nilpotent w-groups which are in the class ).

These two situations give rise to rather different types of result and are
largely considered separately. The more important case is when % contains all
locally nilpotent Jf~groups so that the radical G, contains the Hirsch-Plotkin
radical G ,. Since G/G 4 is a polycyclic abelian-by-finite group (Theorem 3.1)
this means that we can usually restrict our discussion to groups in which G/Gg
is polycyclic and abelian-by-finite.

If & is a Fitting class of Jgroups and G € X, then an %injector of G is an
Zsubgroup V of G such that ¥ N 4 is a maximal Z-subgroup of A whenever
A is an ascendant subgroup of G.
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For the case in which % consists entirely of periodic groups a sufficient
condition for the existence and conjugacy of Zinjectors is given in Theorem
4.7. A more important case is the following.

THEOREM 4.4. Let & be a HFitting class containing all locally nilpotent
H-groups and let G € A . Suppose that G has a normal subgroup M such that
M /Gy is finite and M contains all #-subgroups of G which contain Gy. Then G
has Z-injectors and any two such subgroups are conjugate in G. The Finjectors of
G are the Z-injectors of M.

At first sight the conditions of Theorem 4.4 may appear somewhat artificial
but we also prove a form of converse to this result showing that if & is a
Fitting class of J<groups which gives rise to the existence and conjugacy of
Finjectors, then every Jgroup G must satisfy conditions similar to the
hypothesis in Theorem 4.4. More precisely we prove the following theorem.

THEOREM 6.3. Let X' 2 P and let ¥ be a Fitting class of H-groups such that
each H-group G has a unique conjugacy class of %-injectors. Then each X-group
G has a normal subgroup M such that M /G is finite and the %-injectors of G
are the %-injectors of M.

Although these could be considered as our main results, we are also able to
prove that many of the properties of Zinjectors of finite soluble groups (e.g.,
pronormality) can be extended to the infinite case; in some places these
additional properties are, in fact, necessary as part of the main proofs. We
have also included two sections described as examples. These sections do
include examples to illustrate the theory (and also some of the difficulties
involved in making natural generalizations from the finite case) but also
include examples to show that there are limits to the results we can expect.
These examples are necessary in reducing the type of Fitting class that we
need to consider in Theorem 6.3.

2. Characteristic of a Fitting class

Let 2 be a XFitting class. We define C,(Z), the finite characteristic of &,
to be the set of primes p such that C, € %, where C, is the cyclic group of
order p. If Z contains no such groups then we write C,(Z) = . The infinite
characteristic C,(Z') of & is defined to be {00} if Z contains the infinite cyclic
group C,, and & otherwise. The characteristic of Z is then C(2') = C(Z') U
C,(X), a subset of P U {0}, where P denotes the set of all primes. We shall
see that either C(Z') is equal to the whole of P U {0} or C(%') is a subset of
P and every Z-group is periodic.
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LeEMMA 2.1. Let G be a hyperabelian group.

(i) If G contains an element x of prime order p, then there are subgroups
K <H sn G such that H/K = C,.

(i) If G contains an element x of infinite order, then there are subgroups
K<H sn G such that H/K = C,.

Proof. We suppose that G has an ascending normal series
1=Gy<d:--<4G,<--- 4G, =G

with G, /G, abelian.
(i) Let « be minimal such that x € G,; then a — 1 exists. Clearly

(x,Gy_1)/Gy_y = C, and (x,G, ;)4G,<G.

(i) We use induction on p. Again let « be minimal such that x € G,; then
again a — 1 exists and @ — 1 < p. If xG,_, has infinite order then as in part
(i) we can take the factor (x,G,_;)/G,_;- If x" € G,_;, then x" is an
element of G,_; of infinite order. By induction there are subgroups K <H sn
G,_, such that H/K = C_. Since H sn G, this completes the proof.

By Lemma 4.2 and a generalization of a standard argument used in the
finite case, we obtain the next result.

THEOREM 2.2. Let & be a HFitting class.
(1) If there is a group G € ¥ which contains a p-element, then C, € Z.

(i) If there is a group G € ¥ which contains an element of infinite order
then C, € Z.

(i) IfC, € Z, then C(Z) =P U {o0}.
A simple consequence of Theorem 2.2 is:

COROLLARY 2.3. Let ¥ be a X-Fitting class. Then either
(a) C(X) = n C P and every Z-group is a m-group, or
(b) C(Z)=PU {00}

THEOREM 2.4. Let & be a K Fitting class.
() If (&) =a C P, then & contains all locally nilpotent m-groups in X .
(i) If C(Z) =P U {0}, then ¥ contains all locally nilpotent H-groups.

Proof. Since X'C &, a locally nilpotent Xgroup G is hypercentral [7, Part
2, p- 38, Corollary 1] and so every subgroup of G is ascendant. Now G is
generated by its elements of infinite and prime-power order. It is therefore
sufficient to note that if C, € 2 then C,» € Z". This can be seen by consider-
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ing the wreath product C,» \ C,. If C,» = (a) and C, = (b) then a~'ba has
order p and so (b, a“lba> bemg generated by subnormal Z-subgroups, is an
Z-group. But

[b, a] € (b, a 'ba)
and has order p”. Thus

Cr=(b,alye s, Z=2%.

Many of our results will be concerned with the class £ of polycyclic groups
and it is worth noting the consequences of the above results for that case.

COROLLARY 2.5. Let & be a #-Fitting class.
(i) IfC, & Z, then C ZF.
(i) IfC, € Z, then & contains all finitely generated nilpotent groups.

3. Examples of .#;-Fitting classes

First note that if " is a {S, D, }-closed subclass of #; containing # and
if & is an % -Fitting class then N2 is a X Fitting class. Thus our
examples of .#-Fitting classes also lead to # Fitting classes for each .

Example A. Let A4 denote the class of locally nilpotent %;-groups. Then
A" is an & -Fitting class and if G € ¥, then G 4. is the Hirsch-Plotkin radical
of G. (See [7, 2.3] for details.)

We saw in Section 2 that if Z is a Fitting class containing C_ then &
contains all locally nilpotent Jgroups and so Gg=> G ,. Our results for
Fitting classes & with C(Z) = P U {0} will be considerably simplified by
the following result.

THEOREM 3.1. If G € &, then G/G , is a finitely generated abelian-by-finite
group (and hence G/G , is polycyclic).

Proof. Since an %;-group is nilpotent-by-abelian-by-finite, we also have
that G/G , is abelian-by-finite and so only need prove that G/G ,- is finitely
generated.

By Theorem 10.3.3 of [7], G has a normal series

14RAF 4G

where R is the direct product of finitely many quasicyclic groups, F/R is
nilpotent and G/F is finitely generated and abelian-by-finite.
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Let P be the Sylow p-subgroup of R and let
P,=Q,(P)={xePxr"=1}.
Then, for each n > 1, the mapping
¢: P,\/P,—> P/P,_,
is defined by making (P,x)p = P,_,x? a G-isomorphism. Hence
Cr(Py) = Cp(Py/P)) = Cp(Py/P)) = --- .

Writing Cp for Cr(P,), we have F/C, finite since P; is finite. Let

c= N C;
PEW(R)

then F/C is finite and so G/C is finitely generated. Also C is a hypercentral
group and so C < G 4; hence G/G 4 is finitely generated.

The class of #;-groups is not closed under homomorphic images but most
of the difficulties which might arise from this are avoided by the following
Corollary to Theorem 3.1.

COROLLARY 3.2. Let ¥ be a X Fitting class and G € X, then G/Gy is an
&,-group.

Proof. If C(Z)=P U {00}, then & contains all A "N Hgroups and so
G4 = G, so that G/Gg is polycyclic.

If C(Z) = = C P, then G, is a normal Cernikov subgroup of G and it is
clear that G/Gg is an &;-group.

Example B. Let &, denote the class of Cernikov p-groups. Then &, is an
& -Fitting class and if G € &, we shall denote the &,-radical of G by 0,(G).

Example C. Let p be a fixed prime. For G € ¥, the p-socle of G is
Soc,(G) = (M|M is a minimal normal p-subgroup of G).

If G has no (minimal) normal p-subgroups then Soc,(G) = 1. Each minimal
normal p-subgroup is elementary abelian. Thus Soc,(G) is an elementary
abelian p-group and is a Cernikov group; hence Soc,(G) is a finite elementary
abelian characteristic p-subgroup of G.

We define €(p) to be the class of &;-groups G such that Soc,(G) < Z(G)
or, equivalently, each minimal normal p-subgroup is central.
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THEOREM 3.3. €(p) is an &,-Fitting class and if G € &#,, then
G,y = Cs(Soc,(G)).

Proof. (I) An ascendant subgroup of a €( p)-group is a €( p)-group.

We consider an ascendant subgroup 4 of an &;-group G and show that if
A & €(p) then G € €(p). In fact, we shall prove that if 4 has a non-central
minimal normal p-subgroup M, then G has a non-central minimal normal
p-subgroup M contained in M. Our proof is by induction on a the length of
an ascending series

A=A04"‘<AB<AB+1<"'4A =G

from A4 to G. We assume therefore that if H<® K, B < a, and H has a
non-central minimal normal p-subgroup N,, then K has a non-central mini-
mal normal p-subgroup M < N¥ < NE.

Case (a). a=B+1.

By the induction hypothe31s Ap has a non-central minimal normal p-sub-
group M, < ME. Now M, is contained in the finite characteristic subgroup
Soc,(A4g) of AB and so Mp is finite. Thus there are elements g;,..., g, of G
such that

= M5 X --- 2n
MB‘ X ><M'3

and MB is a direct product of non-central minimal normal p-subgroups of
Ag. Now M contains a minimal normal p-subgroup M of G and M contains
a minimal normal subgroup N of A4,. Since N is Agisomorphic to some Mg,
N is non-central in Ag. Hence M is not centralized by AB and so it 1s a
non-central minimal normal p-subgroup of G and M < M§ < MY, as re-
quired.

Case (b). ais a limit ordinal.

Note in this case that all finite ordinals are less than a and so it follows
from our induction hypothesis that if H sn K and H has a non-central
minimal normal p-subgroup N, then K has a non-central minimal normal
p-subgroup M < Nf < N§&.

Since Mo is an ascendant p-subgroup of G we have M, < O,(G) = P, say.
Now P is a Cernikov group and so contains a characteristic d1v151b1e abelian
subgroup R of finite index. If we let R; be the subgroup of R consisting of
those elements of order dividing p’, then R =U®,R; and R,, being charac-
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teristic in R, is normal in G. Since R = U |R,,
0
Cp(R) = nlc,,(R,.) > R.
jm

Since P/R is finite, there is an integer k£ such that Co(R) = Cp(R)).

The subgroup AR, is ascendant in G and, since |4R, : 4| is finite, 4 is
subnormal in AR, and hence AR, has a non-central minimal normal p-sub-
group N< M <P.If N£R,, then NN R, =1 and so N < Cp(R,) =
Cp(R). But Cp(R) is a centre-by-finite group and so is finite-by-abelian [7,
Theorem 4.12]. Hence C,(R) is a finite-by-(divisible abelian) p-group. Then
NC, being generated by elements of order p and contained in the normal
subgroup Cp(R), is clearly finite. If N < R,, then N¢ < R, is again finite.

We now have an ascendant subgroup AR, <* G and a non-central minimal
normal subgroup N of AR, such that N€¢ is finite. Suppose that

AR, = Hy< -+ <4Hy<q-+- 4H, = G.

Then, by induction, we may assume that each Hp contains a non-central
minimal normal p-subgroup N < N < Mg

Since N is finite there is a cofinal subset I C { 8|8 < a} such that, for all
Yy €1, N, = L, say. We now have L<H,, for all y € I, and so

L<UH,=6G

yel

and L is a non-central minimal normal p-subgroup of G contained in M.

() An %-group generated by normal €( p)-groups is a €( p)-group.

Let G = (N)|i € I) be an &;-group with each N, being a normal %( p)-
subgroup of G. We let M be a minimal normal p-subgroup of G and show
that M < Z(G). For each i € I, M N NG and so either M N N; =1 or
M < N.If M N N, = 1, then clearly [M, N]] = 1.If M < N,, then by Clifford’s
Theorem, M is a direct product of minimal normal subgroups of N, so that
M < Soc,(N;) < Z(N,). In both cases N; centralizes M and hence M is
centralized by (NjJi€ I) = G.

(III) An &,-group which is the union of an ascending chain of ascendant
€ ( p)-subgroups is a €( p)-group.

Let G =U,_,4, where each 4, is an ascendant ( p)-subgroup of G. Let
M be a minimal normal p-subgroup of G; then M is finite and so contains
only finitely many proper non-trivial subgroups N,,..., N,, say. For each
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i=1,..., k, there is an a(i) such that N, is not normalized by 4,;). For
B = max{a(1),...,a(k)},

M is a minimal normal p-subgroup of Az and hence [M, 4] = 1. It follows
that M < Z(G) and so G € €(p).

(IV) Gy = Co(S0c,(G)).

Let C = C5(Soc,(G)) and let M be a minimal normal p-subgroup of C.
Then M¢ < Soc,(G) is finite and so there are elements g;,..., g, of G such
that

MG = M& X ... X M8

is a direct product of minimal normal p-subgroups of C. Let N be a minimal
normal subgroup of G contained in M¢; then N is centralized by C. There is
a minimal normal subgroup L of C contained in N and L is C-isomorphic to
M8 for some i. Since L < N it is centralized by C and hence M3¥ is
centralized by C. Therefore M < g,Z(C)g; ! = Z(C) and it follows that
C e ¥%(p).

Conversely, let H be a normal € ( p)-subgroup of G and let T be a minimal
normal p-subgroup of G. Then either TN H=1or T<H If TNH=1
then [T, H] = 1 and so H < C4(T). If T < H, then it follows from Clifford’s
Theorem that T is a direct product of minimal normal p-subgroups of H.
Since H € €(p), each of these subgroups is central in H and we again have
[T, H] = 1. Thus H centralizes each minimal normal p-subgroup of G and so
H<C.

It should be noted for future applications that since Soc,(G) is finite, the
final part of the above theorem shows that G/ G, is finite.

Example D. Let G € &}; we define G to be a 7 ( p)-group if and only if
G/Cs(0,(G)) is a p-group, p a prime number. Let #(p) =7 (p) N 2.

Some of the properties of the class % (p) are presented without proof in
Theorem 3.4.

THEOREM 3.4. F(p) is a P-Fitting class and if G € P, then O,(G) is
finite,

Gg(py= W where W/Cg(0,(G)) = 0,(G/C5(0,(G)),
and G/Gg,, is finite.

This example does not give a Fitting class of &j-groups. For, let 4 = C,»
and form the split extension G of A by the infinite cyclic group (x) in which
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x " lax = a?*!, for all a € A. Then G is the union of the ascendant % (p)-
subgroups 4, = ,(4)(x) but 0,(G) = 4 and G/C;(A) is infinite cyclic.

Example E. The class & of soluble Cernikov groups is an %;-Fitting class.
Furthermore, if 2 is an &Fitting class then & is also an .#;-Fitting class.
Similarly any Fitting class % of finite soluble groups is a Fitting class of
polycyclic groups.

Example F. Let Z,% be Fitting classes of J#groups and let £ % denote
the class of Jgroups G with G/G4 € %. Some difficulties could arise with this
definition if )" is not Q-closed but for most classes )¢, these difficulties are
avoided by using Theorem 3.1.

THEOREM 3.5. Let X" be an {S, Dy}-closed subclass of %, containing F
and satisfying either (a) X contains P or (b) A" is Q-closed.

Then for any H-Fitting classes  and ¥ with /"N X'C X, the class XY is
also a Fitting class of H-groups and Gg4/Gy= (G/Gyg)q.

Proof. 1t is straightforward to prove that an ascendant subgroup of an
%X % group is an Z % group. The hypotheses on X" are required to show that a
JHgroup G which is the join of ascendant & % subgroups 4;, i € I, is also an
% #-group. Since & is a K Fitting class, G has an % radical G,. By Theorem
3.1 or the Q-closure of X, G/GxE€ X. Also G/G,4 is generated by the
ascendant subgroups 4,G/Gy, i € I, and

AGy/Ga=A;/A; N Ge=A,/(4;)g€ ¥.

Thus G/G4€ % and G € £%.

Taking &= % = 4", we obtain the Fitting class 4% of %,;-groups in which
G/G , is locally nilpotent. Since #;-groups are nilpotent-by-abelian-by-finite
we always have G/G - finite.

Let & be a Fitting class of %,-group and let G € &,. Then G/G € by
Theorem 3.1 and G/Gy € &, by Corollary 3.2. Thus we can therefore obtain
the following variations of the above construction.

THEOREM 3.6. Let & be an &\-Fitting class. Then:
(G) If /'C X and ¥ is a P-Fitting class, then ¥ is an P,-Fitting class.
(i) If ¥ is an &,-Fitting class, then X ¥ is an &,-Fitting class.

In particular /¥ (p) is an #,-Fitting class even though % (p) is not.

4. Injectors

Let & be a X Fitting class and let G € ). A subgroup of X of G is called
an Zinjector of G if X N A is a maximal Z-subgroup of A4 for each ascendant
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subgroup A4 of G. We shall denote the set of Zinjectors of the Hgroup G by
Inj4(G).

The methods used to prove the existence and conjugacy of %injectors of
finite soluble groups in [2] can be adapted to deal with infinite groups in which
G/Gy is a finite soluble group. The basic result concerning this situation is
given in Theorem 4.3; we then consider separately the cases in which

C(#)=PU {0} and C(%¥)=wCP.

The proof of the following generalization of Hartley’s Lemma is similar to
the finite case and hence is omitted.

LEMMA 4.1. Let & be a X Fitting class and let G be a X-group with a
normal %-subgroup R such that G/R is finite. Let R < N <G with G/N nilpotent
and let W be a maximal Zsubgroup of N containing R. If V; and V, are
maximal ¥-subgroups of G containing W, then V, and V, are conjugate in G.

The next lemma, whose proof can be found on p. 193 of [8], will be used in
the proof of Theorem 4.3 and elsewhere in this paper.

LEMMA 4.2. Let & be a X Fitting class and let G€ X'. If W is an
F-subgroup of the ascendant subgroup A and W > A4, then WGy € Z.

THEOREM 4.3. Let & be a X Fitting class and let G € X'. If G/ Gy is finite,
then G has Z-injectors and any two %Z-injectors of G are conjugate.

Proof. We use induction on |G/Gg| If G = G4, then G is itself an
Finjector so we may assume that there is a maximal normal subgroup M /Gy
of G/Gg4. By induction, M has an %injector U. Let ¥V be a maximal
%-subgroup of G containing U; we show that V' is an % injector of G.

Let 4 be an ascendant subgroup of G. If AG,= G, let W be a maximal
Zsubgroup of A containing ¥ N 4. Then by Lemma 4.2, WG, € Z. But

WGy> (VN A)Gy=V

and so, by the maximality of V, WG,= V. In particular W < V and so
W = ¥V N A, as required.

We may suppose therefore that AGz< G. Then AG, is a subnormal
subgroup having finite index in G. A simple induction argument allows us to
assume that 4G, is a maximal normal subgroup of G. By induction 4G, has
an Zinjector X, say, and so M N X is an Z-injector of M N AGy. Since U is
an Zinjector of M we also see that U N AG, is an Zinjector of M N AGy.
The induction hypothesis shows that M N X is conjugate to U N AG, and we
may assume that X > U N AG,. Now X is contained in a maximal Z-sub-
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group Y of G and V is also a maximal %subgroup of G with ¥ and Y both
containing the Zinjector U N AGy of M N AG,. Since G/M N AGy is
nilpotent we may apply Lemma 4.1 to see that V' and Y are conjugate. Thus
V N AGg4 is conjugate to Y N AGz= X and so V N AG, is an %injector of
AG4. Hence V' N A4 is a maximal % subgroup of A4.

Now let ¥, V, be two Zinjectors of G. Then V; N M and V, " M are
Zinjectors of M and so, by induction, are conjugate. We may assume that
ViNM=V,N M sothat V; and V, are maximal Zsubgroups of G contain-
ing the Zinjector ¥V, N M of M. By Lemma 4.1, V; and V, are conjugate in G.

There are many examples of Fitting classes which give rise to conjugate
injectors even though G/Gg is not always finite. We therefore need to extend
the above result and the generalizations required are different depending on
whether or not & contains the infinite cyclic group.

THEOREM 4.4. Let & be a X-Fitting class with C(%) = P U {0} and let
G € X'. Suppose that G has a normal subgroup M such that M /Gy is finite and
M contains all #-subgroups of G which contain G4. Then:

(i) G has %injectors and any two such subgroups are conjugate in G.
(i) Injg(G) = Injy(M).
(i) If X € Inj,(G), then X€/Gy is finite.

Proof. By Theorem 4.3, M has a unique conjugacy class of % injectors. It
is clearly sufficient to show that each %injector of M is an Zinjector of G
and, conversely, that each Zinjector of G is an Zinjector of M.

Let X be an Zinjector of M and let 4 be an ascendant subgroup of G. If
W is an % subgroup of 4 containing X N A, then W > XNA > GaN A=Ay
and so, by Lemma 4.2, WG, € Z. By the hypotheses of the theorem, WG, < M
and, in particular, W< M N A. But M N A is an ascendant subgroup of
M and so X N A is a maximal Z-subgroup of M N 4. Hence W = X N A and
so X N A is a maximal % subgroup of A. Thus X is an %injector of G.

Conversely, let Y be an % injector of G. Then Y > G, and so Y < M. Thus
Y is an Zinjector of M.

The case in which 2 consists entirely of periodic groups essentially reduces
to considering injectors of Cernikov groups. The proof presented here is based
on Theorem 4.3 but requires one further lemma.

LEMMA 4.5. Let & be a X Fitting class and let G be a H-group such that
G /Gy is finite. Let

(*) G = Gy>bG,p> -+ - >G, = B>l



FITTING CLASSES OF %;-GROUPS, I 345

be a series for G with B € & and G,;_,/G; a finite nilpotent group for each
i=1,...,n. Then V is an Finjector of G if and only if G; N V is a maximal
Z-subgroup of G,, foreachi =0,...,n.

Proof. 1If V is an Finjector of G then since G, sn G it is clear that V' N G;
is a maximal %subgroup of G,, for each i.

We prove the converse by induction on n. If n = 0, then G = B € & and so
V = G is clearly an Z-injector of G. If n > 1, then by induction V' N G, is an
Finjector of G,. By Theorem 4.3, G has an %injector X, say. Then X N G, is
an Zinjector of G, and so is conmjugate to ¥ N G;. We may assume that
VN G, = XN G, Then ¥V and X are maximal % subgroups containing the
Finjector X N G, of G,. By Lemma 4.1, V is conjugate to X and so is an
Finjector of G.

An easy consequence of Lemma 4.5 is the following corollary.

COROLLARY 4.6. Let & be a X Fitting class and let G be a H-group such
that G/Gy is finite. If V € Injo(G) and V < L < G, then V € Inj,(L).

THEOREM 4.7. Let % be a X Fitting class with C(Z) =« C P and let
G € X'. Suppose that G has a normal Cernikov subgroup M such that M
contains all %-subgroups of G which contain Gg. Then:

(1) G has Zinjectors and any two such subgroups are conjugate in G.

(i) Injg(G) = Injg(M).

Proof. Let S be a Sylow a-subgroup of M. Then S/Gyg is finite and so, by
Theorem 4.3, S has an %injector X. We show that X is an %injector of M.

Let A4 be an ascendant subgroup of M and let V' be a maximal % subgroup
of A containing X N A. Then V is contained in a Sylow a-subgroup T of 4.
Now consider

H=(T,SNA4),

since T/A, and S N A/A, are finite, H/A, and hence H/H, must be
finite: By Theorem 4.3, H has an Zinjector Y. By Corollary 4.6, Y is an
Z-injector of some Sylow m-subgroup of H and so some conjugate of Y is an
Finjector of S N 4. But X N 4 is an %injector of SN A4 and so X N 4 is
conjugate to Y. In particular, X N 4 is a maximal Zsubgroup of H and so
X N A =V, as required.

It is now clear from Corollary 4.6 that the % injectors of M are just the
Finjectors of the Sylow 7-subgroups of M and hence are conjugate in M.

The proof that the #injectors of M are the Zinjectors of G is exactly as in
the proof of Theorem 4.4.
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It is necessary to give a form of this result for Fitting classes of Cernikov
groups which is rather different from Theorem 4.4. For, if G is the split
extension of Cy» by the automorphism a which inverts each element and if
X = (a) then X is an Zinjector of G with & the class of 2-groups. But
Gy=1and X¢ = G so that X°/G, may be an infinite group.

The hypotheses of Theorems 4.4 and 4.7 can be combined to say that M /Gy
is a Cernikov group. Note that if C_ & %, then M is Cernikov. We use
Theorem 3.1 in this formulation of the following improved version of Lemma
45.

THEOREM 4.8. Let Z be a X-Fitting class and let G € A". Suppose that G
has a normal subgroup M such that M /Gy is a Cernikov group and M contains
all #-subgroups of G which contain Gy. Let

M= MpMp--->M, = Bol

be a series for M with M,_,/M; nilpotent, for eachi =1,...,n, and BE€ %.
Then:
(i) Vis an Finjector of G if and only if V is a maximal %-subgroup of M,,
for eachi=0,...,n.
(1) IfVE€Inj,(G)and V<L < G, then V € Injg(L).
(iii) The Z-injectors of G are pronormal in G.
(iv) IfV € Inj4(G) and NG, then G = NN;(V N N).
(v) IfV € Inj,(G) and H/K is a chief factor of G, then V either covers or
avoids H/K.

Proof. (1) By Theorem 4.7 and an argument similar to the proof of
Lemma 4.5 shows that V € Inj,(M) if and only if V is a maximal %‘sub-
group of M,, for each i = 0,..., n. We have seen in Theorems 4.4 and 4.7 that
Inj, (M) = Inj4(G) so the result follows.

(i) Since G4 < V < L we have Gy < Ly. If X is an Z-subgroup of L
containing L, then X > G, and so X < M. Thus every %subgroup of L
containing L4 is contained in L N M and L N M/Lg, being a section of
M /Gy, is a Cernikov group. Now L N M has a series

LAM=LNAMp---bLNM,=LnBpl

with L N M,_,/L N M, nilpotent, for each i =1,...,n,and B < Gy < L so
that LN B=B € %. Since V < L and V N M, is a maximal Z-subgroup of
M, it is clear that V' N M, is a maximal %-subgroup of L N M,. It follows from
(i) that ¥V € Injg(L).

(iii) Let V be an Z-injector of G and let x € G. Then, by (ii), V and V*
are Zinjectors of (¥, V*) and so are conjugate in (V, V™).



FITTING CLASSES OF %;-GROUPS, I 347

(iv) Let x € G; then (V¥ N N)* = V* N N is an Finjector of N as also is
V N N. Therefore

(VnN)'=(¥nN)"

for some n € N and xn~! € Ny(V' N N). Hence x € NNy(V N N).

(v) By (iv), G= NH (V' N H). Since H/K is abelian, K(V N H) is
normalized by H and it is also normalized by Ny(V N H). Hence K(V N H)G
and so

K(WVNnH)=HorKk,

as required.

5. Examples of injectors

5.1. A -injectors.

It was shown in [8] that every &;-group has a unique conjugacy class of
A-injectors. Although the approach used there was rather different from that
used here, an important point in the proof was the introduction of a normal
subgroup N such that N/G, is finite and each hypercentral subgroup U
containing G ,- is contained in N. Thus the subgroup N takes the place of M
in Theorem 4.4.

We describe the construction of N briefly. The radical G ,- of the %;-group
G has a finite series

of normal subgroups of G such that each factor R,/R,_, is either torsion-free
abelian and rationally irreducible or is a Cernikov group. The torsion-free
factors are central in G ;- and we define

N =N{Cz(R,/R,_,)|R,/R,_, is torsion-free} .

To show that each hypercentral subgroup U containing G ,- is contained in N
the key observation is that G/G 4 is abelian-by-finite and so U/G ,- is finite. It
then follows that U centralizes each torsion-free R,/R;_; and so is contained
in N.

5.2. Fitting classes of Z-groups and ;-groups.
THEOREM 5.1. Let & be a Fitting class of H-groups, where X2 P, and

suppose that C(¥) = w, a nonempty set of primes. Then there is a polycyclic
group G which does not have Z-injectors.
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Proof. There is a prime p such that C, € Z. Let
A= (a) X - X{a, 1)

be a free abelian group of rank p — 1 and let X = (x) = C,. Form the split
extension G of 4 by X in which

xlax=a,,, (i=1,...,p-2),

1

S R
a, 1x = aj a

X~ po1-
(The group G is, in fact, isomorphic to C, \ C, with the centre factored out.)
Then, for p # 2,

G'=[4,x]=(a"a,,...,a; 5a, 4, a7 .. a;2))

= (a;'ay,...,a, 5a, ,, af)

so that G/G" = C, X C,. (If p = 2, then G = (a,, x) is the infinite dihedral
group and G’ = (a}) so that again G/G’ = C, X C,.) Thus

(G',x) and (G’,a;x)

are normal subgroups of G containing elements of order p. But the maximal
p-subgroups of G all have order p. Thus an Z-injector of G must be a
subgroup of order p contained in (G, x) N (G’, a,x). But

(G',x) N (G, a;x) =G

is torsion-free and so G has no Zinjectors.

This means that for any class ¢ containing the class of polycyclic groups
we can reduce our investigation to Fitting classes £ which contain all locally
nilpotent J-groups. For these classes we have the following elementary but
important result.

LEMMA 5.2. Let & be a X Fitting class such that XN N CX. If G € X,
then:
(1)) G/Gyg has an abelian normal subgroup D /Gy of finite index n, say.
(ii) Each #subgroup U of G containing G4 satisfies |U/Gg| < n.
(iii) Each %-subgroup of G containing G4 is contained in a maximal Z-sub-
group.

Proof. (1) This follows from the fact that $-groups are nilpotent-by-
abelian-by-finite and Gz = G ..

(i) Since UN DAU we have UN D € . Also U N D<AD<G and so
U N D < Gg. Hence |U/Gg| < |G/D| = n.

(iii)) Follows immediately from (ii).
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This lemma seems to give considerable control over the maximal %-sub-
groups containing G, and might give hope that we would always have
Finjectors in this case. However the construction of Theorem 5.1 can be easily
extended to provide examples of a Fitting class & such that £ 2 'N A" but
there are J#groups not having % injectors.

THEOREM 5.3. Let XD P and let X be a Fitting class of H-groups such that
C(Z) = w, a non-empty set of primes. Then there is a polycyclic group H which
does not have N Finjectors.

Proof. Let G = AX be the group constructed in Theorem 5.1. The infinite
cyclic group can be made to act Z-irreducibly on Z & Z; for example the
generator may act on the basis elements as the matrix

i ol
1 0/)
By letting each (a;) act on a copy of Z @ Z in this way we obtain an action of
A on M= Z*?~D Now form the induced representation of G; in this
representation G acts on M ®,,ZG as follows. For each g € G, and each

k=0,...,p—1, there is an a € A such that x*g = ax/, for some /=
0,...,p—1, and g acts on

M@, 2G=(M®1)®d (M®x)® --- d(M®xP1)
according to the rule
(m® x¥)g=ma® x'.

Form the split extension H of M, = M ® ;, ,ZG by G. Then H ,= M, and
the A% subgroups of H containing H ,- are just extensions of M; by groups
of order p. As in Theorem 5.1, we can show that these are not "% injectors
of H.

It is clear that an Zinjector of a group G is a maximal Zsubgroup
containing G, . The existence and conjugacy of A~injectors is proved in [8] by
showing that the maximal A#“subgroups containing G ,- form a single conju-
gacy class and then showing that these are the #~injectors. As it often happens
in finite soluble groups that the %injectors are precisely the maximal % sub-
groups containing G, it seems worthwhile extending this part of the argument
used in [8].

THEOREM 5.4. Let & be a H-Fitting class containing all locally nilpotent
H-groups. Suppose that, in every H-group G, the maximal Z-subgroups contain-
ing Gy form a single conjugacy class. Then these subgroups are the Z-injectors
of G.
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Proof. Let V be a maximal %subgroup of G containing G,; then by
Lemma 5.2, [V /Gg| is finite. Let 4 be an ascendant subgroup of G. We show
that ' N A is a maximal Z-subgroup of A.

Since V' N A is ascendant in V, we have V' N 4 € Z. Consideration of the
subgroups 4 < AG, < G shows that we may first suppose that 4 > G4 to
show that ' N AG, is a maximal Z-subgroup of AG, containing G = (AGg)4
and then we need only consider the case in which AG, = G.

I 4= G,
We have an ascending series

A=Ay<q---44,4--- <94, = G.

a P
If VN A4 is not a maximal Zsubgroup of 4 then we take a to be minimal
such that V' N 4, is a maximal %subgroup of 4,. If a were a limit ordinal
then 4, = Ug . 4, and, since V/Gy is finite there would be some y < a such
that VN A, =V N A, Since V' N A4, is a maximal Z-subgroup of 4, it would
follow that ' N 4, is also a maximal %subgroup of A4,, contrary to the
minimality of «. Therefore a — 1 exists and ¥ N A,_, is not a maximal
Z-subgroup of 4,_;.

Let W be a maximal % subgroup of A4,_; containing ¥ N 4,_; and let U
be a maximal % subgroup of 4, containing W so that W = U N A,_,. By the
hypothesis of the theorem, there is an x € 4, such that

U=(VnAd4) =V*nA,
Then
W=UNA, ,=V*NnA,_,=WVnA4,,)".

Since x induces an automorphism of A,_; this is contrary to ¥ N 4,_; not
being a maximal %-subgroup of 4,_;.

() AGy=G.

If W is an Z-subgroup of 4 containing ¥ N A4, then by Lemma 4.2, WG, is
an Zsubgroup and WG, > (V N A)G, = V. By the maximality of V, WG, =
V. But then

shows that W =V N A.
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5.3. € (p)-injectors.

We saw in Section 3 that G/G,, is finite for any &-group G and so, by
Theorem 4.3, every #;-group G has €( p)-injectors and any two such sub-
groups are conjugate in G. To identify the €( p)-injectors of an &,-group G
we actually describe the maximal €( p)-subgroups of G containing Gg,,. We
shall see that these subgroups are conjugate and so are the %( p)-injectors of
G. This can be considered as a consequence of Theorem 5.4 or we can use our
knowledge that the € ( p)-injectors are conjugate to deduce that the two sets of
subgroups coincide. Most of the ideas used in the proofs of the following three
lemmas may be found in [5] and hence will be omitted.

LEMMA 5.5. Let G be an &-group and let C = Gy, = C5(Soc,(G)). Then:
(i) C = C4z(P), where P = Soc,(C).

(i) If C < H < G, then Socp(H) < P,

(i) IfC<H < Gand H € €(p), then Soc,(H) = Cp(H).

LEMMA 5.6. Let Gy, =C<H<G€E€Y,, HeE ¥(p) and let T/C be a
Sylow p-subgroup of the finite group H/C. Then Soc,(H) = Cp(H) = Cp(T).

LemMa 5.7. Let Gy, =C<H<G€E€Y, and H € €(p). Then
Cs(Soc,(H)) € €(p).

THEOREM 5.8. Let G € & and C = Gg(,, = C(Soc,(G)).

(i) The maximal €(p)-subgroups of G containing C are the subgroups
Cs(Cp(S)), where S/C is a Sylow p-subgroup of G/C.

(i) The maximal € ( p)-subgroups of G containing C are the € ( p)-injectors
of G.

Proof. (i) By Lemma 5.5(1), C = Cz(P) and so Cyz(Cp(S)) = C. We
show that C;(Cp(S)) is a €( p)-group. By Lemma 5.5(ii), Soc,(S) < P and so
C centralizes Soc,(S). Now S/C is a p-group and so S induces a p-group of
automorphisms on Soc,(S) and hence Soc,(S) is central in S; that is,
S € €(p). It follows from Lemma 5.5(iii) that Soc,(S) = Cp(S) and now
Lemma 5.7 shows that C;(Cp(S)) € €(p).

Conversely, let H be a €( p)-subgroup containing C. Let T/C be a Sylow
p-subgroup of H/C and let S/C be a Sylow p-subgroup of G/C containing
T/C. Then

H< CG(Socp(H)) since H € €(p)
= C;(Cp(T)) byLemma 5.6
< C;(Cp(8)) since Cp(S) < Cp(T).
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(ii)) By Sylow’s Theorem it is clear that the maximal %( p)-subgroups
containing Gg,, are always conjugate and so we may apply Theorem 5.4 to
deduce that these subgroups are the € ( p)-injectors of G.

5.4. %( p)-injectors.
We saw in Example D of Section 3 that if G € & then
Ggpy = W where W/C;(0,(G)) = 0,(G/C5(0,(G)).

In this case we are again able to identify the maximal % (p)-subgroups
containing G ,, and so obtain a characterization of the % ( p)-injectors by
using Theorem 5.4. These facts are contained in the next theorem whose proof
we omit.

THEOREM 5.9. Let G be a polycyclic group.

(i) A subgroup T containing Gg,, is an F (p)-group if and only if T/G g,
is a p-group.

(i) G has a unique conjugacy class of & ( p)-injectors. They are subgroups V
where V/Cg(0,(G)) is a Sylow p-subgroup of G/Cs(0,(G)).

5.5. ¥ %-injectors.

THEOREM 5.10. Let X be an {S, D,}-closed subclass of ¥, containing F
and satisfying either (a) X contains P or (b) X is Q-closed.

Let & and % be X Fitting classes containing /"N X and let G € X". Then
the subgroup V of G is an & %injector of G ifand only if V > G4 and V /Gy is a
@-injector of G/Gy.

() Hgy= Gy

Since K«G, [K,Hyl < KN Hy€ 5, Z=2%. Also Go< K< H and so
Gy < Hy. Thus G4 < KN Hy. But K/Gy is a hypercentral group and so

K N Hy asc G. Therefore K N Hy < G4 and we have K N Hy = Gy
Hence [K, Hy] < G4 and so Hy < C;(K/Gy) < K. But this means that

() He X% ifandonly if H/Gy€ ¥.
This follows immediately from (I).

(1) If V/Gg is a @-injector of G/Gg, then V is an ¥ injector of G.
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It follows from (II) that V € Z%¥. Let A be an ascendant subgroup of G.
Then

AGg/Gy asc G/Gy
and so V N AGy/ Gy is a @ injector of AG4/Gy. Since Ay = A N G4 we have
AGy/Gy=A/Ay

and VN A/Ag is a @injector of A/Ag. Since S'NAHC U, (G/Gy) < V/Gg
and so K<V and d4z,=KNA<VNA If VN A is contained in an
Z %-subgroup U of A, then by (II), U/A4€ ¥ and, since VN A/Ay is a
%injector of A/A4, we have VN A = U is a maximal % % subgroup of A.

(AV) If Vis an & %-injector of G, then V /Gy is a %injector of G/Gg.

Certainly V > Ggq > Gg, and so it follows from (II) that V/Gy € %. Let
A /G4 be an ascendant subgroup of G/G,. Then 4 asc G andso VN A isa
maximal Z %subgroup of 4 and VNA=>KNA=A4,. If Y/Gy is a
% subgroup of A/G4 containing ¥V N A /Gy, then by (I), Y is an Z % sub-
group of A containing VN A4 and so Y=V NA. Thus VN A/Gs is a
maximal % subgroup of 4/G,.

Let X be an {S, D,}-closed subclass of %, containing # and satisfying
HDP or A is Q-closed. Let ¥ and ¥ be X Fitting classes containing
AN A . Theorem 5.10 gives a correspondence between % % injectors of G,
G €X', and %injectors of G/Gg. In particular, G will have conjugate
% %-injectors whenever G/Gy has conjugate % injectors. This correspondence
also enables us to give simple characterizations of some injectors. For exam-
ple, using Theorem 5.10 and Theorem 3 of [8] it is easy to see that the
A -injectors of an &#;-group G are the maximal #"2-subgroups of G contain-
ing G 2.

Using Theorem 3.6 we can obtain the following variation of Theorem 5.10.

THEOREM 5.11. Let & be an ¥;-Fitting class.

(i) Let /'C % and let % be a P-Fitting class such that every P-group has a
unique conjugacy class of %injectors. Then every #;-group has a unique conju-
gacy class of & #injectors.

(it) Let ¥ be an ¥-Fitting class such that every )-group has a unique
conjugacy class of %-injectors. Then every &,-group has a unique conjugacy class
X @injectors.

The interesting point in the first part of Theorem 5.11, of course, is that %
need not even be a Fitting class of %;-groups. For example, we could take
% = % ( p) to obtain A F (p)-injectors of any &;-group. In the second part of
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Theorem 5.11, no assumption is required about the existence of %injectors.
For example, it shows that every %;-group has conjugate &A“injectors al-
though &injectors need not exist by 5.1.

6. Fitting classes of #-groups and ¥;-groups

The condition in Theorem 4.4 requiring the existence of a finite normal
subgroup M /Gy of G/Gy such that M contains every #subgroup of G which
contains G, seems to be a very strong hypothesis. Our main result in this
section is that a condition of this type is in fact a consequence of the existence
and conjugacy of Zinjectors.

We consider only classes /¢~ which contain #. We have already made one
important reduction in Theorem 5.1 which says that if every Jgroup has
Finjectors then 2 XN A . It follows that G4= G, so that, by Theorem
3.1, G/Gy is a finitely generated abelian-by-finite group and each %-subgroup
containing G is a finite extension of G5 (Lemma 5.2). We begin by showing
that if & is a X-Fitting class which leads to existence and conjugacy of
Zinjectors then we can characterize the -injectors in a similar way to Lemma
4.5. In that result we had G/G4 a finite group and could take a finite series of
G/Gg4 with nilpotent factors. In the situation considered here G/Gg4 is (free
abelian)-by-finite. Thus any Xgroup G has a series

G=GyPG>- DG, = A>AL>] (%)

such that G;_,/G, is cyclic of prime order, foreach i = 1,..., n, and 4/A44 is
free abelian of finite rank. The natural way to construct the series (*) is to
take a free abelian subgroup A/G, of finite index in G/G, but for the
purposes of our proof we require the slight variation given above.

LEMMA 6.1. Let X be an { S, D,}-closed subclass of ¥, containing # and
let & be a A Fitting class such that every X-group has a unique conjugacy class
of Finjectors. Then a subgroup V of the H-group G is an Finjector of G if and
only if G has a series (*) such that V> Asq and V N G, is a maximal
%-subgroup of G;, for eachi=0,...,n.

Proof. We use induction on n and the rank of 4/A4,.

If V is an %injector of G then it is clear that V' > Gz > A, and that
V N G, is a maximal %-subgroup of each subnormal subgroup G, for any
series (*).

Conversely, suppose that G has a series (*) with V> 4, and VN G, a
maximal %-subgroup of G; for each i.
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If n=0, then G =4 so that V= G,= A, is an Zinjector. So we may
assume that » > 1. By induction on n, ¥ N G, is an Zinjector of G,. Let X
be an Zinjector of G; then X N G, is an Zinjector of G, and so is conjugate
to VN G,. We may assume that XN G, =V NG;. Now VN4 is an
Finjector of 4 and ¥V N A<A. Hence VN A = A4 and so V/A, is finite.
Similarly X N 4 = A and X/A, is finite.

Now VN G;dV and V' N G, = X N G,<X so that V, X < Ny(V N Gy).
The subgroup N = N;(V N G,) has a series

(*x) N=NNGp---DNNG,=NnNA>A4z>1
with
(NN G,_,)/(NNG,) =(NnG,_,)G/G,;
cyclic of prime order or trivial,
(NNA)/Ag< A/Ay

free abelian and Ag,= (N N A)4. Since V' N G, is a maximal %subgroup
of G, and VN G; < NN G, it follows that V' N G, is a maximal %sub-
group of NN G, for each i =0,...,n. Similarly X N G; is a maximal
Zsubgroup of NN G,, for each i=0,...,n. Also V= (NN A), and
X>=(NNA)g.

Suppose that AN < G; then |N/(N N G,)|=|NA/A| <|G/G,| and so
there is some collapse in the series (* *). By induction on n, X and V are
Zinjectors of N. Thus V" and X are conjugate (in N) and so V is an Zinjector
of G. We can therefore assume that AN = G.

Suppose that 4/(A N N) is infinite; then

r((ANN)/(A0N)y) <r(4d/4g)
and so, by induction on r applied to the series (* *), V and X are again
Zinjectors of N and, as above, we can deduce that V' € Inj,(G). Therefore we

may assume that AN = G and 4/(A4 N N) is finite.
Since (V' N G,) N A = A4, we have

NA/A,(Vn Gl/Aﬂ”) = CA/A,(Vn G1/A£)
and so

(ANN)/A4g=N(V N G)/Ag= Cy,y, (VN G/Ag)
< Z(A(V N G))/Ag).
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Since A/(A N N) is finite, this means that A(V N G;)/Ag4 is central-by-finite
and hence the set of elements of finite order in A(V N G,)/A4 forms a finite
normal subgroup 7/Ag. Since A /A4 is torsion-free we must have T N4 = A4
and hence T = ¥V N G;. In particular, ¥V N G,<A(V N G,) so that N = 4 and
therefore, since AN = G, we have N = G. This means that VN G; = X N G,
is a normal %subgroup of G and V' N G, = (G,),.

Write H = (G,)g4 so that ¥ N G; = X N G; = H is the unique Zinjector
of G,. If X < G, then H is a maximal %subgroup of G and V' = X is an
Zinjector of G. So we may assume that ¥ and X properly contain H. Then

(1) G/G,=V/H = X/H = C, for some prime p.

Now let S be any ascendant subgroup of G; we have to show that ' N S is
a maximal % subgroup of S. Since H is the unique Z-injector of G,,

SNH=SNVNG,

is the unique Zinjector of S N G;. If S < Gy, then ¥ N S is an Zinjector of
S and so we may assume that SG, = G. By (1), $/(S N G;) = C,. Let W be
a maximal %-subgroup of S containing S N V; then W N G; = S N H and so

W/(SNH)|=porl.

If (SNV)/(SN H)| =p,then SNV =W is a maximal %subgroup of S.
We may therefore assume that

(2) SNV=SNHandsoSHNV=H(SNV)=H.

By (1), |X/H| = p, and hence either X < SH or SHN X =H. If SHN
X =H,then SN X = SN Hisan Finjectorof S.By (2), SNV =SNHis
a maximal %-subgroup of S. Hence we may assume that

(3) X < SH.

Since G,/H = G,/(G,)4 is polycyclic by Theorem 3.1 and G/G, = C,,
G/H is polycyclic and hence SH is subnormal in G. Thus we have a finite
series

SH=S§,4---4S, = G.

By (1), |V/H| = p and so there is an integer k such that V' < S,_; but
S, NV =H. Since S, > H, S;_,/S, is polycyclic and hence residually finite
[7, Corollary 2 to Theorem 9.31]. Therefore there is a normal subgroup M /S,
of finite index in S,_,/S, maximal with respect to M N VS, = S, and hence
MNV=H By(3), X< SH< S, <M and so we have:
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@ X<MJIS,_|,S_1/M is finite, M NV =H and if M < N<S,_;
then V < N.

Since M > X, we have MG, = G and so
M(S1NG) =S, MN G < S,y
and
S,/ (MNG)=(M/MnN G,) X (S, NG /MnN Gy).

Let K/M be a minimal normal subgroup of S,_,/M. By (4), V' < K. Since
H < V, it follows from (1) that K/M is an elementary abelian p-group. Thus

K/(MNG)=(M/Mn G,)) X (KN G,/M N G,)
is an elementary abelian p-group and
V(M N G)<K4S,_;.

Since X is an Zinjector of S,_;, X N V(M N G,) is a maximal %subgroup
of V(M N G,). But

XNV(IMNG)=XNnMnV(MnN G,))
=XN(MNnV)(Mn G,)
=XNMNG,=XNG, =H

and H < V < V(M N G,). This final contradiction completes the proof of the
lemma.

COROLLARY 6.2. Let X be an {S, D,}-closed subclass of &, containing P
and let & be a H-Fitting class such that every H-group has a unique conjugacy
class of Zinjectors. If V is an Z-injector of the H-group G and V < L < G, then
V € Injg(L).

Proof. Intersecting the series (*) with L, we obtain the series

L=LNGPHPLNGDP---DPLNG,=LNA>ALPL.

Foreachi=1,...,n,

(LN G)/(LNGy)
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is either trivial or cyclic of prime order,
(LNA)/Ag< A/Ay

is free abelian and since L N A< A4, we have Agz= (L N A),4. Since V' N G, is
a maximal Z-subgroup of G, and V' < Litisclearthat VN (L N G;) = V' N G;
is a maximal Zsubgroup of L N G;, for each i = 0,..., n, and so, by Lemma
6.1, V is an Zinjector of L.

THEOREM 6.3. Let X" be an (S, D,}-closed subclass of &, containing P
and let & be a A-Fitting class such that every X-group has a unique conjugacy
class of Finjectors. If X is an Zinjector of the H-group G, then

(i) XC/Gy is finite,

(i) Injg(G) = Injg(X°).

Proof. Let Y = X©. Since Y<G, X is an Zinjector of Y. Further, Inj,(Y)
is a unique conjugacy class of subgroups and hence ¥ = X7,

Since G/Gg is abelian-by-finite, Y/G, has a free abelian normal subgroup
A /Gy of finite index. We use induction on |Y/A| and | X/Gg|. If either |Y /A|
or | X/Gglis 1, then Gy= X =Y.

If AX <Y, then by Corollary 6.2, X is an Z%injector of AX. Since
|AX/A| <|Y/A| the induction hypothesis shows that |X4X: X| is finite. Let
F = X4X; then F/Gj is finite and so F N A = G,. Therefore F = X and so
X<AX. Therefore Cy(A/Gy) = X. But A/Gy<Y /Gy and so Cy(A/Gg) =
XY = Y. So A/G, is contained in the centre of Y/G,. In the central-by-finite
group Y/G4, the elements of finite order form a finite normal subgroup
T /Gy The finite subgroup X/Gy is contained in 7/G, and hence Y = XY =
T so that Y /G is finite.

So we may assume that 4X = Y. The finite soluble group X/G, contains a
maximal normal subgroup M/G, such that X/M = C,, for some prime p.
Then AM Y and so X N AM = M is an injector of AM. Since AM Y G,
we have (AM )4, = G4. Since

|M/(AM) &| < |X/Ggl,

MM /G, is finite. Since A/G, is torsion-free, MM N A = G, and so
MAM = M. Tt follows that M <AM Y <G so that M is a subnormal % sub-
group. Thus M = G4 and AM = A4 so that Y/4 = X/Gg= C,.

Suppose now that the free abelian normal subgroup 4/Gs of Y/Gy is
non-trivial and let B/Gy = (A/G4)?<4Y/G4. Then A/B is non-trivial and
Y/B is a finite p-group of order greater than p. Therefore XB/B = C, is a
proper subgroup of Y/B and so there is a normal subgroup K of Y such that
XB < K <Y, contrary to XY = Y. This contradiction shows that 4/Gg is
trivial and so Y /Gy is finite.
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The main deficiency in this result is that we are not able to obtain
information about all the maximal Z%-subgroups containing G, so that it
cannot be considered as a complete converse to our Theorem 4.4.
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