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FITTING CLASSES OF 6aI-GROUPS, I

BY

J.C. BEIDLEMAN, M.J. KARBE AND M.J. TOMKINSON

1. Introduction

Since they were first introduced by Fischer [1], Fitting classes and the
associated injectors of a finite soluble group have provided one of the most
fruitful topics in the theory of finite soluble groups; a useful introduction to
the subject is contained in the essay by Hawkes [4]. However, there have been
few attempts to obtain a similar theory in infinite groups, particularly in the
case of groups which are not locally finite and in which, therefore, one has
little hope of using any form of Sylow theory. One positive result that has been
obtained is the existence and conjugacy of nilpotent (hypercentral) injectors in
polycyclic groups (S’l-groups) [8]. Our aim here is to give a general theory of
Fitting classes of 6al-groups and investigate the extent to which this will give
rise to the existence and conjugacy of injectors.
An 6’l-group is one possessing a finite normal series in which the factors are

abelian groups of finite rank whose torsion subgroups are (ernikov groups.
Our terminology is taken from Robinson [7, Part 2, p. 137]; 6a-groups have
also been called soluble groups of type A by Mal’cev [6]. One of the properties
of 6a-groups that will be of crucial importance throughout is that they are
nilpotent-by-abelian-by-finite [7, Theorem 3.25].

Throughout we shall work within a subclass of 6a which contains ,
the class of all finite soluble groups, and which is { S, DO }-closed; that is, if
G)g’and H< G then H
We shall occasionally refer to specific subclasses and one should note the

following possibilities for

(1)
()
(3)
(4)
(5)

the class of polycyclic groups,
the class of finite soluble groups
the class of temikov (or extremal) soluble groups,

’, the class of soluble minimax groups.

Received May 20, 1987.

(C) 1989 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

333



334 J.C. BEIDLEMAN, M.J. KARBE AND M.J. TOMKINSON

If is a (S, DO }-closed subclass of 9al containing o" then a Fitting class
of -groups (or a -Fitting class) is a subclass c of such that

(F1) if G W and A is an ascendant subgroup of G, then A r,
(F2) if G and G is generated by normal r-subgroups, then G r,
(F3) if G S/d and G is the union of an ascending chain of ascendant

r-subgroups, then G r.

If X’= " or , then condition (F1) reduces to the usual Sn-closure and (F3)
can be omitted. For .X’= -, the definition gives the usual definition of a
Fitting class of finite soluble groups.

Condition (F2) ensures that the join of all normal r-subgroups of a
X-group G is also a normal C-subgroup of G. This unique maximal normal
W-subgroup of G is called the r-radical of G and is denoted by Gr. We see
from the following result that conditions (F2) and (F3) could be replaced by
the single condition: if G d and G is generated by ascendant r-subgroups,
then G r. Although this may be considered a more natural definition of a
Fitting class it is usually easier to check separately that conditions (F2) and
(F3) are satisfied.

LEMMA 1.1. Let be a Off-Fitting class and G J:’. Then:
(i) IfA asc G and A r, then A < Get,
(ii) Gr (AiA is an ascendant -subgroup of G),
(iii) If B asc G, then Br= B Get.

Proof Part (i) appears in [7, Lemma 1.31.] and (ii) is an immediate
consequence.

(iii) Since B Gr asc Gr, we have B N Gr r. Also B G<B and so
B t Gr < Br. Conversely Br c and Br,B asc G so that B asc G. Hence
Ba-< Gr and we obtain Br= B Gr.
By considering the characteristic of a Fitting class in Section 2 we are able

to show that a CFitting class W either contains all locally nilpotent X-groups
or consists entirely of ,r-groups for some set of primes ,r and, in this case, W
contains all locally nilpotent ,r-groups which are in the class d.
These two situations give rise to rather different types of result and are

largely considered separately. The more important case is when r contains all
locally nilpotent S/d-groups so that the radical Gr contains the Hirsch-Plotkin
radical G. Since G/G is a polycyclic abelian-by-finite group (Theorem 3.1)
this means that we can usually restrict our discussion to groups in which G/G
is polycyclic and abelian-by-finite.

If is a Fitting class of J-groups and G .gff, then an -injector of G is an
r-subgroup V of G such that V A is a maximal subgroup of A whenever
A is an ascendant subgroup of G.
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For the case in which Ac consists entirely of periodic groups a sufficient
condition for the existence and conjugacy of At-injectors is given in Theorem
4.7. A more important case is the following.

THEOREM 4.4. Let r be a -Fitting class containing all locally nilpotent
-groups and let G .gf’. Suppose that G has a normal subgroup M such that
M/Gsr is finite and M contains all subgroups of G which contain Gsr. Then G
has -injectors and any two such subgroups are conjugate in G. The -injectors of
G are the -injectors of M.

At first sight the conditions of Theorem 4.4 may appear somewhat artificial
but we also prove a form of converse to this result showing that if Ac is a
Fitting class of oCg-groups which gives rise to the existence and conjugacy of
At-injectors, then every g-group G must satisfy conditions similar to the
hypothesis in Theorem 4.4. More precisely we prove the following theorem.

THEOREM 6.3. Let D_ and let lf be a Fitting class of -groups such that
each -group G has a unique conjugacy class of 5Y-injectors. Then each --group
G has a normal subgroup M such that M/Get is finite and the 5Y-injectors of G
are the 5Y-injectors of M.

Although these could be considered as our main results, we are also able to
prove that many of the properties of At-injectors of finite soluble groups (e.g.,
pronormality) can be extended to the infinite case; in some places these
additional properties are, in fact, necessary as part of the main proofs. We
have also included two sections described as examples. These sections do
include examples to illustrate the theory (and also some of the difficulties
involved in making natural generalizations from the finite case) but also
include examples to show that there are limits to the results we can expect.
These examples are necessary in reducing the type of Fitting class that we
need to consider in Theorem 6.3.

2. Characteristic of a Fitting dass

Let Ac be a ogFitting class. We define Cf(Ar), the finite characteristic of Ar,
to be the set of primes p such that Cv Ar, where Cv is the cyclic group of
order p. If Ac contains no such groups then we write Cf(Ar) . The infinite
characteristic Ci(Sf ) of r is defined to be {o } if Ar contains the infinite cyclic
group C and otherwise. The characteristic of Ar is then C(Ar) Cf() u
Ci(Ar), a subset of P t3 { }, where P denotes the set of all primes. We shall
see that either C(Ar) is equal to the whole of P U {o } or C(Ac) is a subset of
P and every At-group is periodic.
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LEMMA 2.1. Let G be a hyperabelian group.
(i) If G contains an element x of prime order p, then there are subgroups

K <IH sn G such that H/K Cp.
(ii) If G contains an element x of infinite order, then there are subgroups

K<H sn G such that H/K --- Coo.

Proof We suppose that G has an ascending normal series

1 Go<l... <IG<...<IGp G

with G+1/aa abelian.
(i) Let a be minimal such that x G; then a 1 exists. Clearly

(ii) We use induction on p. Again let a be minimal such that x G; then
again a 1 exists and a 1 < p. If xG_ has infinite order then as in part
(i) we can take the factor (x, aa_l/Ga_ 1. If x" G_I, then x is an
element of G,_ of infinite order. By induction there are subgroups K<IH sn
G_ such that H/K Coo. Since H sn G, this completes the proof.

By Lemma 4.2 and a generalization of a standard argument used in the
finite case, we obtain the next result.

THEOREM 2.2. Let r be a Of-Fitting class.
(i) If there is a group G which contains a p-element, then Cp
(ii) If there is a group G 5 which contains an element of infinite order

then Coo
(iii) If Coo Y’, then C(W)= P to (oo).

A simple consequence of Theorem 2.2 is:

COROLLARY 2.3. Let Y" be a :)if-Fitting class. Then either
(a) C(J") r

_
P and every -group is a r-group, or

(b) C(Y’) a to ().

THEOREM 2.4. Let,3; be a -Fitting class.
(i) If C(Y’) r c_ P, then 5Y contains all locally nilpotent r-groups in

(ii) If C(W) P tO (o), then r contains all locally nilpotent -groups.

Proof Since oU__. Yl, a locally nilpotent -group G is hypercentral [7, Part
2, p.. 38, Corollary 1] and so every subgroup of G is ascendant. Now G is
generated by its elements of infinite and prime-power order. It is therefore
sufficient to note that if Cp 3 then Cp, . This can be seen by consider-
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ing the wreath product Cp. C,. If Cp. (a) and Cp (b) then a-lba has
order p and so (b, a-Iba), being generated by subnormal subgroups, is an
W-group. But

[b, a] (b, a-ba)

and has order pn. Thus

Cpn-- ([ b, a ]) S,,W= W.

Many of our results will be concerned with the class of polycyclic groups
and it is worth noting the consequences of the above results for that case.

COROLLARY 2.5. Let be a -Fitting class.
(i) If C :, then r -.
(ii) If C :, then contains all finitely generated nilpotent groups.

3. Examples of 6a-Fitting classes

First note that if is a (S, DO }-closed subclass of 6a containing - and
if is an l-Fitting class then ArH 9f is a -Fitting class. Thus our
examples of 6’l-Fitting classes also lead to 9t:-Fitting classes for each 9r.

Example A. Let denote the class of locally nilpotent S/’-groups. Then
.A/" is an 6Zl-Fitting class and if G 6ax, then G is the Hirsch-Plotkin radical
of G. (See [7, 2.3] for details.)

We saw in Section 2 that if Ar is a Fitting class containing C then
contains all locally nilpotent 9tO-groups and so Gr > G. Our results for
Fitting classes Ar with C(Ar) P tA { } will be considerably simplified by
the following result.

THEOREM 3.1. ff G S,a, then G/Gr is a finitely generated abelian-by-finite
group (and hence G/G is polycyclic).

Proof Since an 5al-group is nilpotent-by-abelian-by-finite, we also have
that G/Gr is abelian-by-finite and so only need prove that G/G is finitely
generated.
By Theorem 10.3.3 of [7], G has a normal series

I<R<F<G

where R is the direct product of finitely many quasicyclic groups, F/R is
nilpotent and G/F is finitely generated and abelian-by-finite.
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Let P be the Sylow p-subgroup of R and let

pnPn=12,(P) (x Plx =1}.

Then, for each n > 1, the mapping

Pn+ llPn " Pn/Pn-

is defined by making (Px)p P,_lxe a G-isomorphism. Hence

c,( P le ) e lP )

Writing Cp for CF(P1), we have F/Cp finite since P1 is finite. Let

c=
e,(R)

then F/C is finite and so G/C is finitely generated. Also C is a hypercentral
group and so C < G; hence G/G is finitely generated.
The class of 6a-groups is not dosed under homomorphic images but most

of the difficulties which might arise from this are avoided by the following
Corollary to Theorem 3.1.

COROLLARY 3.2.
5’-group

Let be a i--Fitting class and G 9if, then G/Gr is an

Proof. If C(r) P t3 (o }, then c contains all V’tq off-groups and so

Gr > G so that G/Gr is polycyclic.
If C(r) r

___
P, then Gr is a normal Cernikov subgroup of G and it is

clear that G/G is an 6ax-group.

Example B. Let oe denote the class of temikov p-groups. Then de is an
6a-Fitting class and if G , we shall denote the de-radical of G by Oe(G).

Example C. Let p be a fixed prime. For G 6al, the p-socle of G is

Soce (G) (MIM is a minimal normal p-subgroup of G).

If G has no (minimal) normal p-subgroups then Soce(G) 1. Each minimal
normal p-subgroup is elementary abelian. Thus Soce(G) is an elementary
abelian p-group and is a Cernikov group; hence Soce(G) is a finite elementary
abelian characteristic p-subgroup of G.

We define Cg(p) to be the class of 6al-groups G such that Soce(G) < Z(G)
or, equivalently, each minimal normal p-subgroup is central.
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TI-IEOREM 3.3. Cg(p) is an S/x-Fitting class and if G 6al, then

Proof (I) An ascendant subgroup of a g(p)-group is a Cg(p)-group.

We consider an ascendant subgroup A of an 6al-group G and show that if
A Cg(p) then G if(p). In fact, we shall prove that if A has a non-central
minimal normal p-subgroup Mo then G has a non-central minimal normal
p-subgroup M contained in M0. Our proof is by induction on a the length of
an ascending series

A Ao<l... <IA/<A/+t,... <IA, G

from A to G. We assume therefore that if H<0 K, /3 < a, and H has a
non-central minimal normal p-subgroup N0, then K has a non-central mini-
mal normal p-subgroup M < N0 < N0.

Case (a). a=/3+l.
By the induction hypothesis A0 has a non-central minimal normal p-sub-

group MO < M0. Now MO is contained in the finite characteristic subgroup
So%(Aa)_ of AO and so __Mff is finite. Thus there are elements gl,---, gn of G
such that

and Mff is a direct product of non-central minimal normal p-subgroups of

A0. NowM contains a minimal normal p-subgroup M of G and M contains
a minimal normal subgroup N of AO. Since N is Ao-isomorphic to some M,,
N is non-central in AO. Hence M is not centralized by AO and so it is a
non-central minimal normal p-subgroup of G and M < Mff < M0, as re-
quired.

Case (b). a is a limit ordinal.
Note in this case that all finite ordinals are less than a and so it follows

from our induction hypothesis that if H sn K and H has a non-central
minimal normal p-subgroup NO then K has a non-central minimal normal
p-subgroup M < Nor < N0.

Since Mo is an ascendant p-subgroup of G we have Mo < O,(G) P, say.
Now P is a (ernikov group and so contains a characteristic divisible abelian
subgroup R of finite index. If we let R be the subgroup of R consisting of
those elements of order dividing pi, then R U_tR and Ri, being charac-
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teristic in R, is normal in G. Since R 13i__ 1R i,

Cp(R) Cp(Ri) > R.
i-----1

Since P/R is finite, there is an integer k such that Cp(R) Cp(R).
The subgroup ARk is ascendant in G and, since IARk’A is finite, A is

subnormal in ARk and hence AR has a non-central minimal normal p-sub-
group N<Mo<P. If NRk, then NcqRk=l and so N< Cp(R)=
Cp(R). But Cp(R) is a centre-by-finite group and so is finite-by-abel[an [7,
Theorem 4.12]. Hence Ce(R) is a finite-by-(divisible abel[an) p-group. Then
Na, being generated by elements of order p and contained in the normal
subgroup Cp(R), is clearly finite. If N < Rg, then Na < R is again finite.
We now have an ascendant subgroup AR<IG and a non-central minimal

normal subgroup N of ARk such that N is finite. Suppose that

ARk Ho<I <IH, <I <I H,,, G

Then, by induction, we may assume that each Ha contains a non-central
minimal normal p-subgroup Na < Na < M0.

Since Na is finite there is a cofinal subset I
___

{ fllfl < a} such that, for all
3’ 1, Nv L, say. We now have L<1Hv, for all 3’ 1, and so

L Un,= 

and L is a non-central minimal normal p-subgroup of G contained in M0.
(II) An 6el-group generated by normal c(p).groups is a C(p)_group.
Let G (NIi I) be an 6al-group with each N,. being a normal ff(p)-

subgroup of G. We let M be a minimal normal p-subgroup of G and show
that M < Z(G). For each I, M tq N<1G and so either M N N 1 or
M < N. If M N N 1, then dearly [M, N] 1. If M < N, then by Clifford’s
Theorem, M is a direct product of minimal normal subgroups of N so that
M < Socp(Ni) < Z(Ni). In both cases N/ centralizes M and hence M is
centralized by (N[i I) G.

(III) An S’-group which is the union of an ascending chain of ascendant
( p)-subgroups is a c( p).group.
Let G LI<pA where each A is an ascendant (p)-subgroup of G. Let

M be a minimal normal p-subgroup of G; then M is finite and so contains
only finitely many proper non-trivial subgroups N,..., Nk, say. For each
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1,..., k, there is an a(i) such that N is not normalized by A,(i). For

fl > max(a(1),..., a(k)},

M is a minimal normal p-subgroup of A# and hence [M, A#] 1. It follows
that M < Z(G) and so G (p).

(IV) G,(p)-- CG(SOCp()).
Let C Ca(Socp(G)) and let M be a minimal normal p-subgroup of C.

Then Ma < Socp(G) is finite and so there are elements gl,--., gn of G such
that

Ma Mm x XMg.

is a direct product of minimal normal p-subgroups of C. Let N be a minimal
normal subgroup of G contained in Ma; then N is centralized by C. There is
a minimal normal subgroup L of C contained in N and L is C-isomorphic to
Mg, for some i. Since L < N it is centralized by C and hence Mg, is
centralized by C. Therefore M < giZ(C)g-l= Z(C) and it follows that
C ’(p).

Conversely, let H be a normal Cg(p).subgroup of G and let T be a minimal
normal p-subgroup of G. Then either T A H 1 or T < H. If T A H 1
then [T, H] 1 and so H < Ca(T). If T < H, then it follows from Clifford’s
Theorem that T is a direct product of minimal normal p-subgroups of H.
Since H Cg(p), each of these subgroups is central in H and we again have
[T, H] 1. Thus H centralizes each minimal normal p-subgroup of G and so
H<C.

It should be noted for future applications that since Socp(G) is finite, the
final part of the above theorem shows that G/G(p) is finite.

Example D. Let G 6al; we define G to be a q-(p)-group if and only if
G/Ca(Op(G)) is a p-group, p a prime number. Let ’(p) ’(p) .
Some of the properties of the class -(p) are presented without proof in

Theorem 3.4.

THEOREM 3.4.
finite,

,(p) is a -Fitting class and if G , then Op(G) is

a.(p,-- W where W/C(Op(G)) Op(G/Ca(Op(G)),
and G/G(p) is finite.

This example does not give a Fitting class of 6al-groups. For, let A =- Cpoo
and form the split extension G of A by the infinite cyclic group (x) in which
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x-tax ap+I, for all a A. Then G is the union of the ascendant -(p)-
subgroups A, fn(A)(x) but Op(G)= A and G/C(A)is infinite cyclic.

Example E. The class o of soluble (emikov groups is an 6al-Fitting class.
Furthermore, if r is an o-Fitting class then Ar is also an Yl-Fitting class.
Similarly any Fitting class q of finite soluble groups is a Fitting class of
polycyclic groups.

Example F. Let 5f, be Fitting classes of X-groups and let r3 denote
the class of d-groups G with G/Gr q/. Some difficulties could arise with this
definition if is not Q-closed but for most classes d, these difficulties are
avoided by using Theorem 3.1.

THEOREM 3.5. Let be an (S, Do )-closed subclass of S’t containing
and satisfying either (a) " contains 9 or (b) " is Q-closed.

Then for any d-Fitting classes and q/ with df/’N f’ , the class is
also a Fitting class of :tiC-groups and Gr/Gx= (G/Gr),/.

Proof It is straightforward to prove that an ascendant subgroup of an
rgroup is an rgroup. The hypotheses on d" are required to show that a
-group G which is the join of ascendant rsubgroups Ai, I, is also an
C-group. Since c is a X-Fitting class, G has an At-radical Gr. By Theorem
3.1 or the Q-closure of r, G/Gr X’. Also G/Gr is generated by the
ascendant subgroups AiGr/G, I, and

AiG//G Ai/Ai G Ai/( Ai) a" oft.

Thus G/Gr and G 5f.
Taking 5f q/= V’, we obtain the Fitting class /2 of -groups in which

GIGs. is locally nilpotent. Since 6a-groups are nilpotent-by-abelian-by-finite
we always have GIGs2 finite.

Let r be a Fitting class of 6a-group and let G 6a1. Then G/G by
Theorem 3.1 and G/Gr 6"1, by Corollary 3.2. Thus we can therefore obtain
the following variations of the above construction.

THEOREM 3.6. Let be an S’l-Fitting class. Then:
(i) If V"

_
r and q/ is a 9-Fitting class, then q/ is an 6al-Fitting class.

(ii) If q/ is an 6a-Fitting class, then fq/ is an 6al-Fitting class.
In particular r.(p) is an rex-Fitting class even though (p) is not.

4. Injectors

Let r be a -Fitting class and let G d. A subgroup of X of G is called
an injector of G if X A is a maximal At-subgroup of A for each ascendant
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subgroup A of G. We shall denote the set of injectors of the 3g-group G by

The methods used to prove the existence and conjugacy of -injectors of
finite soluble groups in [2] can be adapted to deal with infinite groups in which
G/Gr is a finite soluble group. The basic result concerning this situation is
given in Theorem 4.3; we then consider separately the cases in which

C(5f)=PU (oo} and C(5f) =r_P.

The proof of the following generalization of Hartley’s Lemma is similar to
the finite case and hence is omitted.

LEM_MA 4.1. Let 5 be a -Fitting class and let G be a --group with a
normal S5-subgroup R such that G/R is finite. Let R < N<IG with G/N nilpotent
and let 14" be a maximal subgroup of N containing R. If V and V2 are
maximal r-subgroups of G containing W, then V and V2 are conjugate in G.

The next lemma, whose proof can be found on p. 193 of [8], will be used in
the proof of Theorem 4.3 and elsewhere in this paper.

LEMMA 4.2. Let SE be a -Fitting class and let G . If W is an
2Y-subgroup of the ascendant subgroup A and W >_ Aer, then WGr

THEOREM 4.3. Let SE be a -Fitting class and let G . If G/Gc is finite,
then G has :?E-injectors and any two S[’-injectors of G are conjugate.

Proof We use induction on IG/Gerl. If G Gr, then G is itself an
injector so we may assume that there is a maximal normal subgroup M/Get
of G/Gr. By induction, M has an injector U. Let V be a maximal
subgroup of G containing U; we show that V is an injector of G.

Let A be an ascendant subgroup of G. If AGer G, let W be a maximal
subgroup of A containing V C3 A. Then by Lemma 4.2, WGr 5. But

and so, by the maximality of V, WGer V. In particular W < V and so
W V A, as required.
We may suppose therefore that AGr < G. Then AG is a subnormal

subgroup having finite index in G. A simple induction argument allows us to
assume that AGr is a maximal normal subgroup of G. By induction AG has
an Y-injector X, say, and so M X is an injector of M AGr. Since U is
an injector of M we also see that U q AGr is an -injector of M c AGr.
The induction hypothesis shows that M X is conjugate to U C AGr and we
may assume that X > U AG. Now X is contained in a maximal sub-
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group Y of G and V is also a maximal subgroup of G with V and Y both
containing the injector U AGr of M AGr. Since G/M AG is
nilpotent we may apply Lemma 4.1 to see that V and Y are conjugate. Thus
V 3 AGr is conjugate to Y 3 AGj: X and so V AGs: is an injector of
AGr. Hence V A is a maximal -subgroup of A.
Now let V, Va be two -injectors of G. Then V q M and V ( M are

injectors of M and so, by induction, are conjugate. We may assume that
V q M V M so that V and Va are maximal subgroups of G contain-
ing the injector V q M of M. By Lemma 4.1, V and Va are conjugate in G.

There are many examples of Fitting classes which give rise to conjugate
injectors even though G/Gr is not always finite. We therefore need to extend
the above result and the generalizations required are different depending on
whether or not Y" contains the infinite cyclic group.

THEOREM 4.4. Let be a --Fitting class with C(Y’) P U {oc} and let
G oU. Suppose that G has a normal subgroup M such that M/Gz: is finite and
M contains all -subgroups of G which contain G. Then:

(i) G has 59f-injectors and any two such subgroups are conjugate in G.
(ii) Inja.(G ) Inja(M ).
(iii) If X Injr(G), then X/Gc is finite.

Proof By Theorem 4.3, M has a unique conjugacy class of W-injectors. It
is clearly sufficient to show that each -injector of M is an 5f-injector of G
and, conversely, that each Y-injector of G is an Y-injector of M.

Let X be an injector of M and let A be an ascendant subgroup of G. If
W is an W-subgroup of A containing X 3 A, then W > X A > Gsr ( A A
and so, by Lemma 4.2, WGr 5Y. By the hypotheses of the theorem, WG < M
and, in particular, W < M A. But M A is an ascendant subgroup of
M and so X A is a maximal Y-subgroup of M A. Hence W X A and
so X A is a maximal Y-subgroup of A. Thus X is an Y-injector of G.

Conversely, let Y be an Y-injector of G. Then Y > Gr and so Y < M. Thus
Y is an injector of M.

The case in which 5f consists entirely of periodic groups essentially reduces
to considering injectors of Cernikov groups. The proof presented here is based
on Theorem 4.3 but requires one further lemma.

LEMMA 4.5. Let 5Y be a -Fitting class and let G be a -group such that
GIGa, is finite. Let

( * ) G Got>Glt>... t>G Bt>l
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be a series for G with B 5Y and Gi_I/G a finite nilpotent group for each
1,..., n. Then V is an Y-injector of G if and only if G q V is a maximal

5Y-subgroup of Gi, for each 0,..., n.

Proof If V is an y-injector of G then since G sn G it is clear that V 3 G
is a maximal Y-subgroup of Gi, for each i.
We prove the converse by induction on n. If n 0, then G B 5f and so

V G is clearly an injector of G. If n >_ 1, then by induction V n G1 is an
injector of G. By Theorem 4.3, G has an injector X, say. Then X n G is
an -injector of G and so is conjugate to V n G1. We may assume that
V n G X G1. Then V and X are maximal Y-subgroups containing the
Y-injector X 3 G of G1. By Lemma 4.1, V is conjugate to X and so is an
y-injector of G.
An easy consequence of Lemma 4.5 is the following corollary.

COROLLARY 4.6. Let be a --Fitting class and let G be a -group such
that G/Ger is finite. If V Injer(G) and V < L < G, then V Injer(L).

THEOREM 4.7. Let be a -Fitting class with C(Sf)= r c P and let
G . Suppose that G has a normal Cernikoo subgroup M such that M
contains all r-subgroups of G which contain Ger. Then:

(i) G has -injectors and any two such subgroups are conjugate in G.
(ii) Injer(G)= Injer(M).

Proof Let S be a Sylow r-subgroup of M. Then S/Ger is finite and so, by
Theorem 4.3, S has an injector X. We show that X is an 5Y-injector of M.

Let A be an ascendant subgroup of M and let V be a maximal y-subgroup
of A containing X A. Then V is contained in a Sylow rr-subgroup T of A.
Now consider

H=(T,SA);

since T/Aer and S A/Aer are finite, H/Aer and hence H/Her must be
finite By Theorem 4.3, H has an 5Y-injector Y. By Corollary 4.6, Y is an
y-injector of some Sylow rr-subgroup of H and so some conjugate of Y is an
y-injector of S q A. But X A is an y-injector of S A and so X A is
conjugate to Y. In particular, X ( A is a maximal subgroup of H and so
X ( A V, as required.

It is now clear from Corollary 4.6 that the injectors of M are just the
Y-injectors of the Sylow r-subgroups of M and hence are conjugate in M.

The proof that the injectors of M are the Y-injectors of G is exactly as in
the proof of Theorem 4.4.
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It is necessary to give a form of this result for Fitting classes of ternikov
groups which is rather different from Theorem 4.4. For, if G is the split
extension of C3 by the automorphism a which inverts each element and if
X (a) then X is an -injector of G with the class of 2-groups. But
Gr 1 and Xa G so that Xa/Gsr may be an infinite group.

Thehypotheses of Theorems 4.4 and 4.7 can be combined to say that M/Gsr
is a Cernikov group. Note that if C , then M is (ernikov. We use
Theorem 3.1 in this formulation of the following improved version of Lemma
4.5.

THEOREM 4.8. Let 3f be a .)f-Fitting class and let G 9U. Suppose that G
has a normal subgroup M such that M/Gr is a ernikoo group and M contains
all 5gr-subgroups of G which contain Gr. Let

M Mot>Mlt>... t>M,, BI>I

be a series for M with Mi_ x/Mi nilpotent, for each 1,..., n, and B Y’.
Then"
(i) V is an Y-injector of G if and only if V is a maximal 3f-subgroup ofMi,

(ii)
(iii)
(iv)
(v)

for each 0,..., n.

If V Injr(G) and V < L < G, then V Injr(L).
The 3f-injectors of G are pronormal in G.
If V Injr(G) and N<G, then G NNv(V (3 N).
If V Injr(G) and H/K is a chieffactor of G, then V either cooers or
avoids H/K.

Proof (i) By Theorem 4.7 and an argument similar to the proof of
Lemma 4.5 shows that V Injr(M) if and only if V is a maximal sub-
group of Mi, for each 0,..., n. We have seen in Theorems 4.4 and 4.7 that
Injr(M) Injr(G) so the result follows.

(ii) Since Gr < V < L we have Gx < Lr. If X is an -subgroup of L
containing Lx then X > Gx and so X < M. Thus every At-subgroup of L
containing Lsr is contained in L N M and L M/Lsr, being a section of
M/Gr, is a Cernikov group. Now L t3 M has a series

L q M L O M0>..->L M L Bt>l

with L Mi_l/L ( Mi nilpotent, for each 1,..., n, and B < Gr < L so
that L ( B B . Since V < L and V ( M is a maximal subgroup of

Mi it is clear that V M is a maximal subgroup of L O M. It follows from
(i) that V Injr(L).

(iii) Let V be an At-injector of G and let x G. Then, by (ii), V and Vx

are injectors of (V, V) and so are conjugate in (V, V).
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(iv) Let x G; then (V N)x Vx N is an injector of N as also is
V N N. Therefore

(VN)=(V’NN)

for some n N and xn -x Nc,(V N). Hence x NNG(V N).
(v) By (iv), G NHG(VO H). Since H/K is abelian, K(V H) is

normalized by H and it is also normalized by N(V H). Hence K(V H)<IG
and so

K(VfqH) =HorK,

as required.

5. Examples of injectors

5.1. ’-injectors.

It was shown in [8] that every 6ax-group has a unique conjugacy class of
rift-injectors. Although the approach used there was rather different from that
used here, an important point in the proof was the introduction of a normal
subgroup N such that N/G is finite and each hypercentral subgroup U
containing G is contained in N. Thus the subgroup N takes the place of M
in Theorem 4.4.
We describe the construction of N briefly. The radical G of the 6a-group

G has a finite series

l=R0< <R,,=G.,.

of normal subgroups of G such that each factor Ri/Ri_ is either torsion-flee
abelian and rationally irreducible or is a (emikov group. The torsion-flee
factors are central in Gr and we define

N f’l{ CG(R,/R,_)IR,/Ri_ is torsion-free}.

To show that each hypercentral subgroup U containing G is contained in N
the key observation is that G/G is abelian-by-finite and so U/G is finite. It
then follows that U centralizes each torsion-free Ri/R_ and so is contained
in N.

5.2. Fitting classes of -groups and 5e-groups.

THEOREM 5.1. Let be a Fitting class of X-groups, where X’_ , and
suppose that C(r) r, a nonempty set of primes. Then there is a polycyclic
group G which does not haoe -injectors.
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Proof There is a prime p such that Cp . Let

A (al) X X,(ap_l)

be a free abelian group of rank p 1 and let X (x) Cp.
extension G of A by X in which

x-taix= ai+ (i= l,..., p- 2),
x-lap_iX at ap --1"

Form the split

(The group G is, in fact, isomorphic to Co
Then, for p :/: 2,

with the centre factored out.)

G,=[A, x] (a{ta2 apl -1
-2ap-1, al

(ala2 a-.-2ap-l
so that G/G’ C Cp. (If p 2, then G (at, x) is the infinite dihedral
group and G’ (al) so that again G/G’ C2 C2.) Thus

(G’,x) and (G’,atx)

are normal subgroups of G containing elements of order p. But the maximal
p-subgroups of G all have order p. Thus an injector of G must be a
subgroup of order p contained in (G’, x) : (G’, atx ). But

(G’, x) N (G’, alx ) G’

is torsion-flee and so G has no injectors.
This means that for any class : containing the class of polycyclic groups

we can reduce our investigation to Fitting classes 5f which contain all locally
nilpotent J-groups. For these classes we have the following elementary but
important result.

LEMMA 5.2. Let f be a -Fitting class such that og’N ,A/’c . If G ,9[r,
then:

(i) G/Gr has an abelian normal subgroup D/Gr offinite index n, say.
(ii) Each r-subgroup U of G containing Gr satisfies [U/Gr[ <_ n.
(iii) Each subgroup of G containing Gr is contained in a maximal W-sub-

group.

Proof. (i) This follows from the fact that 5at-groups are nilpotent-by-
abelian-by-finit and Gr >- Gr.

(ii) Since UND,U we have UtqDW. Also UD<D<G and so
U D _< Gr. Hence [U/Ger[ <-[G/D[ n.

(iii) Follows immediately from (ii).
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This lemma seems to give considerable control over the maximal sub-
groups containing Gr and might give hope that we would always have
injectors in this case. However the construction of Theorem 5.1 can be easily
extended to provide examples of a Fitting class 5f such that 5f

_
ffN lf but

there are -groups not having injectors.

THEOREM 5.3. Let

_
9 and let be a Fitting class of -groups such that

C() r, a non-empty set ofprimes. Then there is a polycyclic group H which
does not have -injectors.

Proof Let G AX be the group constructed in Theorem 5.1. The infinite
cyclic group can be made to act Z-irreducibly on Z Z; for example the
generator may act on the basis elements as the matrix

1 1
1 0)"

By letting each (a g) act on a copy of Z Z in this way we obtain an action of
A on M Z2(-1. Now form the induced representation of G; in this
representation G acts on M (R)zAZG as follows. For each g G, and each
k=0,...,p- 1, there is an aA such that xkg=ax, for some l=
0,..., p 1, and g acts on

M (R)zaZG (M (R) 1) (M (R) x) (M (R) Xp-l)

according to the rule

(m @ xk)g ma (R) x t.

Form the sprit extension H of M M (R)zAZG by G. Then H= M and
the 4"Y’-subgroups of H containing H are just extensions of M by groups
of order p. As in Theorem 5.1, we can show that these are not V’Y’-injectors
of H.

It is clear that an -injector of a group G is a maximal -subgroup
containing G. The existence and conjugacy of Zinjectors is proved in [8] by
showing that the maximal V’-subgroups containing G form a single conju-
gacy class and then showing that these are the f-injectors. As it often happens
in finite soluble groups that the injectors are precisely the maximal sub-
groups containing Gr it seems worthwhile extending this part of the argument
used in [8].

THEOREM 5.4. Let be a -Fitting class containing all locally nilpotent
-groups. Suppose that, in every -group G, the maximal 5Y-subgroups contain-

ing G form a single conjugacy class. Then these subgroups are the f-injectors
of G.
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Proof. Let V be a maximal subgroup of G containing Gr; then by
Lemma 5.2, [VIGor[ is finite. Let A be an ascendant subgroup of G. We show
that V n A is a maximal subgroup of A.

Since V n A is ascendant in V, we have V n A 5f. Consideration of the
subgroups A <_ AGr <_ G shows that we may first suppose that A >_ Gr to
Show that V n AGr is a maximal subgroup of AGr containing Ga (A Ga-)r
and then we need only consider the case in which AGr G.

(I) A >_ Ga.

We have an ascending series

A Ao<... <A,<a <Ap G.

If V A is not a maximal subgroup of A then we take a to be minimal
such that V n A is a maximal subgroup of A. If a were a limit ordinal
then A,, U/ < ,A/ and, since VIGor is finite there would be some 3’ < a such
that V n A V Av. Since V A is a maximal -subgroup of A it would
follow that V n A is also a maximal subgroup of Av, contrary to the
minimality of a. Therefore a- 1 exists and V n A_ is not a maximal
5f-subgroup of A 1.

Let W be a maximal subgroup of A containing V n A_ and let U
be a maximal subgroup of A containing W so that W U n A_1- By the
hypothesis of the theorem, there is an x A such that

u= v nAo.
Then

V nA._ (VnA. )W U n A,_ 1

Since x induces an automorphism of A_ this is contrary to V n A_ not
being a maximal -subgroup of A 1-

(II) AG=G.

If W is an 5f-subgroup of A containing V n A, then by Lcmma 4.2, WG is
an subgroup and WGr >_ (V n A)Gr V. By the maximality of V, WGr
V. But then

WGa.n A >_ W >_ V n A WGa.n A

shows that W V A.
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5.3. (p)-injectors.

We saw in Section 3 that G/Gep) is finite for any 6"l-group G and so, by
Theorem 4.3, every S’l-group G has cg(p)-injectors and any two such sub-
groups are conjugate in G. To identify the Cg(p)_injectors of an 6al-group G
we actually describe the maximal C(p)-subgroups of G containing Ge). We
shall see that these subgroups are conjugate and so are the Cg(p).injectors of
G. This can be considered as a consequence of Theorem 5.4 or we can use our
knowledge that the C(p)_injectors are conjugate to deduce that the two sets of
subgroups coincide. Most of the ideas used in the proofs of the following three
lemmas may be found in [5] and hence will be omitted.

LEMMA 5.5. Let G be an SOl-group and let C Ge,) Co(Socp(G)). Then"
(i) C Co(P), where P Socp(C).
(ii) If C < H < G, then Soce(H) < P,
(iii) If C < H < G and H CO(p), then Soc,(H) Cp(H).

LEMMA 5.6. Let G,(,) C < H < G 5a1, H CO(p) and let TIC be a
Sylow p-subgroup of the finite group H/C. Then Sock(H) Ce(H) Ce(T).

LEMMA 5.7. Let Gee) C < H < G 5al
Co(Socp(H)) re(p).

and H CO(p). Then

THEOREM 5.8. Let G 5’ and C Gep Co(Sock(G)).
(i) The maximal C(p)-subgroups of G containing C are the subgroups

Co(Ce(S)), where S/C is a Sylow p-subgroup of G/C.
(ii) The maximal C(p)-subgroups of G containing C are the C(p)-injectors

of G.

Proof. (i) By Lemma 5.5(i), C= Co(P) and so co(Cp(S))> c. We
show that Co(Ce(S)) is a C(p)-group. By Lemma 5.5(ii), Sock(S) < P and so
C centralizes Soc,(S). Now S/C is a p-group and so S induces a p-group of
automorphisms on Socp(S) and hence Socp(S) is central in S; that is,
S W(p). It follows from Lemma 5.5(iii) that Socp(S)= Ce(S) and now
Lemma 5.7 shows that Co(Ce(S)) CO(p).

Conversely, let H be a C(p)-subgroup containing C. Let T/C be a Sylow
p-subgroup of H/C and let S/C be a Sylow p-subgroup of G/C containing
T/C. Then

Co(C,(T))
<_

since H

by Lemma 5.6

since Ce(S ) < C,(T).
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(ii) By Sylow’s Theorem it is dear that the maximal (p)-subgroups
containing Ge(p) are always conjugate and so we may apply Theorem 5.4 to
deduce that these subgroups are the Cg(p).injectors of G.

5.4. -(p )-injectors.

We saw in Example D of Section 3 that if G then

where W/Ca(Op(G)) 01,(G/C(Op(G)).

In this case we are again able to identify the maximal -(p)-subgroups
containing G() and so obtain a characterization of the -(p)-injectors by
using Theorem 5.4. These facts are contained in the next theorem whose proof
we omit.

THEOREM 5.9. Let G be a polycyclic group.
(i) A subgroup T containing G(p) is an o(p)-group if and only if

is a p-group.
(ii) G has a unique conjugacy class of ’(p)-injectors. They are subgroups V

where V/Co(Or(G)) is a Sylow p-subgroup of G/Co(Op(G)).

5.5. A3C-injectors.

TaEOREM 5.10. Let be an (S, DO }-closed subclass of 6’ containing
and satisfying either (a) ,;tr contains or (b) is Q-closed.

Let and 2/be oU--Fitting classes containing 4/’n and let G oU. Then
the subgroup V of G is an Y"injector of G if and only if V > Ga- and V/Ga- is a
/-injector of G/Gr.

Proof Let K Grr so that K/Gr (G/Ge) and let H > K.
(I) Ha. Ga-.

Since K<IG, [K, Ha-]<KOHa-s,Sf=. Also Ga-<K<H and so

Ga- < Ha-. Thus Ga- < K n Ha-. But K/Ga- is a hypercentral group and so
K n H asc G. Therefore K n Hr < Ga- and we have K n Ha- Gr.
Hence [K, Hr < Ga- and so Ha- < C(K/Ga-) < K. But this means that

Ha- K n Ha- Ga-

(II) H - y’o if and only if

This follows immediately from (I).

(III) If V/Ga- is a -injector of G/Ga-, then V is an Y’Y/-injector of G.
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It follows from (II) that V Y’q/. Let A be an ascendant subgroup of G.
Then

AGr/Gr asc G/Gsr

and so V n AGr/Gr is a q/-injector of A Gr/Gsr. Since Asr A Gsr we have

and V n A/A is a q/-injector of A/A. Since ,W’n .gg’c q/, (G/G) <_ V/G
and so K_< V and Arv=KcqA_< VC3A. If VCqA is contained in an
Y’otd’-subgroup U of A, then by (II), U/A 2/ and, since V A/A is a
-injector of A/A, we have V 3 A U is a maximal 5fq/-subgroup of A.

(IV) If V is an W-injector of G, then V/Gsr is a q/-injector of G/Get.

Certainly V >_ Gr >- Grw and so it follows from (II) that V/G 2/. Let
A/G be an ascendant subgroup of G/Ge. Then A asc G and so V n A is a
maximal Y’q/-subgroup of A and V 6 A >_ K A Ar. If Y/Ge is a
q/-subgroup of A/G containing V AlGa, then by (II), Y is an 5f-sub-
group of A containing VC3A and so Y= VA. Thus VA/G is a
maximal q/-subgroup of AlGa.

Let oU be an (S, DO }-closed subclass of 5al containing " and satisfying
d_ or oYd" is Q-closed. Let and q/ be -Fitting classes containing
4/’q . Theorem 5.10 gives a correspondence between 5Y3t-injectors of G,
G d, and 3t-injectors of G/G. In particular, G will have conjugate
5f-injectors whenever G/G has conjugate q/-injectors. This correspondence
also enables us to give simple characterizations of some injectors. For exam-
ple, using Theorem 5.10 and Theorem 3 of [8] it is easy to see that the
V’2-injectors of an 5ax-group G are the maximal ,V’Z-subgroups of G contain-
ing. G.

Using Theorem 3.6 we can obtain the following variation of Theorem 5.10.

THEOREM 5.11. Let be an S’l-Fitting class.
(i) Let c and let be a #-Fitting class such that every -group has a

unique conjugacy class of injectors. Then every 6"-group has a unique conju-
gacy class of WW-injectors.

(ii) Let 2 be an S’l-Fitting class such that every 6al-group has a unique
conjugacy class of W-injectors. Then every 6-group has a unique conjugacy class
rq-injectors.

The interesting point in the first part of Theorem 5.11, of course, is that
need not even be a Fitting class of 6al-groups. For example, we could take

= -(p) to obtain .W’o’(p)-injectors of any rgroup. In the second part of
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Theorem 5.11, no assumption is required about the existence of At-injectors.
For example, it shows that every 6al-group has conjugate df-injectors al-
though d-injectors need not exist by 5.1.

6. Fitting classes of -groups and -groups

The condition in Theorem 4.4 requiting the existence of a finite normal
subgroup M/Gr of G/Get such that M contains every At-subgroup of G which
contains Gr seems to be a very strong hypothesis. Our main result in this
section is that a condition of this type is in fact a consequence of the existence
and conjugacy of &r-injectors.
We consider only classes which contain . We have already made one

important reduction in Theorem 5.1 which says that if every -group has
At-injectors then At___ ,)[rn V’. It follows that Gr > G, so that, by Theorem
3.1, G/Ga is a finitely generated abelian-by-finite group and each At-subgroup
containing Gr is a finite extension of Gar (Lemma 5.2). We begin by showing
that if Ar is a -Fitting class which leads to existence and conjugacy of
AC-injectors then we can characterize the At-injectors in a similar way to Lemma
4.5. In that result we had G/Gsr a finite group and could take a finite series of
G/Gr with nilpotent factors. In the situation considered here G/Get is (free
abelian)-by-finite. Thus any C-group G has a series

G Got>Glt>"" t>G At>Art>l (*)

such that Gi_ I/Gi is cyclic of prime order, for each 1,..., n, and A/A is
free abelian of finite rank. The natural way to construct the series (,) is to
take a free abelian subgroup AlGer of finite index in G/Gr but for the
purposes of our proof we require the slight variation given above.

LIMMA 6.1. Let be an (S, DO }-closed subclass of 6e containing and
let r be a -Fitting class such that every -group has a unique conjugacy class
of -injectors. Then a subgroup V of the -group G is an -injector of G if and
only if G has a series (,) such that V > Asr and V n G is a maximal
-subgroup of Gi, for each 0,..., n.

Proof We use induction on n and the rank of A/Ax.

If V is an injector of G then it is clear that V >_ Gx >_ Ax and that
V G ig a maximal At-subgroup of each subnormal subgroup G for any
series (,).

Conversely, suppose that G has a series (,) with V >_ Ax and V N G a
maximal -subgroup of G for each i.
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If n 0, then G A so that V Gr Ar is an -injector. So we may
assume that n > 1. By induction on n, V G is an C-injector of G. Let X
be an 5f-injector of G; then X (q G is an injector of G and so is conjugate
to V n G1. We may assume that X c G V N G1. Now V N A is an
r-injector of A and V tq A,A. Hence V A Ar and so V/Ar is finite.
Similarly X A A and X/Ar is finite.
Now V N GI<V and V N G X f3 GI<IX so that V, X <_ NG(V q G).

The subgroup N NG(V N G) has a series

N=N Go,...,N G,=N

with

(N N G,_x)/(N G,) (N 0 Gi_I)Gi/G

cyclic of prime order or trivial,

(N n A)/A:< A/Aa.

free abelian and Aa.= (N n A)a.. Since V cl G is a maximal f-subgroup
of Gg and V cl G < N cl G it follows that V N Gg is a maximal -sub-
group of N Cl G, for each 0,..., n. Similarly X cl G is a maximal
5Y-subgroup of N cl G, for each 0,..., n. Also V> (N Cl A) and
X > (N n A)r.

Suppose that AN < G; then IN/(N G,)I--INA/AI < IG/G,,I and so
there is some collapse in the series (, ,). By induction on n, X and V are
injectors of N. Thus V and X are conjugate (in N) and so V is an C-injector
of G. We can therefore assume that AN G.

Suppose that A/(A q N) is infinite; then

r((A fl N)/(A (1 N)) < r(A/A)

and so, by induction on r applied to the series (, ,), V and X are again
injectors of N and, as above, we can deduce that V Injr(G). Therefore we
may assume that AN G and A/(A N) is finite.

Since (V G) A Ar, we have

N.,/..(V n n

and so

(ANN U (V n G1)/A.-- C 4/A (V n
<_ Z(A(V n
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Since A/(A c3 N) is finite, this means that A(V c3 G)/Aer is central-by-finite
and hence the set of elements of finite order in A(V C3 G)/Aer forms a finite
normal subgroup T/Ar. Since A/Aer is torsion-free we must have T c3 A A
and hence T V C3 G1. In particular, V C3 G<IA(V C3 G1) so that N > A and
therefore, since AN G, we have N G. This means that V c G X c3 G
is a normal -subgroup of G and V G (G).

Write H (G) so that V G X G H is the unique W-injector
of G1. If X _< G then H is a maximal -subgroup of G and V X is an
y-injector of G. So we may assume that V and X properly contain H. Then

(1) G/G V/H X/H -= Cp for some prime p.

Now let S be any ascendant subgroup of G; we have to show that V ( S is
a maximal 3Y-subgroup of S. Since H is the unique injector of G1,

SNH=So VNG

is the unique :g-injector of S ( G1. If S _< G1, then V ( S is an y-injector of
S and so we may assume that SG G. By (1), S/(S ( GI) Cp. Let W be
a maximal subgroup of S containing S 3 V; then W ( G S N H and so

IW/(S H)I p or 1.

If I(S V)/(S H)I p, then S N V W is a maximal y-subgroup of S.
We may therefore assume that

(2) S C V= S Cq H and so SH cq V= H(S C3 V) H.

By (1), IX/HI p, and hence either X < SH or SH X H. If SH q

X H, then S q X S ( H is an Y-injector of S. By (2), S N V S q H is
a maximal Y-subgroup of S. Hence we may assume that

(3) X <_ SH.

Since G/H G./(G1) is polycyclic by Theorem 3.1 and G/GI Cp,
G/H is polycyclic and hence SH is subnormal in G. Thus we have a finite
series

SH Sm<a... <Sx G.

By (1), IV/HI =p and so there is an integer k such that V < S_x but
S, c3 V H. Since S, > H, Sk_/S, is polycyclic and hence residually finite
[7, Corollary 2 to Theorem 9.31]. Therefore there is a normal subgroup M/S,
of finite index in S,_ x/S, maximal with respect to M c3 VS S, and hence
Me3 V=H. By(3), X<SH<Sk<Mandsowehave:
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(4) X < M<Sk_ 1, Sk-1/M is finite, M (1 V H and if M < N,Sk_
then V _< N.

Since M > X, we have MGI G and so

M(Sk_ (3 G) Sk_ , M ( G < Sk_

and

Sk_l/(M n G1) (M/M n G1) X (Sk_ n G/M n G).

Let K/M be a minimal normal subgroup of Sk_I/M. By (4), V < K. Since
H < V, it follows from (1) that K/M is an elementary abelian p-group. Thus

K/(M n O) (M/M n O) x (K n GIlM n

is an elementary abelian p-group and

V(M Cl GI)<IK<ISk_ 1.

Since X is an -injector of Sk_ , X n V(M tq G1) is a maximal f-subgroup
of V(M c3 G). But

x n V(M n G1) X n M fl V(M n G1)
X (1 (M V1 V)(M n

X M M Cl GI X M G H

and H < V _< V(M ( G1). This final contradiction completes the proof of the
lemma.

COROLLARY 6.2. Let )U be an { S, Do )-closed subclass of 5Vl containing
and let be a ;--Fitting class such that every -group has a unique conjugacy
class of f-injectors. If V is an f-injector of the -group G and V < L < G, then
V Inj(L).

Proof Intersecting the series (.) with L, we obtain the series

L L t"l Got>L n Glt> t>L (3 G L n At>Aert>l.

For each 1,..., n,

(L n Gi)/(L n Gi_l)
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is either trivial or cyclic of prime order,

( I c A)/A <_

is free abelian and since L N A<A, we have Ar= (L N A)r. Since V tq G is
a maximal subgroup of G and V < L it is clear that V (L C Gi) V Gi
is a maximal subgroup of L C G, for each 0,..., n, and so, by Lemma
6.1, V is an injector of L.

THEOREM 6.3. Let Of" be an (S, Do)-closed subclass of 5" containing
and let Y" be a -Fitting class such that every -group has a unique conjugacy
class of 5gr-injectors. If X is an Y-injector of the Of-group G, then

(i) X/Gsrisfinite,
(ii) Injsr(G) Injsr(X).

Proof Let Y XG. Since Y<IG, X is an -injector of Y. Further, Injr(Y)
is a unique conjugacy class of subgroups and hence Y XY.

Since G/Gr is abelian-by-finite, Y/Gar has a free abelian normal subgroup
AlGer of finite index. We use induction on IY/AI and ISrael. If either IY/AI
or S/aerl is 1, then Gr X Y.

If AX < Y, then by Corollary 6.2, X is an Y-injector of AX. Since
IAX/AI < IY/AI, the induction hypothesis shows that IXx" X is finite. Let
F x’X; then F/Gr is finite and so F A Gr. Therefore F X and so
X<IAX. Therefore C,(A/Gr) > X. But A/Gar<IY/Gr and so C,(A/Gr) >
XY Y. So A/Gsr is contained in the centre of Y/Get. In the central-by-finite
group Y/Ger, the elements of finite order form a finite normal subgroup
T/Gr. The finite subgroup X/Get is contained in T/Get and hence Y XY=
T so that Y/G is finite.
So we may assume that AX Y. The finite soluble group X/Gr contains a

maximal normal subgroup M/G such that X/M =- Cp, for some prime p.
Then AM<IY and so X tq AM M is an injector of AM. Since AM<IY<IG,
we have (AM)r= Gr. Since

IM/(AM )1 < g/al,

MAt/Ger is finite. Since A/Ger is torsion-free, M’4tO A Gr and so
MAM= M. It follows that M<AM<IY<IG so that M is a subnormal Y-sub-
group. Thus M Gr and AM A so that Y/A =- X/Gsr =- C,.

Suppose now that the free abelian normal subgroup A/Gar of Y/Ga; is
non-trivial and let B/Gr (A/Gr)P<IY/Ger. Then A/B is non-trivial and
Y/B is a finite p-group of order greater than p. Therefore XB/B =- Cp is a
proper subgroup of Y/B and so there is a normal subgroup K of Y such that
XB < K < Y, contrary to X’= Y. This contradiction shows that A/Ger is
trivial and so Y/Gr is finite.
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The main deficiency in this result is that we are not able to obtain
information about all the maximal subgroups containing Gr so that it
cannot be considered as a complete converse to our Theorem 4.4.

Acknowledgment. The authors would like to thank Dr. Martyn Dixon for
several stimulating letters while part of this work was being done.

REFERENCES

1. B. FISCHER, Klassen konjugierter Untergruppen in endlichen aufl6sbaren Gruppen, Habilitation-
sschrift, Universitit Frankfurt am Main, 1966.

2. B. FISCHER, W. GASCHiz and B. HARTLEY, Injektoren endlicher aufl6sbaren Gruppen, Math.
Zeitsehr., vol. 102 (1967), pp. 337-339.

3. A.D. GARDINER, B. HARTLE and M.J. TOMKINSON, Saturatedformations and Sylow structure

in locally finite groups, J. Algebra, vol. 17 (1971), pp. 177-211.
4. T.O. HAWKES, "Finite soluble groups" in Group theory-essays for Philip Hall, Academic Press,

San Diego, Calif., 1984, pp. 13-60.
5. F.P. LOCKETT, On the theory of Fitting classes offinite soluble groups, Ph.D. Thesis, University

of Warwick, 1971.
6. A.I. MAL’CEV, On certain classes of infinite soluble groups. Mat. Sb., vol. 28 (1951), pp.

567-588; Amer. Math. Soc. Transl. (2), vol. 2 (1956), pp. 1-21.
7. D.J.S. ROBINSON, Finiteness conditions and generalized soluble groups, Parts and 2, Ergeb-

nisseder Math. 62 and 63, Springer-Verlag, Berlin, 1972.
8. M.J. TOMKINSON, Hypercentral injectors in infinite soluble groups, Proc. Edinburgh Math. Soc.,

vol. 22 (1979), pp. 191-194.

UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY

KARLSTRASSE 69
FREIBURG, WEST GERMANY

UNIVERSITY OF GLASGOW
GLASGOW, UNITED KINGDOM




