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STEVEN BLOOM AND GERALDO SOARES DE SOUZA

1. Introduction

In this note we introduce new function spaces denoted by B(O) and B
where O is non-negative, non-decreasing, tg(0) 0 and #(t)/t is in LI(T), the
Lebesgue space L with T the perimeter of the unit disk in the complex plane
and w a weight which will be in some of the class Ap, 1 < p < .
For w a weight, we say b is a weighted special atom if b(t) 1/2r or if

there is an interval I
_
T with left and right halves L, R such that

1b(t) w(I) [X(t) X(t)]

where w(I) fw(x)dx. Then we say f B if there are weighted special
atoms b such that f(t) Y’.nocnbn(t ) with Y-01cl < . Bw is endowed
with the norm Ilfll. infE_-olcl, where the infimum is taken over all
possible representations of f, which becomes a Banach space.

In the definition of weighted special atoms above, if we replace w(I) with
(1II), where p is as above, then this new space will be denoted by B(p).
The spaces B(O) and B will be called weighted special atom spaces.
Notice that for particular w and O, the spaces Bw and B(O) coincide with

those spaces defined in [2],[3],[4],[5]; for example O(t)= 1/p for 1/2<p <, B(p) Bp.
We would like to mention that B(t) for some O is the real atomic

decomposition of some well known Besov-Bergman-Lipschitz spaces; for
example for p(t) / and 1 < p < , B(p) is equivalent as a Banach space
to the space of those real valued functions for which

fo:f2’If(x) f(Y)l
0o Ix yl 5--T?-7 dx dy < o.
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182 STEVEN BLOOM AND GERALDO SOARES DE SOUZA

This space is known as Besov space. Also for the same p, B(p) is the boundary
value of those analytic functions F for which

1 fo2’ lF’(re ia) [(1 r)1/p-1 dO dr < oo

see [4], [5], and [15] for these results.
One of the main results of this paper is that for some p, B(p) is the real

characterization of those analytic functions in the disc for which

ff-:lF,(re,O) O(1 r) dO dr+o"o 1-r

which is a generalization of an earlier result (see [4] and [5]).
We point out that for p(t)= t, B(p) is properly contained in the Hardy

space n in the disc and that B(p) is contained in all the nontrivial H, H is
defined in [17]. Recently in [7], it has been shown that there is an f in B(p) so
that its Fourier series diverges almost everywhere and B(p)

_
H. It follows

that for all q, H has a divergent Fourier series.
In these notes we give some accounts of these spaces; in particular we show

some properties which lead to the computation of the dual spaces. We also
show an interpolation theorem for operators acting on these spaces into the
Lorentz spaces.
To make the presentation reasonably self-contained, we shall include a

resume of pertinent results and definitions.
Throughout this paper, the constant C may not be the same in every

occurence.

2. Preliminaries

DEFINITION 2.1. Let

1 ff(x) dxI(f)

Then we say that a non-negative function w, which we call weight, is in the
class A, for 1 < p < o if and only if I(w)I(wl/(1-P))1- < M, where M is
an absolute positive constant.
We define A as follows: w A if SUPxiL(w) < Cw(x) a.e. where C is

an absolute constant. Notice that A c_ [’)p>A. Define Aoo as follows:
w Aoo if for all measurable sets E c T, there is a i > 0 such that



ATOMIC DECOMPOSITION 183

where C is an absolute constant and the bars mean the Lebesgue measure.
Then w ADo if and only if w (ix < v<ooAp
Muckenhoupt introduced Ap weights in [10] and has contributed a lot to the

theory of Av weights.
Suppose p(t)/t is in the Lebesgue space LX(T). Let t(t)= f)p(s)/sds.

Then we say p is Dini if o(t) < C#(t).

DEFINITION 2.2. We define the weighted Lipschitz class by

A,()
(g- T R, continuous, g(x + h) + g(x h) 2g(x) O[p(2h)] }.

The A,(p) norm is given by

IlgllA,) sup
h>O,x

g(x + h) + g(x- h) 2.g(x
o(2h)

Similarly we define A,w for w ADo by replacing o(2h) with w([x- h,
x + hi).

Notice that for O(t) t, A,(#) is the Zygmund class and for O(t) we
have the Lipschitz class for 0 < a < 2.

3. Some properties of B(p) and B

In this section we state and prove some properties of the spaces B(p) and
B

LEMMA 3.1. Let I be an interval in T. Then"
(i) Ilxtllw < CIII for some 0 < i < 1 when w ADo.
(ii) If p(t)/t L1, let o(t) fo(s)/sds. Then

IIx,llno)-< C[llI x/2 + o(lllX/2)]

Proof For simplicity, we will treat Zl as 1, rather than 2rr.
(i) Suppose first that I [0, 2-u]. Let

I [0,2x-u], I [0,2:z-u], I [0,23-N],..., I,, [0,2"-Ul

and IN=[O,1]= T.
Define L and R. as the halves of ln, and let

,.(t) x,.(t)
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Let g(t) N 1-En_l2 non(t ). Then 1 + g(t) 2Vx/(t), so we have

N

(3.2) x, + E
n=,l

By the Aoo condition, there exists a 8 > 0 with

w(J)
_<c

for all E measurable sets contained in the interval J. At the expense of some
sharpness, but no more, we can take < 1. In particular, we have

Let

w() <_ Cw(T)l_l <_ C2

1bo(t)=l and bn(t)= W(in)qn(t).
Then b are weighted special atoms and (3.2) becomes

N

X,(t) 2-Vb0(t) + E 2-nw(In)bn(t)

Hence,

N

N

< 2-v + C 2-n2n(n-u)
n-1

< 2- + C2-m

< C2-m

cIII.
By rotation, this holds whenever III 2 -v. Next, if I [0, fl] for fl T,

then fl E=lci/2 where c 0 or 1. Therefore [0, fl] EiIi, with I an
interval of length c/2, so that Xto,#l(t) < E=Xz,(t), and hence

Ilxzll-< 1= 7
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Let N be the first integer with CN : 0. Then 2-N < fl < 21-N and

iffiN i=N

or IIxlIB CllI .
Finally, for an arbitrary interval I [a, a + fl], simply rotate T, treating T

as [a, a + 1], taking the I’s in (3.2) as [a, a + 2n-N].
(ii) In (3.2), let bo(t ) 1 and bo(t)=(t)/p(2"-s). The b’s are

weighted special atoms and

N

X, 2-Vbo(t) + Y’. 2-"p(2"-U)b,(t).
n--1

Arguing as in (i), we suppose III fl EnlC,2 where c, 0 or 1 and
Cs 1. Then - Ck 2-kbok + E 2-’0 )b,(t)

k--N n=l

where the bn’s are weighted special atoms, and

E 2- + E 2-’P(2"-)
k=N n=l

o k

< Cfl + E E 2-’p(2"-)
k=N n=l

This double sum is

o k-1 N oo

E E 2"-P(2-") E 2raP(2-m) E 2-+
k=N m=0 m=0 k=N m=N+l

2mp(2-’) E 2-
k=m

so we must estimate

N

(3.3) 2-N E 2"#(2-")
m=O

and

(3.4) ’ p(2-m).
m=N+l
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It is quite easy to show (3.4):

E #(2-) -<C E
"2m=n+l m=N+l

_< Cfo- o ( dt _< co(/3).

For (3.3),

N N

2-v E 2"0(2-")= 2-v o f22-"22"(2-")dt
n=0

C2_lv p(t)
dt + dtt2 2

<- Co(v) + c2-uo(2)f 1

_<

Keeping in mind that/3 < V/-, (ii) follows.
The next result is a duality pairing between the weighted Lipschitz spaces

and the weighted special atomspaces.

THEOREM 3.2 (H61der’s Inequality). Iff X and g Y then

rnf/(t)g;(t)dt -< Ilfllx" IlgllY

where X B(p) or Bw, Y A,(p) or A,w respectively, g P g is the
Poisson integral of g and the prime means derivative.

Proof Let us restrict ourselves to X B(p) and Y A,(p). We have

1f(t) p(2h)[X"o+h’ol (t) Xto-,xo](t)]

In fact, we have

lim f/(t)g’(t) dt
1

r-l o(2h) [g(xo + h) + g(xo -h)-2g(xo)]
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and thus by definition of the A,(p)-norm we get

h/l’n f/( ) g; ( ) dt

From this it follows that the theorem is true for a finite linear combination
of weighted special atoms and consequently the extension for any f B(p) is
trivial.
The proof for X B and Y A,w is similar.

COROLLARY 3.3. Iff X and g Y, then

[[gllr= sup
lifll x-< 1 h/ml f/( ) g; ( ) dt

Proof Again let us take X B(p) and Y A,(p). Then for

1
f(t) p(2h)[ x(xo+h’xol(t) XIx-h’xl(t)]’

notice that Ilfll (o) < 1 and consequently

sup
[[flltO,) < 1

lim f/(t)g;(t) dt
rl

g(xo+h) +g(xo-h)-2g(xo)
p(2h)

which implies

sup
II/IIB-<I h/rn f/( ) g; ( ) dt >- Ilgll

Combining this with Theorem 3.2 gives the desired result.

4. Duality

Consider the mapping q)g: B(p) R defined by

with g a fixed function in A,(p) and gr as before. One can easily see that g
is a linear functional on B(p). Moreover, Theorem 3.2 (H61der’s Inequality)
tells, us that ]qg(f)[ _< ]lg]lA,(p)]lf]]s(p), and therefore qg is a bounded linear
functional on B(p). The same situation holds for g fixed in A,w and f in Bw.
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In this section we show that indeed A.(O) generates all the bounded linear
functional on B(#), similarly for B and A.w-

In this paper X* will denote the dual space of X, that is, the space of all
bounded linear functional q on X with the norm

IIq, II sup I(f)l.
Ilfllx<

THEOREM 4.1 (Duality Theorem). If k B*(O) (or Bw* ) there is a g
A.(O) (or A.) so that rk rkg; that is,

(f) r-llim f/(t)g’r(t) dt for allf B ( O ) (or Bw )

where gr is as before. Moreover IIqll IlgllY, where Y= A.(O) or A.w.
Conversely if

q’(f) ,llim f/(t)g’r(t ) dt forf B(O) (or Bw)

then k B*(p) (or B*). Furthermore the mapping k" A’. A defined by
k ( g’) rkg, A B*(p ) (or Bw* ) is an isometric isomorphism, where p is

increasing, p(O) O, and p(t)/t LI(T), w A.

Proof Again we restrict ourselves to the case B*(p). If

q(f) r-llim f/(t)g;(t) dt for f B(p),

then we already have seen that Theorem 3.2 implies that q, is a bounded linear
functional, that is, q, B*(p), so it remains to prove the other direction. In
fact, let q B*(p) and define g(s) q’(Xto, sl) for s [0,2rr]. Observe that

g(s + h) g(s) rk(X(s,s+h] )

and thus Lemma 3.1(ii) (in the case of B we use (i) and the boundedness of q,
tells us that g is continuous. On the other hand,

+ h) + h)
p(2h)

1

o(:h)

Consequently by the boundedness of q, we get

Ig(s + h) + g(s- h) 2g(s)l _< IIq, llp(2h),

so that Ilglla. < oo and therefore g A,(p).
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Notice that lim,__,lg, g uniformly where g as before. So

qb(Xto, sl) g(s)= limg,(s)= lim g[(t) dt
r-*l r

to, s](t)g;(t) dt.

Therefore if 1 is any interval in T, it follows that

c(XI) rllim frx,(t)g;(t ) dt.

Consequently if b is any weighted special atom we have

qb(b) r--*llim frb(t)g;(t) dt,

and so the functional representation for B(p) is proved for weighted special
atoms and therefore for a finite linear combination of them. Thus the exten-
sion for any f B(p) is trivial.
We have proved that given B*(p) there is a g in A,(p) such that

qbg; moreover, Corollary 3.3 tells us that I111--IlgllA,) and so by
definition of A’,(p) { g’: g A,(p)} it follows that the mapping : A’,(p)
-o B*(p) defined by k(g) qbg is an isometry, and so the duality theorem is
proved.
We point out that the concept of derivative that is being used in A’,(p) is

the general notion given to us by the theory of distribution. That is, we say
g’ h if

frg( ) ’( ) dt -fTh(t)/(t)dt
for all infinitely differentiable functions k on T. Integration by parts shows us
that this is indeed the relation that we would expect if g has continuous
derivative, and g’ h has the usual meaning.

See [2], [3], [4], [6], for the unweighted case where p(t) 1/p for 1/2 < p < o.

5. Interpolation theorem

In this section we present a theorem on the interpolation of operators acting
on the weighted special atom spaces into the Lorentz spaces. In order to state
it we need some definitions.

Let f be a real valued measurable function on T. For y > 0 let

m(f, y) m(lfl, y) =[(x T, If(x)l > y)l-

m(f, y) is called distribution function of f, means the Lebesgue measure
on T. m( f, y) is non-negative, non-increasing and continuous from the right.
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By f* we mean the decreasing rearrangement of f, which is defined as

f*(t) inf(y; m(f, y) < t}.

A linear operator T: X Y is said to be bounded if

II TII sup (11Tfll

We shall say that a measurable function f belongs to the Lorentz spaces
L(p, q) if

[qfo tl/P)qt] 1/q

[[fllpq -’ ( f*(t) < o

for 0 < p < c, 0 < q < o where f* is the decreasing rearrangement of f
and, for q c, the space L(p, c) is well known as weak LP-space. Equiva-
lently, f belongs to L(p, ), if there exists a positive number A such that

m( f y) < O<p< oo.

Notice that L(p, p) is the usual Lebesgue space L’; also Ilfllpq is not a
norm, since the triangle inequality may fail. However, one can find a norm
equivalent to Ilfllpq under some restrictions on p and q, and thus for those
values, L(p, q) becomes a Banach space.

DEFINITION 5.1. We say that an operator is p-restricted weak type r if for
any interval I c [0, 2r] we have

(TxI)*(t) <_M(21II)
tl/r

where the * means the decreasing rearrangement of TXI, M is an absolute
constant and p is a non-negative function with p(0) 0.

Now we are ready to state the following interpolation for operators.

THEOREM 5.2. Let T be a linear operator such that T is tk-restricted weak
type Px with constant M and also is +-restricted weak type P2 with constant M2.

Then for ( t ) ka( ) a( ), T: B(p ) L ( p, q) boundedly with

II Zfll .<p,q) CMM-tllfll<)
where

1 1-t, P2 < P < Pl, q > 1.
P Pl P2
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C is an absolute constant depending only on p, q, Pl, P2 and

1 1) 1 1
a
P Pt P Pl

Proof. Let f be a weighted special atom, that is

1f(t) P(Iil)[XL(t) Xn(t)],

where L and R are the left and right halves of I and ILl IRI 1II/2.
Now since T is and restricted weak type Pl and P2 respectively we get

(1II) and (Tf )*(t) < M2
6(1II)(5.3) (Tf )*(t) <_ M1 p(lii)tl/p p(lii)t/v

We now evaluate

We have

Pllzfllqpq fo[(Tf )*(t)tl’] qdt

q t"

p__llTfllpqqq fo[(Tf),(,)tl/p]qd_ q- f[(Tf),(/,)tl/,p]q dt

P (1 i )
q/p q/Px--1 dt

+M 0(1II) dt by

M[ q’(lII) ]
q

PP q(Pl-P)/PPl

(1II) q(px p) o

(1II) 1 q PP2+ p(llI) ] q(p p2) o

As o is arbitrary we may take

M [ ([I[) ]
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where M is a constant that we will determine later. Thus we get

P--II Tfll,q < AMq q,(llI) (q/P)’(’-’)/(P-’)

q ;’(]’i-i’’q
[(1II)] q[1-(p2)/p/(pt-p)/(pl-p2)]. Mq(px-p)/ppl

+BM +(1II) (qP’/P)(P-Pz)/(P’-P:)

[,(1II) q[l+(pl/p)<p2-p)/<pl-p2)]. Mq<p2-p)/pp:

where

A PPl PP2
q(p_p) and B= q(P -P2)

Notice that

P2 Pt P Pt P2 P
P Pt-P2 P P-P2

SO

Since

P__ P P_____L2 1 P2 P P
P P P2 P P P2

and

/92 Pt P
p t pl-a for a

P Pt P2

we get

(5.4) q AMlqMq(p + BMMq(p:iI Tfllpq < _./( -p)/ppi -p)/pp2

Since M is arbitrary we may take

M ] PlP2/(P2--Pl)

this value of M minimizes the right hand side of (5.4).
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Substituting the value of M in (5.4) and noticing that if

then

P__2 Pl-P =l-t,
P P2-Pt

we obtain

q [ PPl[[ Tfll,q < - q(Pt P2) + pp2 ]qq(p p) M[M-t C(p, q, p, p2) C.

Then for any f B(O) and q > 1, we get II Tfllpq <- CMM-’IIflIp). There-
fore Theorem 5.2 is proved.

Remark 1. Theorem 5.2 is also true if we replace p by a weight w in A o;
the proof is the same.

Remark 2. If (t) /1, k(t) 1/p2, ot (P2/P)(Pl P)/(P P2)
then p(t) 1/. This gives an earlier result in [6, page 153].

6. B, and S,

DEFINITION 6.1. A weight w is in B, if there exists a constant C such that,
for any interval I, with center xt, we have

[I[ w(x)
w(I) ilx xiI’ dx<C.

Up.> Bp is the collection of all absolutely continuous doubling measures to,
that is, o Bp for some p iff

to([x- 2h, x + 2hi) < Cto(x- h, x + hi).

Also Ap c np, for if J is the middle half of I and if f= M*Xj the
Hardy-Littlewood maximal function of Xs, then f(x) < CIII/Ix Xll for all
x I. By Muckenhoupt’s Theorem,

and this translates to the Bp condition. On the other hand, there exist Bp
weights that are not in any Aq. For a good discussion of these classes, see [14].
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DEFINITION 6.2. Let F be analytic function in the disk, we say that
F S if and only if

IF(0)[ + F’(re) }w(0) dO dr < .
To each f B we associate the analytic function

.(z> :.;itt +- z
"

and so we have the following result.

THEOREM 6.3. B c_ S if and only if w B2.

The theorem means that B is continuously contained in Sw if and only if w
is in the class B2.

Although A is assumed in the duality of Bw, A, is not assumed here.

Proof Suppose w B2. It will suffice to show that w-special atoms are in
S. Indeed, we will simply look at I [-h, hi and

b(t) 1w(1)[Xto, h)(t)-X[-h,ol(t)]"
Let

eit + 2
F(z)

,reit- z
b(t) dt.

Then

1 f" eit

F’(z) - -,(e"- z)2 b(t) dt

rw(I) (e"- z)2
dt

-h(e"- z)2
dt

111 1 2]irw(I) z e -ih
q-

2 eih
q-

1 g

Let D be the unit disk and D1= {zD: II-z >2h}.Now

F’(z) 2 (1 cos h)(1 + z)
irw(I) (z eih)(z e-in)(1 z)"
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On D1 this denominator has absolute value

I(1 z) + 2z(1 cosh)lll zl >_ (11 zl 2 h2)ll zl >- 1/411 213
So on D1,

Thus

IF’(z)l-< C h 2

w(I)ll zl 3"

fof h fflgx 1IF’(re)lw(O) dO dr < Cw(i) I1 zl
------w(O) dO dr.

Let N be the smallest integer with 2Nh > 1. Then

Now since w B2, w is a doubling measure; as a result,

n+lh
W f2 w(O) dO

"-2n+lh
(0) dO < C

nh<lOl<En+lh
So

dO _<
h 2 N

w(!) n0 ’2nh<lOl<2+h

<-- Cw(I) nh<lOl<2n+Xh 0 2

< C 1II2 fo ,w(O) dO < Cw(I) I 0 2 by the B2 condition.

On D \ D1, the complement of D1 relative to D, we have

1 [ 1 1 2
IF’(z)l <

eih
+ -ih +rw(I) Iz- Iz-e II-zl
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and

Iz- eihl, z e-ihl, 11 zl < 4h.

By simple rotation, it will suffice to bound

fro IF’(re’)iw(O) dO dr
l1 z[ < 4h

or indeed, to bound

w(I) dJD, ll-zl_<4hll zl

<
1 off2

w(O) dOdrW(I) -n-l(4h)<ll-zl<E-n(4h)ll 7‘1
c (o o

’’0

< w(O) dOw(I) -._-.0

c
< o (0) dO as is a doubng measure

C f4< (0) dO C agNn, because w is doubng.(I
_

Conversely, suppose IIFII s.-< C for all F associated to a w-special atoms.
We must show that

Ill 2 f w(x) dx < C.w(I) w,l- x,I

For this, we may simply investigate I [-h, h]. Let

1b(t) w(I) [Xto’hl(t) Xt-h’O)(t)]
and

fT eit + ZF( z )
e it

7,
b(t) dt.

Now for h < I1 z -< 1/2, we have

[h2 ]IF’(z) > C. )21 >_
w(I) i1 zl I(a z + 2(1 cos h)l

ch 2

w(I)ll zl 3"
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So

C >
"1/2"o

F’(re’) ]w(8) dO dr

h2 flo fl 1
w(e) arae> Cw(I) ,>h -<,ol, [(1 r)-+ 2r(1 -cosS)] ’/2

1-r<l/2

w(I) _<lel_</2 -)-<lel[(1 r)2 + 2r(1 cos e)] ’/- (o) aao

+C w(I) /2<11 /2 [(1 r + 2r(1 cosO)])= ,/= (o) ar ao

h 2

Cw(i)[I + II]

where

I>_f if, (1-r) dr

-<101-<1/2101 -r-<101 [(1 r)2+ 2r(1 -cos0)] 3/2

>CL 1 fx (1-r) dr
-<1O1_</2 -r-<lOI [(1 r)2+ 09-] ’/2w(O)

dO

=CL 1 1
-<lol_<,/21O--- [(1 r)2+ 02] 1/2 W(O) dO

r=.O

cf w(e)
-<lol_</2 tt 2

dO

w(O) dO

and similarly,

ii>cfl fl 1 fl w(O)
/2-<1Ol /21w(O) drdO >_ C dO

Combining I and I gives

h’- fo w(O)
---T-dO < C.w(I) I>_h 0

The theorem is proved.
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7. B(O) and S(p)

By analogy with B2, we define a class of functions b2 as follows.

DEFINITION 7.1. A function 0: [0, oo) ---> R is said to be in the class b2 if
0(0) 0, 0 is increasing and

Llp(t),,t3 dt_< C p(h)h2
with C independent of h. Suppose p(t)/t is in the Lebesgue space LI(T). Let
o(t) ff)p(s)/sds. Then p is Dini iff o(t) < Co(t).

LEMMA 7.2. Let O(t)/t L(T) with 0 b2. Then o satisfies the doubling
condition o(2h) <_ o(h) + Co(h) where C is an absolute constant.

Proof

L2hp(t) h2L2hp(t)2’’ < 4h2f2hp(t)
h

3 < Co(h)

since p H bE. Hence,

L2ho(t) dt < o(h) + Co(h)o(2h)=o(h)+

DEFINITION 7.3. An analytic function F on the unit disk D is in the class
S(O) if and only if

1 (l(’r (1- r)
dOdrIIFIIs<o)- IF(0)l + -6 Jo J [F’(rei) <1 r

We have the following theorem which is analogous to Theorem 6.3 above.

THEOREM 7.4. B(p)

_
S(O) if and only if O H b2 and O is Dini.

This means that if f H B(O) and

f eit+ f(t)dtF(z)
z,w JTe i}

then F H S(O), and this inclusion is continuous.

Proof First suppose O H b2 and O is Dini. We follow the proof of
Theorem 6.3. Look at

b(t) ,(h) (,)]
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and

Then

T e it Z

F’(z) irp(h) z- eih +
z- e-ih + 1- z

Again let D (z D; I1 zl >_ 2h }. On Dr,

Ir(z)l _< c h 2

p(h)ll zl3"

Let N be the smallest integer with 2Nh > 1. Then

ffo, lF’(re’) t(ll r)
drdO

fh<ll-zl<-2+lh[ 1
_1 p(1-r)

drd0<C
p(h) z ,3 1 r

h2 n f f2"+1h (1- r )
dO dr< Co(h) (2.h)_

2n+ lhd_ 2n+ lh 1 r

h 2 N

f2" lh< Cp(h) E (2nh) -2 p(t)
dt

n=0 "0

h 2 N

Co(h) E (2"h)-2(2"+h)
n 0

h 2 N

< c E(2"h)- (2nh)o(h).o_ o by Lemma 7.2 and Dini

p( h ) (2"h)-3 (2"h ) dt
"2nh

h 2

fh2p(t) dt<_ c o(h)
< C by the b2 condition.
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On D \ D1, the complement of D relative to D, as in Theorem 6.3, it will
suffice to bound

ffo p(1 r)
,ll_zl<_nhp(h)(1 r)ll z,l

dO dr

p(h) -.-l(4h)<11_zl<2-.(4h)11 zl
p(1-r)

dO dr1-r

p(h) nh._2-nh 1 r
n=O 1-2-

<
C Og-nhp(t)p(h)

C oo

< 0P(2-nh)p(h) by Dini’s condition.

C oo dt
(h)

C fo:hp(t)< .dtp(h)

C
p(h) (2h)

C
-< b(h)[o(h) +

< C by Dini’s condition.

by Lemma 7.2

For the converse, again let

b(t) 1
p(h) X[’h](t) X[-h,O) (t)]

and _
fTeit + ZF(z)

e it z
b(t) dt.
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So we have

rrjllF,(re,O) r)
drdO < C1-r

In fact, for I1 z > h,

Hence

Ch2

p(h)ll zl 3"

hf[tl > h E p(1-r)
dO dr < C.1-r1-rp(h)[1 z[

For 101 1- r,

1-c0s0<02/2 and ]l-z] [(l-r)2+2r(1-cos0)1/2

So

C>
h2 fl #(l-r) [ dO

--p(h) -r>h 1-r Jl_rO
dF

so that

h 2 [.1 p(t) dt(h)

is bounded and hence p b2. Now if 11 z[ _< h/4,

Hence

IF’(z)l C
(h)ll zl"

C>
1 ffop(h) ,i

1

z[ < h/4 1 z
p(1 r)

dO dr.1-r

Here we consider 10l 1 r. So

1-cos0<0212<(1-r)2/2 and [l-z[ <v-(1-r).
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So I1 z -< hi4 provided 1 r < h/4/, and so

C> p(h) _r<h/4vl i<

0(1 r)
l-r(1 r)ll zl

[/4() dt.p(h),0

dO dr

dO dr

So as p(t)/t LI(T) and a(h/4/2) < Co(h). By Lemma 7.2, slightly modi-
fied,

o(h)<o 4V- +Co -<o -- + Co(h)

< c()

So 0 satisfies Dini’s condition. The theorem is proved.

8. Facts about A,(p)

LEMMA 8.1.
kernel, and let

Let O b2 and u A,(O ). Let P( r, t) denote the Poisson

f(z) -- ff P(r, t)u(O ,)at, z= re iO.

Then

.f (re iO ) ’ C 0(1- r)
(1 r)2

where foo is the second derivative with respect to O.

Proof Consider the Poisson kernel

1-rP(r,t)
1-2rcost+r2 on [0,

Now Ptt is an even function of and changes sign exactly once on the
interval [0, r], at a point a. We can choose r sufficiently near 1 to force
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a < 1 r [18, p. 109]. So

t(r, t)u(O t) dt

ett(r, t)[u(O + t) u(O- t)] dt

by the evenness of Ptt. Also

Pu(r, t) dt Pt(r, r) Pt(r,O) O.

Hence

foo(rei) Prr(r, t)[u(O + t) + U(O- t) 2U(O)] dt.

By the choice of a and by the fact that u A,(p) we have

[A,(re’*) <_ CfoaP(t)[-Ptt(r, ,)] dt + cfarp(t)Ptt(r, t) dt.

NOW,

p(t)Ptt(r, t) dt -p(ot)Pt(r, t) + Pt(r, t) dp(t)

< -p(ot)Pt(r, ot),

since Pt < 0 and dp > 0. But,

2r sin a(1 r 2) < C-#(a)P,(r,a) p(a)[1 2rcos ct + r2l 2

p(1 r)
(1 r)2

using a < 1 r. Hence

farp(t)Ptt(r, )dt -p(a)Pt(r, t) fPt(r, t) dp(t)
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So we must estimate this last integral. Let fl 1 r, for < fl, -Pt(r, t) <
Cfl/(1 r)3 and so fff- Pt(r, t)dp(t) <_ Cfl/(1 3)3[p(fl)- p(a)] < Cp
(1 r)/(1 r) 2. For >_ fl, 1 cost > tE/r, so that -Pt(r, t) <_ C/t?, and

Pt(r, t)dp(t) _< C1 t3

< 2
fl

<_cO()

=C

+ 2f; p(t)t dt]
since 0 satisfies the b2 condition

#(1- r)
(1, .)"

Thus the lemma is proved.

LEMMA 8.2. Suppose p b2 andf is analytic in D with

’(rei) <_ C #(1 r)
(1 r)3"

Then

If(re,O)l <_ C 0(1 r)
(1 r)2

Proof Notice f(reio) f(O) + ff’(tei)e ie dt, so that

II(re’") I-<1I(0)1 + C.fo’’(1- ) d =1I(0)1 + C p()
d

(1 t)3 -,- s 3

-< If(0) + c p(1 r)
(1 r)

by bE.

Notice that the b2 condition also implies that p(1 r)/(1 r) 2 is bounded
below and so the lemma follows.

THEOREM 8.3. Let/9 b2, g A,(p). Let

fT el, +..Z g(t) dt.f(z)
eit- z
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Then

If(rei)l < cP(l(1- r
Proof. Write f u + io, where u is the harmonic extension of g into D.

Then a simple series comparison shows that foa uoo + iooa with f0o analytic.
Let s 1/2(1 r). Then

foo(reiO)= ---fo2rsese ituoo(seit) dt

so

1 L2.1uo(se")l dtIfo(re’a)l < F [se it ZI 2

-< "- (1-s s2_ 2srcos(0- t) + r 2 dt by Lemma 8.1

p(1-s) 1 fo2, s2-r2

C(1 s)2(s 2 r 2) 2-- s2- 2rscos(O t) + r 2 dt

(1 s):(s2- r2)
=C

< CP(1 r/2)
(1 r)

< CP(1 r)
(1 r)3"

This lemma now follows from Lemma 8.2.

9. The isomorphism between B(O) and S(p)

In this section we shall prove that B(p) is identifiable with S(p) in the
following sense. If f B(p) then the function F defined by

2 fT eit d- Z, f(t) dtF(z)
e it ’- z

belongs to S(p), and moreover IIFIIs<o) MIIfll<o), where M is an absolute
constant. Conversely if a function f belongs to S(p) and we let

lim Re F( re’) f( O )
r-l
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then f(O) belongs to B(p) and moreover Ilflls() -< NIIFIIs() where N is an
absolute constant. Therefore the operator A" B(p) S(p) defined by A(f)

F, where F is as above is a Banach space isomorphism. Namely we have;

THEOREM 9.1. Let # be in the class b2 and also be Dini. Then f B(p) if
and only if F S(p) where

2- fr eit + z
f( ) dt.F(z)

eit- z

Moreover there exist positive absolute constants M and N such that

Proof Let F S(p) with power series F(z)= ,n__oanz n. Let G(z)=
Enobnz be the analytic extension of a function g in A,(p). Define a linear
functional on S(#) by

AF hrn fo2F(reie)G’(re-ie) dO.

We are going to show that A belongs to S*(p).
By Theorem 8.3, we have

Goo ( re io) < C #(1 r)
(1 r)2

where C KIIGIIA,<p). Now

2rl fo2F(reiO)G,(re_iO) dO ., (n + 1)a,b,+lr2.
n----0

So A(F) .no(n + 1)anbn/ 1, and a power series computation shows that

A(F) aob + - f ’(rei)Goo(re r 2 1 e2iO dO dr-o) r

and

IA(F)[ < [a0[. [b[ + cffolF’(re’ ) Goo < re-i)l I r
r dO dr.
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Now

7Goo( re )= E n bl
n=l

as r0.

IA(F) I-< la0l" Ibll + C([bll IIGIIA,’’)ffolF’(re’O)l (1-1-rr) dOdr

or

[A(F)I _< C(Ibl, IIGIIA.)IIFIIs.

where C(Ibll, IIGIIA.p)) is a constant which depends on Ibll and [IGiIA.p).
Now suppose h ---, (h), q B*(p). Then there exists a g A.(p) with

Poisson extension g Pr * g and with

(h) r-llim fTrh(x)g;(x) dx.

Since h(x) 1/2rr B(O),

But notice that

b h/l’n g;(X)dx,

b as in the discussion above. Therefore if B*(0) with associated g, the
linear functional A above is in S*(0) with IIAIIs,> -< CII,/,ll.<>. Therefore
we have a continuous embedding B*(p)

_
S*(p). Since B(p)

_
S(p) continu-

ously, we have the following result.

THEOREM 9.2. B(O) is isomorphic as a Banach space to S(O).

Notice that we have the following situation; the spaces B(p) and S(p) have
the same duals and moreover the mapping A: B(0) S(p) defined by
A(f) F is one-to-one so B(0) is regarded as a dense subset of S(p), so that
classic theorem in functional analysis ensures us that B(p) and S(p) are
equivalent as Banach spaces.
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The Hilbert transform of a real valued function on T is defined as the
Cauchy principal value of the integral

jr(x) pvl f7: f(t)
or 2 tan ( x )/2

whenever it exists. The function f" is also often called the conjugate function
of the function f, or the conjugate operator.
One consequence of Theorem 9.1 is that B(p) spaces are invariant under

conjugation. This can be precisely stated as follows.

COROLLARY 9.3. Iff e B(p), thenf B(p). Moreover Ilflls()-< MIIflls()
where M is an absolute constant.

Proof If f B(O) then

2fT
it -[- ZF(z) "- z

f(t) dt

belongs to S(p), and limr_liF(rei) f’(0). So by.Theorem 9.1, f’ B(p)
and IIfl (, -< ClliFIIs(,) so we can conclude that Ilfll,(,) -< CIIfll ).
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