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ATOMIC DECOMPOSITION OF GENERALIZED
LIPSCHITZ SPACES

BY
STEVEN BLOOM AND GERALDO SOARES DE Souza

1. Introduction

In this note we introduce new function spaces denoted by B(p) and B,
where p is non-negative, non-decreasing, p(0) = 0 and p(¢)/¢ is in LY(T), the
Lebesgue space L' with T the perimeter of the unit disk in the complex plane
and w a weight which will be in some of the class 4,1 < p < .

For w a weight, we say b is a weighted special atom if b(¢) = 1/2 or if
there is an interval I C T with left and right halves L, R such that

b() = gy [xa(®) = xa(0)]

where w(I) = [;w(x) dx. Then we say f € B, if there are weighted special
atoms b, such that f(z) = £%_c,b,(t) with £2_s|c,| < 0. B, is endowed
with the norm ||f||p = infX3_o|c,|, where the infimum is taken over all
possible representations of f, which becomes a Banach space.

In the definition of weighted special atoms above, if we replace w(I) with
p(]I]), where p is as above, then this new space will be denoted by B(p).

The spaces B(p) and B, will be called weighted special atom spaces.

Notice that for particular w and p, the spaces B, and B(p) coincide with
those spaces defined in [2],[3],[4],[5]; for example p(¢) = /7 for 1< p <
o0, B(p) = B?.

We would like to mention that B(p) for some p is the real atomic
decomposition of some well known Besov-Bergman-Lipschitz spaces; for
example for p(¢t) = 17 and 1 < p < o0, B(p) is equivalent as a Banach space
to the space of those real valued functions for which

dxdy < o0.
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182 STEVEN BLOOM AND GERALDO SOARES DE SOUZA

This space is known as Besov space. Also for the same p, B(p) is the boundary
value of those analytic functions F for which

flfzﬂlF’(re“’) |(1 - r)""dbdr < o;
0o

see [4], [5], and [15] for these results.
One of the main results of this paper is that for some p, B(p) is the real
characterization of those analytic functions in the disc for which

fol'/(;zqF’(reM) |_p(11_—_rr) dfdr < o,

which is a generalization of an earlier result (see [4] and [5]).

We point out that for p(¢) = ¢, B(p) is properly contained in the Hardy
space H'! in the disc and that B(p) is contained in all the nontrivial H,, H,is
defined in [17]. Recently in [7], it has been shown that there is an f in B(p) so
that its Fourier series diverges almost everywhere and B(p) C H,. It follows
that for all ¢, H, has a divergent Fourier series.

In these notes we give some accounts of these spaces; in particular we show
some properties which lead to the computation of the dual spaces. We also
show an interpolation theorem for operators acting on these spaces into the
Lorentz spaces.

To make the presentation reasonably self-contained, we shall include a
resume of pertinent results and definitions.

Throughout this paper, the constant C may not be the same in every
occurence.

2. Preliminaries

DEFINITION 2.1. Let

1) = 77 [1() a.

Then we say that a non-negative function w, which we call weight, is in the
class 4, for 1 < p < co if and only if I(w)I(w'/*~P)P~1 < M, where M is
an absolute positive constant.

We define 4, as follows: w € 4, if sup, . ,L(w) < Cw(x) a.e. where C is
an absolute constant. Notice that 4, CN,,,4,. Define 4, as follows:
w € A, if for all measurable sets E C T, there is a § > 0 such that

uH <)
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where C is an absolute constant and the bars mean the Lebesgue measure.
Then w € A if and only if w € U1<p<°°A

Muckenhoupt introduced A4, weights in [10] and has contributed a lot to the
theory of 4, weights.

Suppose p(t)/t is in the Lebesgue space LY(T). Let o(z) = [ip(s)/sds.
Then we say p is Dini if o(z) < Cp(2).

DErFINITION 2.2. We define the weighted Lipschitz class by

Au(p)
= {g: T —> R, continuous, g(x + k) + g(x — h) — 2g(x) = O[p(2h)]}.

The A,(p) norm is given by

_ g(x+h) +g(x—h)—2g(x) |
"g"A‘(p) hs>l:)p p(2h)

» X

Similarly we define A,, for w € 4 by replacing p(2h) with w((x — h
x + h)).

Notice that for p(¢) = ¢, A,(p) is the Zygmund class and for p(¢) = t* we
have the Lipschitz class for 0 < a < 2.
3. Some properties of B(p) and B,

In this section we state and prove some properties of the spaces B(p) and
B

we

LEMMA 3.1. Let I be an interval in T. Then:
@ lix,llp, < CH|® for some 0 <& <1whenw € 4,
(i) If p(t)/t € LY, let o(t) = [lp(s)/sds. Then

Xl oy < C[|I|1/2 + 0(|I|1/2)] '

Proof. For simplicity, we will treat |T| as 1, rather than 2.
(i) Suppose first that 7 =[0,277]. Let

=[0,2'"¥],1,=[0,2>"¥], 1, = [0,2°>7],..., I, = [0,2"" V]

and I, =[0,1] = T.
Define L, and R, as the halves of I,, and let

(1) = x1,(1) = x&,(1)-



184 STEVEN BLOOM AND GERALDO SOARES DE SOUZA
Let g(z) = ZN_,2V"¢ (¢). Then 1 + g(¢) = 2¥x,(¢), so we have
N
(3.2) X;= 27N 4+ Z 27",.
n=1

By the A condition, there exists a § > 0 with

w(E) c('E' )8

w(@) =\

for all E measurable sets contained in the interval J. At the expense of some
sharpness, but no more, we can take § < 1. In particular, we have

w(I,) < Cw(T)|1,|® < C2%¢"=M),
Let

bo(t) =1 and b,.(t)=w—(§3¢n(t>.

Then b, are weighted special atoms and (3.2) becomes

i (1) = 27V (1) + éz-"w(z,,)b,.(r).
Hence,

N
Ix/ll 5, < 27N + Z 2~”W(In)

n=1

N
<27V 4 C Y 27N

n=1
<2 N4(C2M™
<C2™M™
= C|I)®.

By rotation, this holds whenever |I| = 27V, Next, if I = [0, B] for B € T,
then B = X% ,c;/2' where ¢; = 0 or 1. Therefore [0, 8] = X2 ,/,, with I, an
interval of length c,/2', so that X0, 81(8) < Xi21x(?), and hence

X e\
bxdls, < X (5]

i=1
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Let N be the first integer with Cy # 0. Then 27V < B < 2!~V and
= (€
E( l) 22—18<CB8
=N\ 2

or x5, < CII%.

Finally, for an arbitrary interval I = [a, a + B], simply rotate T, treating T’
as [a, a + 1], taking the I,’s in (3.2) as [a, & + 2"~ V]

(i) In (3.2), let by(z) =1 and b,(2) = ¢,(¢)/p(2" ¥). The b,’s are
weighted special atoms and

x1=2"%b(1) + 3 27 (2 ¥)b, (1).

n=1

Arguing as in (i), we suppose |I| = B = X%_,c,27" where ¢, =0 or 1 and
Cy = 1. Then

kZ ck(2 “box + 212 "o (2¥7") b, k(t))

where the b,,’s are weighted special atoms, and

00 k
Ixrll 5oy < )y [2'k + ) 2""p(2”"‘)]

k=N n=1

© k
SCB+ Y Y 27(2").

k=N n=1
This double sum is
o k-1 N o
L X Lowe ) Eate ¥ oamen) ¥ ot
k=N m=0 m=0 m=N+1 k=m
SO we must estimate

N
(3.3) 2~V Z 2mo(27™)

m=0
and

0
(34) Y e(2™M).

m=N+1
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It is quite easy to show (3.4):

> esemsc ¥ [y

m=n+1 m=N+1

< cfoz'"ﬂ%Q dt < Co(B).
For (3.3),

N N n
27V Y 2@ =2F E [P 22 a
n=0 -

n=0

<Ca- Nf2 p(t)

‘”(L‘f%d’* f;ﬁ—pt(—;)dt)
< Co(|B) + C2—Np(2)/;E:7 dt
< c[a(yB) + VB].

Keeping in mind that 8 < \/,E , (ii) follows.
The next result is a duality pairing between the weighted Lipschitz spaces
and the weighted special atomspaces.

THEOREM 3.2 (Holder’s Inequality). Iff€ X and g € Y then

Jim [ £(057(0) ar

< lix-lgly

where X = B(p) or B,,Y = A (p) or A, respectively, g,= P .*g is the
Poisson integral of g and the prime means derivative.

Proof. Let us restrict ourselves to X = B(p) and Y = A,(p). We have

1) = Sy Xeathona() = Xeegon g (O]

In fact, we have

lim fo(t)g,'(t) di = R%J[g(xo +h) +g(xo— h) —28(xo)]
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and thus by definition of the A,(p)-norm we get

[im [ 7(0)g:(1) a

< 18l Avio)-

From this it follows that the theorem is true for a finite linear combination
of weighted special atoms and consequently the extension for any f € B(p) is
trivial.

The proof for X = B, and Y = A, is similar.

CorOLLARY 3.3. Iff€ Xand g € Y, then

llglly = sup
Il x=<1

lim /T £(1)g/(1) dt

r—1

Proof. Again let us take X = B(p) and Y = A,(p). Then for

1) = 577 [xeusna(®) = Xy (0],

notice that ||f]| 5,y < 1 and consequently

- 8o + 1) + g(xg — B) = 28(xy)
sup | lim | f(2)g/(¢) dt| >
Ifllppy=<1 r_’lj;' P(2h)
which implies
sup |lim [£(2)g/(t) dt| = gl .cp)-
Ifl<1 '-*lfT Aslp)

Combining this with Theorem 3.2 gives the desired result.

4. Duality

Consider the mapping ¢,: B(p) — R defined by

#(f) = lim [ 1()g:(0) a,

with g a fixed function in A,(p) and g, as before. One can easily see that ¢,
is a linear functional on B(p). Moreover, Theorem 3.2 (Holder’s Inequality)
tells. us that |¢,(f)| < ||gll a,(p)llf]l 5¢p)> and therefore ¢, is a bounded linear
functional on B(p). The same situation holds for g fixed in A, and f in B,.
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In this section we show that indeed A,(p) generates all the bounded linear
functional on B(p), similarly for B, and A,,,.

In this paper X* will denote the dual space of X, that is, the space of all
bounded linear functional ¢ on X with the norm

lloll = sup |o(f)I.
Ifllx<1

THEOREM 4.1 (Duality Theorem). If ¢ € B*(p) (or B}) there is a g €
Ax(p) (or Ay,) so that ¢ = ¢,; that is,

¢(f) = lim [1(1)g/(t) dt for ailf € B(p) (or B,),

where g, is as before. Moreover ||¢|| = ||g|ly, where Y = A (p) or A,,,.
Conversely if

o(f) = lim [1(1)g/(1) di forf < B(p) (or B,)

then ¢ € B*(p) (or B¥). Furthermore the mapping y: N, — A defined by
V(8) =¢,, A=B*(p) (or BY) is an isometric isomorphism, where p is
increasing, p(0) = 0, and p(t)/t € LNT), w € A,

Proof. Again we restrict ourselves to the case B*(p). If

¢(f) = lim [ (1)g/(1) dt for & B(p),
r— T

then we already have seen that Theorem 3.2 implies that ¢ is a bounded linear
functional, that is, ¢ € B*(p), so it remains to prove the other direction. In
fact, let ¢ € B*(p) and define g(s) = ¢(xjo, ;) for s € [0,27]. Observe that

gls+h)—g(s) = (X (s, 54n7)

and thus Lemma 3.1(ii) (in the case of B,, we use (i) and the boundedness of ¢
tells us that g is continuous. On the other hand,

gls+h)+g(s—h)—2g(s) _
p(2h)

Consequently by the boundedness of ¢ we get

1
] p(2h) (X(s,s+h] - X(s—h,s])

lg(s + ) +g(s —h) —28(s)| < lollo(2h),

so that ||g|| 5, < oo and therefore g € A,(p).
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Notice that lim, _,;g, = g uniformly where g, as before. So

$(xp,) = 8(s) = limg,(s) = }gr}fog,’(t) dt = lim fo[o,sl(t)g,’(t) dt.

Therefore if I is any interval in 7, it follows that

¢(x;) = lim foz(t)g,’(t) dr.

Consequently if b is any weighted special atom we have

¢(b) = lim fT b(t)g/(1) dt,

and so the functional representation for B(p) is proved for weighted special
atoms and therefore for a finite linear combination of them. Thus the exten-
sion for any f € B(p) is trivial.

We have proved that given ¢ € B*(p) there is a g in A,(p) such that
¢ = ¢,; moreover, Corollary 3.3 tells us that ||¢|| = [|g]l,,,) and so by
definition of A’y(p) = {8": g € Ay(p)} it follows that the mapping ¥: A’x(p)
— B*(p) defined by y/(g) = ¢, is an isometry, and so the duality theorem is
proved.

We point out that the concept of derivative that is being used in A’y(p) is
the general notion given to us by the theory of distribution. That is, we say
g =hif

[gyw (e di= = [1(1) (1) ds

for all infinitely differentiable functions { on T. Integration by parts shows us
that this is indeed the relation that we would expect if g has continuous
derivative, and g’ = h has the usual meaning.

See [2], 3], [4], [6], for the unweighted case where p(t) = t/? for 3 < p < .

5. Interpolation theorem

In this section we present a theorem on the interpolation of operators acting
on the weighted special atom spaces into the Lorentz spaces. In order to state
it we need some definitions.

Let f be a real valued measurable function on 7. For y > 0 let

m(f,y) =m(fl,y) =|{x € T,If(x) >y}

m(f, y) is called distribution function of f, | - | means the Lebesgue measure
on T. m(f, y) is non-negative, non-increasing and continuous from the right.
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By f* we mean the decreasing rearrangement of f, which is defined as
f*(¢) =inf{y; m(f, y) <t}.
A linear operator T: X — Y is said to be bounded if
ITN = sup{ll Tfll v; lfllx < 1} < oo.

We shall say that a measurable function f belongs to the Lorentz spaces
L(p,q)if

||f||,,q=[ f(f*(t)tl/P)th] <o

for 0 <p < 00,0 < g < 0o where f* is the decreasing rearrangement of f
and, for ¢ = oo, the space L( p, o) is well known as weak L?-space. Equiva-
lently, f belongs to L( p, 0), if there exists a positive number A such that

m(f,y)s(i;—)p, 0<p< 0.

Notice that L(p, p) is the usual Lebesgue space L?; also ||f]|,, is not a
norm, since the triangle inequality may fail. However, one can find a norm
equivalent to ||f]|,, under some restrictions on p and g, and thus for those
values, L( p, q) becomes a Banach space.

DEFINITION 5.1. We say that an operator is p-restricted weak type r if for
any interval I C [0,27] we have

(rx,)*(0) < 2 CI1)

where the * means the decreasing rearrangement of Tx,, M is an absolute
constant and p is a non-negative function with p(0) =

Now we are ready to state the following interpolation for operators.

THEOREM 5.2. Let T be a linear operator such that T is ¢-restricted weak
type p, with constant M, and also is {-restricted weak type p, with constant M,.
Then for p(t) = ¢*(t)yY'~%(¢), T: B(p) = L(p, q) boundedly with

Tl ip, g < CM{M;~||fl B(p)

where

—1-=L+—-——£ <p< >1
) 7 7, Po<p<P1q=z1.
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C is an absolute constant depending only on p, g, p,, p, and

Proof. Let f be a weighted special atom, that is

70 = Sy bee(®) = xa(0)],

where L and R are the left and right halves of I and |L| = |R| = |I|/2.
Now since T is ¢ and ¢ restricted weak type p; and p, respectively we get

: _e(1) _ . _v(n)
(5.3) (T)*(r) < Mxp(m)tl/pl and (Tf)*(¢) < MZP(IIl)tl/pz'

We now evaluate

Zymig, = [l 'S

We have

-§||Tf||gq= /()"[(Tf)*(t)tw]"% + f °°[(Tf)*(t)t1/”]"?

o (1) o /p—a/p1—1
SMf'[p(m)]fo’” v

+Mg[‘ﬁ—$%]qfa°°ﬂ/ﬂ-mrl dt by (5.3)

q
= {I[‘b(u‘) PP 0 9(21—p)/PP
p(11) ] q(p.—p)

A 2
o(11) | q(p —p,)

+MJ 0 9(P2=P)/PP2

As o is arbitrary we may take

o= M[i_g%]hh/(m—m
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where M is a constant that we will determine later. Thus we get
‘1’(”‘) (4/P)p2(P1—P)/(P1—P2)
q
p(l11)
. [¢(|I| )] q1=(p2)/p/(Pr—P)/(Pr—P2)] M P1=p)/PPy

¢(| Il) (qp1/P)P—P2)/(P1—P2)
p(11)*

. [“(,(m)q[l +(p1/PXP2—P)/(P1—P2)] | MaP2=p)/pp2

Bimng, < amy

+BMJ

where

A= /o W and B = ____112__._
q(p, - p) q(p — py)

Notice that
Py PP P PP

e
S0
%IITfIIZq < [AMI‘IM"(PI‘P)/PM + BMIM4P2=P)/ PP ]
‘P(Ill)(qh/p)(p' =p)/(p1—p2) | ¢(|I|)(qp1/p)(p—pz)/(p1 —p2)
'l p(I1)*
Since
PP=P_ | PrPimP
P Pr— D2 P Pr— P
and
p=¢ "y fora= %H
we get

1/q
(5.4) ”Tf”pq < [%(AMlqu(pl—p)/pm + BMZqu(pz—p)/ppz)]

Since M is arbitrary we may take

M P1P2/(P2—P1)
M= [M—l] ‘
2

b

this value of M minimizes the right hand side of (5.4).
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Substituting the value of M in (5.4) and noticing that if

t=ﬂP2‘P
P P— P
then
P Py —P =1-1
P P~ P
we obtain
q PPy w1 _
T < = + MM, '=C(p,q, p,, = C.
1 TA1l g AT 2(p —py) 1M (P, g, p1s P2)

Then for any f € B(p) and g > 1, we get || Tf||,, < CM{M; ~*||f|| ,)- There-
fore Theorem 5.2 is proved.

Remark 1. Theorem 5.2 is also true if we replace p by a weight w in 4_;
the proof is the same.

Remark 2. 1 ¢(1) = /P, (1) = /72, a = (po/p)(pr — P)/(P1 — P2)
then p(¢) = t/?. This gives an earlier result in [6, page 153].

6. B,and S,

DEFINITION 6.1. A weight w is in B, if there exists a constant C such that,
for any interval I, with center x,, we have

1117 w(x)
w(D) fxeﬂx —x, P dx < C.

U, 1B, is the collection of all absolutely continuous doubling measures w,
that is, w € B, for some p iff

w([x = 2h,x + 2h]) < Co(x — h, x + k]).

Also A »C B, for if J is the middle half of I and if f= M*x,, the
Hardy-Littlewood maximal function of x ;, then f(x) < C|I|/|x — x,| for all
x & I. By Muckenhoupt’s Theorem,

J

X

elf"w(x) dx < Cf(x,)pw(x) dx < Co(I)

and this translates to the B, condition. On the other hand, there exist B,
weights that are not in any 4. For a good discussion of these classes, see [14].
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DEFINITION 6.2. Let F be analytic function in the disk, we say that
F € S, if and only if

1Fls, = 1FQ)1 + 3 [ [ |F(re®) w(8) db r < oo,

To each f € B, we associate the analytic function

F(z) = o [ G2 p(e) a,

Te" —Z
and so we have the following result.
THEOREM 6.3. B, C S, if and only if w € B,.
The theorem means that B, is continuously contained in S, if and only if w
is in the class B,.

Although A4 is assumed in the duality of B,, 4 is not assumed here.

Proof. Suppose w € B,. It will suffice to show that w-special atoms are in
S,,- Indeed, we will simply look at I = [—h, h] and

b() = 577y [Xton () = xi-na(D)]-

Let

1 e+
F(z) = 2—7;f_ b(t) a.

sl —z

Then

1 g et
= ———b(t)dt
(et - )’

1 r et 0 et
= (1) [/(; (e 2)2 dt — f_hm dt}

F'(z)

1 [ 1 + 1 + 2 ]
iWW(I) 7 — e—ih 2 — eih 1—-2z1I"
Let D be the unit disk and D, = {z € D: |1 — z| = 2h}. Now

2 (1 —cosh)(1 + z)

F(z) = inw(I)  (z—e")(z—e ") (1-2z)
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On D, this denominator has absolute value
(1 =2 +2z(1 —cosh)||l —z| = (1 —z)2 = K21 — z] = }|1 — z?

So on D,,

, h?
|F(Z)| < Cm.

Thus

f f|F'(re"")|w(0) dodr < c ff 1 w(8) db dr.
D, W(I) Dlll - ZI
Let N be the smallest integer with 2¥4 > 1. Then

ff |F'(re)\w(0) db dr

1
0) d
(I) '[‘/;"hsll z|s2"“h|l"2|3W( ) dr

n -3 1 2n+1h
< C—w(I) z (27h) f_znﬂhf_zmhw(ﬂ)dﬂdr

5 (@) j w(#) db.

n=0

wI)

Now since w € B,, w is a doubling measure; as a result,

[7" w(e)ds < c w(8) do
-2+ 2"h<|0]<2"*1h

So

F(re®)w(8) df < C—m 3 ()2 w(8) d6
D, w(I) =0 2

"h<|0|<2"*1h
&

5 / w(8) 40

2
w(I) o lrn<p<mn 6

|7)? w(0)
de by the B, conditi
< C-—77 (I)j;)ex P < C by the B, condition.

<C

On D\ D,, the complement of D, relative to D, we have

1 2

F ~— 4 —~— 4
|F'(2)l < aw(I) [|z — e |z — e |1 —z|
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and
|z —e™|, |z —e |, |1 — z| < 4h.

By simple rotation, it will suffice to bound

ff |F'(re®)\w(8) dé dr
D,[Ll-z|<4h

or indeed, to bound

1 w(l
v/ fD e T

w(f)
< — = dl d
(I) ,,g'o-/f -n=1apy <l —z1<2-n@amy |1 — 21 g
C °° 2"
< —=v 0) do d
( ) fvll; Z|<22 nhw ) r

IA

< w(0) d@ as w is a doubling measure
W(I) n¥0L2 n— 1h<|0|<22 n ( ) g

< — w(0) dd < C again, because w is doubling.
w(I) f_4h (9) g g

Conversely, suppose || F||s < C for all F associated to a w-special atoms.
We must show that

|7} j w(x)

w(I) Jyer|x — x|

For this, we may simply investigate I = [—h, h]. Let

5 dx < C.

b(1) = ;(ljj[X[o,h](t) - X[—h,O)(t)]

and

F(z) = Zl—ﬂfe “2h(1) ar.

Now for h < |1 — z| < %, we have

R B 1 . ch?
iF(z) = C [W(I) |l—z||(1—z)2+2(1—cosh)|]_ w(I)1~-z|*"
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So

C=> j;l/f |F'(re®)|w(8) dé dr

1
[(1 —r)* +2r(1 - cos 0)]

=C w(0) drdé

W(I)f|0|>hf1-r<|o|, 52w (0)

1-r<1/2
1

w(I) j;ns|0|sl/2‘[(1—r)slﬂl [(1 - r)?+2r(1 - cos 0)]

57w(0) drdé

h? 1 1
w(I) '[1/25|0|f1/2 [(1 —r)*+2r(1 - cos t9)]3/2

h2
= C';(—IT[I + 1]

where

1

> = (1-r)dr .
I> Ls|0|51/2| "/;.—r5|0| [(1 _ r)2 +2r(1 - 0050)]3/2 (6)de

L/ (1-r)dr
n<01<1/2101 1, <o) [(1 —r)?+ 02]3/

>C

sw(6) db

1-r=|0)

1 1
¢ 161 8) do
L510|51/2|0| [(1 _ 02]1/2 . w(6)

cf w(0) 4
h<io)<1/2 02

and similarly,

1 w(0)
II>C 0)drdd > C
f1/2<|0|f1/2l0|3w( ) f/2<|o| I6’I2

Combining I and I gives

w(0)
w(I) fwm 92 di < C.

The theorem is proved.
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7. B(p) and S(p)
By analogy with B,, we define a class of functions b, as follows.

DErFINITION 7.1. A function p: [0, 00) — R is said to be in the class b, if
p(0) = 0, p is increasing and

fhlpf:) dt < Cpg;)

with C independent of h. Suppose p(t)/! is in the Lebesgue space L}(T). Let
o(t) = [sp(s)/sds. Then p is Dini iff 6(¢) < Cp(2).

LeEMMA 7.2. Let p(t)/t € LN(T) with p € b,. Then o satisfies the doubling
condition 6(2h) < o(h) + Cp(h) where C is an absolute constant.

Proof.

2np(t) o, (2hp(2) 2 2"P(t)
f;. . dt—hfh e di < 4hfh dt < Cp(h)

since p € b,. Hence,
o(2h) = o(h) + /2'"’(’) dt < o(k) + Co(h).

DEFINITION 7.3. An analytic function F on the unit disk D is in the class
S(p) if and only if

1Fllsin = 1FO) + 2 [ [ 17 ) 28 dr < oo,

We have the following theorem which is analogous to Theorem 6.3 above.

THEOREM 7.4. B(p) C S(p) if and only if p € b, and p is Dini.
This means that if f € B(p) and

F(2) = g5 [ S )

then F € S(p), and this inclusion is continuous.

Proof. First suppose p € b, and p is Dini. We follow the proof of
Theorem 6.3. Look at

() = Sy o) = X1y 1)
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and

F(z) = Zife +Zb(t) dt.

Then

1 1 2
F(z) = iWP(h)[z—e"' + z—e i t1—Z|

Againlet D, = {z € D; |1 — z| 2 2h}. On D,,

() <t
7)< Cotn =z

Let N be the smallest integer with 2¥4 > 1. Then

f[ |F'(re"')|‘°( ) 4ras

1 p(1- )
drdd
(h) f'/;”hsll gsromll =z 1-

n = nt+lp P(]- - l‘) -
(h) 'EO(Z ") -/; 2"“h'[ 40 d

2n+1h l - r

oty Z,om [T

h) n§0(2"h) 25(27*1h)

N
o (1) Y (2"h) ?p(2"h) by Lemma 7.2 and Dini
n=0

<Coy X (2"h)'3f;; Mo (27h) dt

< C by the b, condition.
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On D\ D,, the complement of D, relative to D, as in Theorem 6.3, it will
suffice to bound

a-r)
ff D, z|s4hp(h)(pl -r)l - d0dr

Ly 1 p(l-1)
= . do dr
p(h) ngo‘['/“""1(4h)<|1—z|<2’"(4h)|1 - z| 1-r

s—(—f%flznhf ”hp(l d0d

C & r2np(t)
<o Eof = dt
C & "
< o(h) Z p(27"h) by Dini’s condition.
C 2%-np dt
< — v 27 "h
p(h) Z;hj;-"h @7h)7
C_ ranp(t)
< =5y ——=dt
p(h)Jo ¢
C

< p—(%[o(h) + Cp(h)] byLemma7.2

< C by Dini’s condition.

For the converse, again let

b(t) = _p(lT)[X[O,h](t) X —n,0) (t)]

and

F(z )_—-j"’ +Zb(t)dt
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So we have
f/]F'(r.e"’)|"’(1 drdé < C.

In fact, for |1 — z| > A,

Ch?
F(z)|z ———
P2 S —2p
Hence
h* p(1 - )
dbdr < C.
~/1- r>h£0|21—rp(h)l1 -z 1=

For |0 21 —r,

12
1—cosf <0?/2 and |1-—z| = [(1 —r)*+2r(1 —cos8) " <

So

h? p(1—r) (m db
p(h)‘[ rzh I—r ‘/;—r03 ar

so that

R> r1ip(t)
fh o di

is bounded and hence p € b,. Now if |1 — z| < h/4,

) C
|F'(z)] = NOTEER

Hence

1 p(1-

1 )
> — dfdr.
p(h) '[‘/;.),ll—z|sh/4|1 -z 1=

Here we consider |0] <1 — r. So

1-cos0<6%2<(1-r)’/2 and |1-z| <V2(1-r).

201
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So |1 — z| < h/4 provided 1 — r < h/4y2, and so

1 L(l:_)_
IO I M (et L

p(1—r)
= V2o(h) f 1-r) L—rzh/ﬂ/f'(ﬂsl—rdodr

h/4,/2p(t)

p(h)f

So as p(t)/t € INT) and o(h/4,2) < Cp(h). By Lemma 7.2, slightly modi-
fied,

R

(4»/') + Celh)
< Cp(h)

So p satisfies Dini’s condition. The theorem is proved.

8. Facts about A,(p)

LEMMA 8.1. Let p€ b, and u € A (p). Let P(r,t) denote the Poisson
kernel, and let

1(z) = o= [ P(royu(® = 1) di, z = re®.
Then

p(1—r)
Q-r?*’

where fyq is the second derivative with respect to 0.

|f0,(r’e"0)| <C

Proof. Consider the Poisson kernel

1-r

P t) =
(r.1) 1—2rcost + r?

on [0,~].

Now P, is an even function of ¢ and changes sign exactly once on the
interval [0, 7], at a point a. We can choose r sufficiently near 1 to force
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a<1-r[18, p. 109]. So

uwlre) = 2 [ P70 = yu(s) dr

- %fjﬂP,,(r, )u(f - t) de
- zl—ﬂj:P,,(r, O[u(0 + £) — u(0 - 1)] dt
by the evenness of P,. Also
jo"p,,(r, t)dt = P(r,7) — P,(r,0) = 0.
Hence
fool(re®) = %;/:P,,(r, w8 + 1) + u(8 — 1) — 2u(8)] dr.
By the choice of a and by the fact that u € A,(p) we have
| foo(re®)| < cfo"p(z)[—p,,(r, 0)] de + c/:p(t)p,,(r, t) dt.

Now,

[ = e()B(r, 0 di = =p()P(r, @) + ['P(r, 1) dp(2)
< _p(a)Pt(r, (X),
since P, < 0 and dp > 0. But,

2rsina(l — r?) p(1—-r)
[1-2rcosa + r2]’ (1-r)

—p(a)P(r,a) = p(a)
using @ < 1 — r. Hence

[oP(r,0) di = ~p(@)BLr, 1) = ["P(r,1) do(r)

< C,E_il——_—r')% + /a"[—p,(r,t)] do ().



204 STEVEN BLOOM AND GERALDO SOARES DE SOUZA
So we must estimate this last integral. Let 8 =1 —r,fort < B, —P(r,t) <

CB/(1 —r)® and so [ — P(r,t)dp(t) < CB/(1 - 3)’[p(B) — p(a)] < Cp
1 -r)/(0 —r). Fort>B,1—cost >t?/m, sothat —P(r,t) < C/t? and

f; — P(r,t)dp(1) < Cfp"ggtgsg

since p satisfies the b, condition

p(1—r)
“Ca-y

Thus the lemma is proved.

LeEmMMA 8.2. Suppose p € b, and f is analytic in D with

e < R,

Then

] p(l=r)
|f(re”)|sC(1 2

Proof. Notice f(re”®) = f(0) + [{f'(te®)e® dt, so that

ey <11+ e[ B a1+ cf B a

S|f(0)I+C‘z(1 r)l by by

Notice that the b, condition also implies that p(1 — r)/(1 — r)? is bounded
below and so the lemma follows.

THEOREM 8.3. Let p € b,, g € Ay(p). Let

(z)—z—,;fe 2 g(0) .
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Then

|fao(’eia)| =< C%l——;—)'

Proof. Write f = u + iv, where u is the harmonic extension of g into D.
Then a simple series comparison shows that fy, = ugy + ivyy With fy, analytic.
Let s = 3(1 — r). Then

i 1 [2rse” + 2 ;
foa(re®®) = '2—,;[0 u,,,,(se ") dt

se’!
SO

it
| foo(re)| lfz"l—u—’f.’(—se—l dt

Tty |se’ —z|?

IA

ifzwp(l - S) 1
2m )y (1 —5)* s> — 2srcos(6 — 1) + 12

A

dt by Lemma 8.1

p(1—s) 1 (2« s2—r?
1 - s)X(s2-r?) 777_];; 52— 2rscos(8 — t) + r?
p(1 —s)
(1 -5)’(s>~r?)
cP=r/2)
a-ry
cP-r)
(1 ~r)

This lemma now follows from Lemma 8.2.

dt

9. The isomorphism between B(p) and S(p)

In this section we shall prove that B(p) is identifiable with S(p) in the
following sense. If f € B(p) then the function F defined by

F(2) = 5 [ S2 (0 ai

belongs to S(p), and moreover || F|| s,y < M||f]| p(,y» Where M is an absolute
constant. Conversely if a function f belongs to S(p) and we let

lim1 Re F(re®) = £(0)
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then f(8) belongs to B(p) and moreover ||f]| g,y < N|| F|| 5, Where N is an
absolute constant. Therefore the operator A: B(p) — S(p) defined by A(f)
= F, where F is as above is a Banach space isomorphism. Namely we have;

THEOREM 9.1. Let p be in the class b, and also be Dini. Then f € B(p) if
and only if F € S(p) where

F()—ﬁfe e —ors

Moreover there exist positive absolute constants M and N such that
Ml sy < 1Fll 5oy < NIfll 5oy -
Proof. Let F € S(p) with power series F(z) = ¥XX_ga,z". Let G(z) =

Y% _ob,z" be the analytic extension of a function g in A,(p). Deﬁne a linear
functional on S(p) by

r—1

. 1 (2« i 1 i
AF = lim ﬁj(; F(re'®)G'(re=) dé.

We are going to show that A belongs to S*(p).
By Theorem 8.3, we have

p(1—r)

|Gop(re)| < C(1 e

where C = K|| G| 5 ,y- Now

21 f "F(re®)G'(re~*) df = Z (n+1)a,b, r*"

n=0

So A(F) = X2_o(n + )a,b,.,, and a power series computation shows that
A(F) = agh, + = ffF'(re'o)Goo(re“’o) — 120 494y

and

|A(F)| < laol + by] + C[ [ |F(re) ||Gag(re™
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Now

1 i - 1 —;
— G re )= Y n?%,r"e" > b, as r-0.
n=1

So,

lA(F)| laol « 64| + C(|b1| ”G”A‘(p))ff|F/(re10)|p( r) do dr

or
|IA(F)| < C(1by], 1Gl (o)1 Fll scp)-

where C(|b,], || G|l 5,(,)) is @ constant which depends on |b;| and ||G|| ().
Now suppose h — ¢(h), ¢ € B*(p). Then there exists a g € A,(p) with
Poisson extension g = P, * g and with

#(h) = lim [ h(x)g/(x) dx.
Since h(x) = 1/27 € B(p),
o{55)|-[1m 27 [0

But notice that

< Cl|9l popy-

fg,(x) dx,

r—>1 2

b, as in the discussion above. Therefore if ¢ € B*(p) with associated g, the
linear functional A above is in S*(p) with ||A|[ g,y < C||®|| px(,)- Therefore
we have a continuous embedding B*(p) € S*(p). Since B(p) C S(p) continu-
ously, we have the following result.

THEOREM 9.2. B(p) is isomorphic as a Banach space to S(p).

Notice that we have the following situation; the spaces B(p) and S(p) have
the same duals and moreover the mapping A4: B(p) — S(p) defined by
A(f) = F is one-to-one so B(p) is regarded as a dense subset of S(p), so that
classic theorem in functional analysis ensures us that B(p) and S(p) are
equivalent as Banach spaces.
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The Hilbert transform of a real valued function on T is defined as the
Cauchy principal value of the integral

( f(t)
fx) = —f2tan(tt—x)/2

whenever it exists. The function f is also often called the conjugate function
of the function f, or the conjugate operator.

One consequence of Theorem 9.1 is that B(p) spaces are invariant under
conjugation. This can be precisely stated as follows.

COROLLARY 9.3.  Iff € B(p), then f € B(p). Moreover |fil 5,y < MIIfll ()
where M is an absolute constant.

Proof. 1If f € B(p) then

F(z lefe +Zf(t) dt

belongs to S(p), and lim, _,,iF(re®) = f(8). So by Theorem 9.1, fe€ B(p)
and ||f||B(p) < C||iF|| g,y S0 we can conclude that ||f||B(p) < C||f||B(p)
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