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VOLUME AND ENERGY STABILITY FOR ISOMETRIC
MINIMAL IMMERSIONS

BY

MICHAEL D. HVIDSTEN

It is well known that a minimal isometric immersion from a Riemannian
manifold M into a Riemannian manifold N is also a harmonic immersion. An
open question is whether the second order behavior of the volume is similar to
that of the energy for such immersions. That is, does stability of the energy
integral imply stability of the volume integral, or vice versa, for an immersion
between Riemannian manifolds that is both minimal and harmonic? We will
show that these two types of stability are not necessarily equivalent, and will
exhibit several examples of surfaces in flat tori which are stable for the energy,
but not for the volume integral.
The results in this paper are from the author’s thesis work under the

direction of Philippe Tondeur at the University of Illinois.

1. Codimension-one minimal immersions and stb-’lity

Let f: M Nm+ be an isometric immersion from a closed Riemannian
manifold M into a Riemannian manifold N. We recall the second variation
formulas of energy and volume for such an immersion that is minimal, thus
also harmonic:

(1.1) d2E()
tO

(1.2) d V(ft)
dt 2

t=o L pn

Here, dV denotes the Riemannian measure of (M, gM), and ft, (- a, a),
denotes a variation of the immersion f with f0 f- This variation generates a
vector field v along f, with u denoting the normal component of ,, with
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respect to the metric gn- p denotes the Ricci operator of N, X7 the connec-
tion of the pull-back bundle f*TN, and V t, X7 the tangential, normal compo-
nents of 7. (3,n, ,n) is the norm-square of the/)n component of the second
fundamental form of the immersion.

THEOREM 1.1. Let f: M" N"+1 where M is a compact, oriented, Rie-
mannian manifold without boundary, and N is a flat, oriented Riemannian

manifold. Then, f is minimal and volume stable iff it is totally geodesic.

Proof Assume that f is totally geodesic. Then f is minimal, and

a v(ft)
dt 2

t=o
fM(V ll 7 ll ) dV > 0 for all variations ft-

Conversely, assume that f is minimal and volume stable. Then,

a v(f,)
dt 2

for all variations ft- If f is not totally geodesic, then for some variational
vector field v we have ft(v, )n) dV > 0, as (vn, ,) >_ 0 on f(M). Since
un= hEm+l, where h is some smooth function on f(M) and Fm+ is the
global unit normal on f(M), we get

(pn, ) dV Fm+l, Fro+l) dV > O.

Thus, fM( F.,+ I, Fm+ x) dV > O.
For the variation of f given by ft(x) expf,,)(t Fm+l), we have

tO
fM(7nFm+l,7nFm+l)dV- fM(Fm+l, Fro+l)dV.

Now,
m

V"Fm+, VnFm+l) dV gN VEFm+I, VEFm+I dV
=1

where (Ek ) (k 1,..., m) is an orthonormal frame for TM (locally) with
respect to the metric gt-Also,

Vfl.kFm+ gN(VEkFm+I, Fm+l)Fm+l
1/2[Ek(gu(Fm+, Fm+)f)]Fm+

"-’0.
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Thus,

d:V(ft)
dt 2

t--o
F+) dV < O.

This contradicts the assumed stability of f, and f must be totally geodesic.

PROPOSITION 1.2. Let f: Mm---) Nm+l where M is a compact, oriented,
Riemannian manifold without boundary, and N is a flat Riemannian manifold.
Then, iff is a harmonic immersion, it must be energy stable.

Proof. This is clear from (1.1).

From these two results it follows that if we can find a minimal isometric
immersion f: Mm--- Nm+l that is not totally geodesic, with M and N as
above, then f will be a minimal immersion that is unstable for the volume
integral. On the other hand, it will be a harmonic immersion that is stable for
the energy integral. To find such an immersion we will look at the case where
M is of dimension 2. We will use the following result of Chen and Nagano
found in [3].

PROPOSITION 1.3. Let f: M2
_
N be a harmonic immersion from a compact

two-dimensional Riemannian manifold into a Riemannian manifold N of non-

positive sectional curvature. Then, the Euler characteristic of M satisfies x(M)
< O. If x(M) 0, then f must be totally geodesic.

If N is flat, then x(M)= 0 iff f is totally geodesic. This result together
with Theorem 1.1 gives the following result.

COROLLARY 1.4. Let f: M2 --) T be a minimal Riemannian immersion with
M a compact, oriented surface without boundary, and T the fiat three-torus.
Then, M has genus g >_ 2 ifff is unstable.

We now discuss several surfaces in T which exhibit opposite energy and
stability behavior. The first such surface is Schwarz’s surface.

Let P be a quadrilateral in R given by four line segments of equal length
such that the angles between the edges are all r/3. P will bound a unique
smooth minimal surface M(P) with P as its boundary. By Schwarz’s Reflec-
tion Theorem we can reflect this minimal surface through an edge e via the
reflection S to get a new minimal surface M(P) U Se(M(P)). We continue
reflecting this new surface across the remaining edges, and then reflect again
through any new edges. Continuing this process indefinitely, we get a complete
minimal surface M’ in R that is smooth and also triply-periodic. Dividing out
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by the lattice-group action we get a minimal surface in T3. A sketch of this
surface can be found in Schwarz’s original paper [8, p. 4]. However, this
surface is not orientable. We can easily generate an orientable coveting of this
surface in R3, yielding a minimal surface Mr c T of genus 9.
By Corollary 1.4, Mr is unstable for the area integral, but stable for the

energy integral. This result is surprising because the original minimal surface
with boundary, M(P), minimizes both area and energy.
The curve P that generates Schwartz’s surface can also be generated from

the fundamental root vectors for the root system A of the simple Lie group
SL(6, C). Re-normalizing the root vectors to have length v- we can let
0/1 (0,1, 1), a2 (1, 1, 0), a (0,1,1). Then, P is given by the edge
vectors e al, e2 a2, e ct3, and e4 -(or + ot2 + or3).
The relationship between minimal surfaces in tori and root systems was

discovered by T. Nagano and B. Smyth, in [5]. They show that the root
systems C3 and B also generate minimal surfaces in T3. Other examples can
be found in [6] and [7].

2. Volume unstable minimal sudaces in higher dimensional manifolds

In [5] it is shown that to every irreducible root system in R there is a
nonsingular minimal surface M2 in Tn. We will apply the following result to
these surfaces.

THEOREM 2.1. Let M" c N be a compact, oriented submanifold, without
boundary, in a parallelizable Riemannian manifold. Then, M is minimal and
volume stable iff it is a totally geodesic submanifoM.

Since the root vectors of a root system are linearly independent then the
minimal surface generated in R", whose boundary is the polygon constructed
from the root vectors, cannot be planar. Thus, the minimal surface in T"
generated from this minimal surface in R" cannot be totally geodesic. So, the
surfaces of Nagano-Smyth must be unstable for the volume integral by
Theorem 2.1. They are also energy stable by Prop. 1.2. Thus, they form an
infinite family of minimal surfaces in tori that exhibit contrary stability
behavior for the energy and volume.

Proof of Theorem 2.1. If M is totally geodesic, then it is minimal. Since N
is parallelizable, p 0, and

dt 2 t--0
f(A"v", V "v") dV > 0

for all variations Mt.
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Assume conversely that M is minimal and volume stable. Let V be a
parallel vector field on N, and (Ek)’= be an orthonormal basis for TM, x

M. For the variation of M given by Mt(x) expx(t V) we have

dt 2
t=o

f,(vv, v ov) (v, v) dV

m

E ( (VE’ EI)(VE1V’ Ek) )
k,l=l

{m )2+ E (Ve,V,Ek) dV (see [4])
k=l

0, as V is parallel.

Define a symmetric, bilinear operator I on normal vector fields on M by

I(X, Y) fM(V"X,v"Y) (X, Y) dV

for X, Y sections in the normal bundle. Then, I(Vn, V")= 0. Since M is
stable, I(Z, Z) > 0 for all normal sections Z. So,

d/dsls=oI(V" + sW, V" + sW) 2I(Vn, W) 0

for all normal sections W and

(2.2) V "V", V "W) dV ft(V", W) dV for all W.

Let W hV" for h a smooth function on M. Then, equation (2.2) yields

m

k---1

Since (XT,V", V") 1/2Ek((V", V")), we get

fM1/2gM(dMh, dM((V V"))) + h[(v"V", V"V") (V", V")] dV= 0

and

fMAM(h) (Vn, Vn) + 2h[(V"vn, vnvn) (Vn, Vn)] dV= O.
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Let q 2[(V"V", Vnv") (23V", Vn)]. Then, q: M R, and we get

fM{At(h)" (V",V") +h.q} dV=O.

Suppose that q 4:0 somewhere on M. Then, since fMq dV 0, by (2.2), we
have q: M [-a, b]. We can choose a regular value C > 0 in [-a, b] such
that W q-a([C, b]} will be a smooth m-manifold in M with a smooth
boundary (m- 1)-manifold. For such a manifold the eigenvalues of the
Laplacian A w^ corresponding to solutions of the Dirichlet problem on W are
positive, and the eigenfunctions corresponding to the first eigenvalue a are
strictly negative or strictly positive on W Int(W ) [1, pp. 102-103]. Let h
be an eigenfunction for X on W As h vanishes on the boundary of W
we can extend h by zero to the rest of M, getting a smooth function on M.
Let h h in (2.3). Then,

fw(a,(h). (v", v") + h

Locally, on W, At A w. So, we get

.q)dV=O,

fwhl[Xl (Vn, Vn) + q] dV= O.

But, (a. V",V") +q} >0, and ha>0or <0onallof W. Thus, q=0
on M.

Suppose that M is not totally geodesic. Then, there is some x M and
some unit normal vector V such that 3Vx, Vx) > 0. By parallel translation
of V we get a parallel vector field V such that ft(3V", V")dV > 0. Let
W hV" in equation (3.3) for h a smooth function on M. We get

f,(h) (V", V") dV 0 or fh. A,((V", V")) dV 0.

By appropriate choice of h we get At((V", V")) 0, and thus (V", V")
constant 1, since it is of unit length at x.

Since (V, V) (V", V") + (Vt, Vt), then Vt= 0-vector field, and V V"
on M. Now,

However,

f,(a"v", v"v") dv f,(v", v") dv . o.

f,(a"v", v"v") dv f,(a"v, v"v) dv o.

This is clearly impossible, and M must be totally geodesic.
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3. The Gauss map and minimal surfaces in T

Barbosa and Do Carmo in [2] investigated the stability of a minimal surface
in R by means of the Gauss map of the surface. They showed that if the
spherical area of the Gauss map of a minimal surface in R is less than 2r,
then the surface is stable.
We can define a Gauss map on a minimal surface in T in terms of the

standard Gauss map of the coveting surface in R3. For this new Gauss map
we get the following result.

PROPOSITION 3.1. Let f: M2 -- T be a minimal isometric immersion with
M a compact, oriented Riemannian manifoM without boundary. Then"

(i) f is volume stable iff the Gauss map of M, g’" M2 S 2, is a constant.

(ii) f is volume unstable iff the Gauss map has maximal spherical area
( 4r). In fact, g’ is onto S 2.

Proof (i) By Theorem 1.1, f is volume stable iff it is totally geodesic.
This is true iff f(M) is a sub-torus in T3. The result is then clear.

(ii) By Theorem 1.1, f is volume unstable iff f(M) is not a sub-torus in
T 3. Let M’ be the covering of M in R3. In [9], F. Xavier showed that if M’ is
not fiat, then the Gauss map of M’ cannot omit more than 6 points of the
sphere. Thus, g’ cannot omit more than 6 points of S 2. Since M is compact,
g’ must be onto. Similarly, if g’ is onto, then f(M) cannot be a sub-torus
in T 3.
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