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A REMARK ON THE DEGREES OF COMMUTATIVE
ALGEBRAIC GROUPS

BY

HERBERT LANGE

Let G denote a connected commutative algebraic group over an alge-
braically closed field k and G’ an algebraic subgroup on G. Then there is a
canonical commutative diagram with exact rows

where L denotes the maximal connected linear subgroup of G, A an abelian
variety, L’ G’ C L and A’ the image of G’ in A. G is a locally trivial
principal L-bundle over A. Hence if X is any L-variety over k, then the space
of orbits of G X under the action of L,

’x,
is a locally trivial fibre bundle with fibre X over A. Moreover if j: L P is
an open L-equivariant immersion of L into a projective L-variety P, G(P) is
a (projective) compactification of G (of. [2]). Let r: G(P) A denote tile
natural projection map. Let M be an L-linearized line bundle on P and N be
a line bundle on A. G(M) is a line bundle on G(P) (cf. [2, Lemma 1.2]). It is
the aim of the present note to prove the following theorem which answers a
question of [1] (of. Remark 2 below).

THEOREM 1. Assume that M, N and G(M) (R) r*N are very ample on P, A
and G(P ) respectively. Then for the degrees of L’, G’, and A’ for the correspond-
ing projective embeddings we have

deg(t)e’*u dim L’ degt L’ degN A’.
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Here, if X is any projective variety over k with embedding X P, associated
to a very ample line bundle H on X and Y is any quasiprojective subvariety of
X (not n__ecessarily irreducible), we denote by degn Y the degree of the Zariski
closure Y of Y in P,.

Remark 2. In the terminology of [1], Theorem 1 can be written as follows"

dim G’ )deg(G’) dim L’ deg,(L’), deg(A’)

where the hypotheses are as above and " G P, and +" A Pm respec-
tively denote the projective embeddings and their restrictions to subvarieties
associated to the line bundles G(M) (R) r*N and N. (Note that
degc(M)e.N L’ degM L’). In Proposition 7 of [1] the inequality

deg(G’) _>_ deg(L’). deg (A’)

was given. The above equality over the field of complex numbers implies, as
conjectured in Remark 4 of [1], that the volume of the maximal compact
subgroup of G’ and the degree of G’ are equivalent quantities. In the special
cases of abelian varieties and linear groups this was proved already in [1] (cf.
[1, Propositions 3 and 5]).

Remark 3. In all important cases the first two assumptions that M and N
are very ample imply that G(M) (R) r*N is very ample. For example in the
case of Serre’s compactification (i.e., using a splitting of L into a product of
multiplicative and additive groups and natural embeddings of these groups
into Px) this was proved by Serre in [3] (cf. [3, Corollaire and Remarque 1 of

1.3]). Moreover if M and N are normally generated, G(M)(R) r*N is
normally generated as well (cf. [2, Theorem 3.5]) which implies in particular
the very ampleness.

The proof is divided into 3 parts" First we prove the theorem for the special
case G’ G. Then we reduce the case in which G’ and L’ are connected to the
first case and finally the general case to the connected one.

1. Proof of the theorem in the case G’ G

If for a very ample line bundle H on a projective variety X,

Pu(n) =x(X,H")

denotes its Hilbert polynomial, the degree degn X of X with respect to H is
given by the highest coefficient of the polynomial Pn(n) multiplied by
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(dim X)! It follows that it suffices to prove the polynomial identity

To see this we use the following lemma, for the proof of which we refer to
Theorem 3.6 in [2]. (Note that M is normally generated for n >> 0.)

LEMMA 4. Under the above assumptions we have, for n >> 0,

h(G(P), G(Mn) (R) *Nn) h(P, Mn) h(A, Nn).

Here h denotes the dimension of the corresponding cohomology group. Note
that Lemma 4 is valid for every n >= 1. In fact the proof of Theorem 3.6 in [2]
works in all these cases but we do not need this. Hence

PG(M)e,.N(n) h(G(P)), (G(M) (R) r*N)") for n >> 0

(Kodaira’s vanishing theorem)
h (G (P), G (M") (R) ,r’N") [2, Corollary 1.5

h(P, M"). h(A, N") for n >> 0 (Lemma 4)
PM (n). Pu (n) for n >> 0 (Kodaira’s vanishing theorem).

Since two polynomials are equal if and only if they have the same values for
all integers n >> 0, this implies the assertion.

2. Proof in case G’ and L’ are connected

In this case L’ is the unique maximal connected linear subgroup of G’ and
the diagram (,) factors as follows"

where the middle row is the pullback of the lower row, i.e., G" G AA’ and
the pushout of the upper row, i.e., G" G’ L’L. Let P’ denote the Zariski
closure of L’ in P. The natural map j’: L’ P’ is L’-equivariant and we have



412 HERBERT LANGE

the commutative diagram

L ---. P

The L-equivariant map i22-" G" G induces a map

,: "(P) ---, (’)

which is a closed immersion, since i22: G" - G is so. The L’-equivariant map
i1: P’ P induces a map

which combined with the canonical isomorphism

’() ’ x’-’ ’ x% x’-/, " x’-’P "(e)

gives a natural map

fl: G’(P’) --> G"(P).

Since ]: P’ P is a closed immersion, so is ft. In particular we get:

LEMMA 5. G’(P’) is the Zariski-closure of G’ in G(P).

In order to prove the theorem in this case it suffices to prove:

LEMMA 6.

Since then

There is an isomorphism of line bundles

,:;’(;,*)--

G’ deg( G’ (definition of deg)degG(M)(R)r*N a)*a(M)(R)r’*N

deg G’(i*M)(R)’*N G’ (Lemma 6)

dim L’ degh,(L’) deg,,,A’

(Part 1 of the proof)

(dima’)dim L’ degL’, degrA’ (definition of deg)

Here r’: G’(P’) A’ denotes the natural projection map.
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Proof of Lemma 6.

and finally

First we have

ot*G(M) G(M) Xo(p)G"(P)
G XM c,xpG XLp

O" XLM= G"(M)

fl*G"(M) G’(P’) Xv,,(p (G" XLM)
(G’ x’P’) x ,,,x,.,,(G’ x% xM)
(G’ x’P’) x,,,,,(G’ x’M)
G’ X L’ (P’ X pM)

G’(]I*M )
which completes the proof in case 2.

3. Proof in the general case

It is obvious that the theorem is valid in general if it is proved for any
connected subgroup G’. Hence we may assume that G’ is connected. Let L
denote the component of L’ containing the identity element. Then we have the
following diagram with exact rows and columns (cf. [1, Proposition 6])

0 0 L’/L

L/3 -----G’---- B

L’ G’ A’

’/; o o

0

,0

---,0
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Here B is an abelian variety and an isogeny with kernel L’/L. According
to Lemma 5 and 6 (note that they are valid in this slightly more general
situation) we have to show that

degG,(r),,,,,v, G’ dimdim G’L, Idegt, L’ degN,A’

with M’ ]I*M and N’ i3*N, where we use the notations of diagrams (,)
and (, ,), the latter applied in the slightly more general situation of a not
necessarily connected L’. Let P( denote the Zariski closure of L0 in P’ and let
io: Po’ P’ denote the natural embedding.

LEMMA 7. o induces an isomorphism G’( P) ) G’(P’) of k-varieties.

Note that G’(P0’) is a fibre bunde over B and G’(P’) a fibre bunde over A’.
The isomorphism does not respect any fibre bundle structure.

Proof The morphism

G’ xq’/’o’---, G’ x"P
" (g’, p;), ( g’, lop;)

is obviously injective. To see that it is surjective consider an dement

(g’, p’) G’ XL’P ’.

Since L is the identity component of L’ and P0’ is the component of P’
containing L there is an L’ such that Ip’ P. Hence

(g’, p’) (g’1-1, ]o(lP’) o(g’1-1, lp’)

which means that a is surjective.
Identifying both sides of Lemma 7 we get

G’(io*’) G’ x’-’’,; x,,,’ G’ x’-’’ x ,,,’ G’ x"’ G’(r)

and hence

degG,(r)(R),,,.v, G’ degG,(io.M,)(R),rW.N, G’

where rn: G’(P() B denotes the natural projection map. Since is finite,
9)*N’ is very ample and we may apply Part 1 of the proof to the last expression
to get

G’ ( dim G’
degG’(ig M’)(R) rp*N’ dim L degd,r L- deg,v, B.
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Now on the one hand we have

1
deggt, L IL,/LI degr L’

since L’ has ]L’/LI components one of which is L and on the other hand

deg,N, B IL’/LI degN, A’

since tp is an isogeny of degree IL’/LI. This completes the proof of the
assertion and thus of the theorem.
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