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KNESER COLORINGS OF POLYHEDRA

BY

K.S. SARKARIA

1. Introduction

(1.1) It is well known that if a 1-dimensional simplicial complex, i.e., a
"graph", K1, embeds in a 2-dimensional manifold M2, then its chromatic
number is less than a certain constant c, which depends only on the topology
of M2. We have proved elsewhere various generalisations of this result which
apply to higher dimensional simplicial complexes Kn" see [18], [19] and [20].

In this paper we turn things around and show that if a simplicial complex
Kn can be suitably colored by not too many colors, then it p.1. embeds in a
given Rm. As typical specimens of such results we have the following two:

THEOREM 2 (2.5.1). Let G(K) denote the graph whose vertices are pairs
(v,O) where v is a vertex of K and 0 a maximal simplex of K not containing
v, with (Vl, 01) adjacent to (u2, 02) iff v 02 and U2 (-01. If G(K) has
chromatic number < m + l and 2m>_3 (n + l), or else n l and m= 2,
then K p. 1. embeds in Rm.

THEOREM 6 (3.2.1). Let G(X) denote the graph whose vertices X/’ are
closures of the non-singular edge-less components of the underlyingpolyhedron X
of Kn, with X/’ adjacent to Xj iff Xi is disjoint from Xjn. If G(Xn) is
bichromatic and n 2 then Kn p.l. embeds in R2n.

Note that Theorem 6 above includes the well known fact that an n-pseudo-
manifold p.1. embeds in R2n. The hypotheses of this theorem are relaxed
considerably in Theorem 8 (3.4.2) whose statement involves some equivariant
cohomology.

In Theorem 2 above, K denotes a self-dual poset, the dual deleted product,
which we associate canonically to each simplicial complex Kn. Theorems 3
and 4 of (2.5) are analogues of Theorem 2 for graphs G(K.) arising out of
some sub self-dual posets K: of K. Theorem 3 is in fact a common
generalization of Theorem 2 above and the Lovsz-Kneser Theorem [12] which
appears in this setting only as a very special colorability implies embeddability
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theorem. We thus obtain, besides the classical Kneser graphs, a host of new
examples of highly chromatic graphs which are triangle-free (and much more).

(1.2) Method ofproof.
There are two main ingredients involved in our proofs:
The first of these is the idea, going back at least to van Kampen [25], 1932,

of using the deleted product Kg of a simplicial complex K". Recall that Kg is
the call complex consisting of all cells of the type o /9 where o and 0 are
disjoint simplices of K". One equips Kg with the involution (x, y) (y, x).
The deleted product is important in Embedding Theory because embeddings
f: K R" yield Z2-maps f.’K Sm-1 by

f.(x,y) f(x) -f(y)
If(x) f(y)]

Conversely, Weber’s Theorem [28], 1967, tells us that for 2m > 3(n + 1) the
existence of such an f. implies the existence of an embedding f.
The second idea came to the fore with Lovisz’s proof [12], 1978, of Kneser’s

Conjecture [11], 1955, viz. the idea of using a coloring to construct a suitable

Z2-map. We do not however use Lovtsz’s "neighborhood complexes" and
instead, taking our cue from a subsequent paper [13] of Lovisz on "strongly
self-dual polytopes", find it convenient to work with self-dual posets, i.e., finite
partially ordered sets equipped with non-degenerate order reversing involu-
tions. This idea ties up with deleted products because the latter are self-dual
posets provided one uses the opposite order on the second factor.

(1.3) Summary.
In (2.1) to (2.3) we review the basic definitions. Then we prove Theorem 1

(2.4.2): The graph of a self-dual poser has chromatic number < k + 2 only if
there is a Z2-map from its space to Sk. In (2.5) we prove the aforementioned
Theorems 2, 3 and 4 pertaining to the self-dual poset Kg, and its subposets
K. In particular we obtain a new prooffor the Lovgtsz-Kneser Theorem. Then
we show in (3.1) that an "obvious" generalization of the classical Kneser
graphs is not of much interest. In (3.2) we give a direct proof of Theorem 6 by
using the van Kampen cone construction. In (3.3) we review the equivariant
cohomology of fixed point free Z2-spaces. This is used in (3.4.1) to obtain
some corollaries of Weber’s Theorem, e.g., that for n 4 2 a polyhedron X
unknots in R2"+ only if it embeds in R2". Next we state and prove Theorem 8,

tThis is one of the two main constructions needed in Embedding Theory. The other is the
Whitney Trick [29].
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the aforementioned stronger form of Theorem 6, using Weber’s Theorem. To
do this we introduce a certain interesting sub Z2-polyhedron of the deleted
product which we call the Kneser de&tedproduct (3.4.2). For some combinato-
rial purposes deletedjoins K--which go back at least to Flores [4], 1933--are
more convenient than deleted products Kg. We use this idea in (3.5) to give a
polynomial bound for the codimension one least valence of Kn in terms of the
"extent" to which Kn can p.1. knot in R2+ 1. We conclude by pointing out
some evidence which tends to support the conjectures made in [19].

Since we are going to stick to the piecewise linear category the adjective p.l.
is quite often omitted. Unless otherwise stated all spaces, maps, embeddings,
homeomorphisms, etc., should be assumed p.1. (The main exception will be the
use of some projection maps. These too can be replaced by p.1. maps by means
of the standard way of getting around "the standard mistake"; e.g., see [10],
pp. 20-21.)

2. Self-dual posets

(2.1) Posets, complexes, spaces.
(2.1.1) We will deal mainly with the following categories.
(A) Finite partially ordered sets or POSETS and functions between them

which are MONOTONE, i.e., order preserving or order reversing.
(B) Finite abstract simplicial COMPLEXES2 and functions between them

which are SIMPLICIAL.
(C) Piecewise linear SPACES and MAPS between them which are piecewise

linear.
The isomorphisms of category (C) are called piecewise linear homeomor-

phisms. We say that X embeds piecewise linearly in an X2 if X is homeomor-
phic to a closed subspace X of X2.

(2.1.2) Also we will need the corresponding equivariant categories for the
group Z2:
A Z2-object is an object equipped with an involutive morphism and between

Z2-objects one considers Z2-morphisms, i.e., those which commute with the
involutions.

(2.2) Space of a poset.
(2.2.1) We have the following functors between the above categories.
(B)-% (A). Each simplicial complex is considered as a poset under the

partial order _c. This makes (B) into a subcategory of (A).
(A) --, (B). The derived functor associates to each poset P the simplicial

complex P’ of chains (i.e., totally ordered subsets) of P.

2Our simplices will be non-empty finite sets.
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(B) (C). This functor associates to each abstract simplicial complex K
the piecewise linear space KI underlying the corresponding geometrical
simplicial complex obtained by thinking of each vertex v as the v-th unit
vector of the vector space Rvert/.
A simplicial complex K is called a piecewise linear triangulation of the

compact piecewise linear space X if KI is p.1. homeomorhpic to X.
(2.2.2) A simplicial complex K embeds rectilinearly in a real vector space V

if one has a linear map

Rvert K

which is one-one on KI.
It is known that each compact piecewise linear space X occurs as the image

n(IKI) of some such rectilinear embedding. (Such a K may be called a
rectilinear triangulation of X.) Likewise each piecewise linear map f: X X2

between compact spaces can be written as w2lli-x for suitable choices of
K1,Kg_, /1, ’12, and simplicial map tp: K1 --, K..

Examples of Cairns [3] and van Kampen [26] show that the p.1. embeddabil-
ity of a [gl in V does not guarantee the rectilinear embeddability of K in V.

(2.2.3) Any homeomorph of [P’[ will be denoted by Xe and said to be the
space of the poset P. Note that for any simplicial complex K, K’ can be
identified with the first barycentric derived of K and so K’I is homeomorphic
to gl. Hence the space of any poset is homeomorphic to that of its derived.
By a cell we understand the convex hull of a non-empty finite subset of a

vector space V. A finite set P of cells of V constitutes a cell complex if (1) the
relative interiors of any two distinct cells are disjoint and (2) the relative
boundary of any/-dimensional cell o, > 0, is a union of cells of dimensions
< i: these, and o itself, are called the faces of o. We make P into a poset by
letting 0 < o iff 0 is a face of o. If P is a cell complex P’ can once again be
identified with the simplicial complex arising as the first barycentric derived of
P and so the space of the poset P is homeomorphic to the subspace PI of V
covered by the cell complex P.
Note that a cell complex is a geometrical simplicial complex iff it is

isomorphic as a poset to an abstract simplicial complex.

(2.3) Deleted products, Weber s Theorem.
(2.3.1) The cartesian product X Xof a space with itself shall be equipped

with the involution s which switches the coordinates: s(x, x2) (x2, Xl). The
deleted product X, of X is the Z2-subspace of X X consisting of all pairs
(x,x2), x 4: x2. Each embedding q0: X Y induces a Z2-map q,: X, ---, Y,
by

(,(X1, X2) ((Xl) ((X2))-
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Note that if an embedding % is isotopic to t via the embeddings %, 0 < < 1,
then 0, is Z2-homotopic to tpt, via the Z2-maps q0t,, 0 < < 1.
Any space p.1. homeomorphic to an m-dimensional cell (resp. its boundary)

is called an m-ball Bm (resp. (m D-sphere Sin-t). The 0-sphere S consists
of 2 points and has the involution which interchanges the 2 points. We will
equip Sk, the (k + 1)-fold join of S, with the antipodal involution, i.e., the
(k + 1)-fold join of the involution of S.
LEMMA 1. There is a strong Z2-deformation of the deleted product of an

m-dimensional Euclidean space, or of an m-ball, onto an (m 1)-sphere.

Proof. Consider the orthogonal projection of R’ R" onto the orthogonal
complement

of the diagonal subspace

Thus each isotopy

determines a Z2-homotopy

x_2_, Rm

S
q)t*

Sin_

(2.3.2) The following result illustrates the importance of the deleted prod-
uct functor.

WEBER’S CLASSIFICATION THEOREM. If 2m > 3(n + 1) (resp. 2m
3(n + 1)), and Xn is compact, then q q, sets up a bijectioe ( resp. surjectioe )
correspondence between isotopy classes of embeddings ofXn in Rm and ZE-hOmo-
topy classes of ZE-maps X -- Sm-t.

This theorem is due to Weber [28], 1967; the surjectivity of [tp] ,--> [q,] in
the special case rn--2n, n > 3, was conjectured (and partly proved) by
van Kampen [25], 1932, and proved, independently, by Wu [31], 19.56, and
Shapiro [22], 1957. A theorem exactly analogous to Weber’s is valid for
smooth embeddings of smooth n-manifolds in R" and was proved by Hae-
flige [8], 1962.

(2.3.2a) The results of van Kampen-Wu-Shapiro were stated differently in
terms of the vanishing of some cohomology classes (see (3.4.1) below). It was
Haefliger who reformulated this vanishing condition into an equivalent one
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involving the existence of a ZE-map: this quickly led to the aforementioned
stronger results of Haefliger and Weber. We note the following addendum to
Weber’s Theorem for the case n 1, m 2.

A GRAPH PLANARITY CRITERION.
ZE-map from X, to S1.

A graph X is planar iff there is a

This surprisingly little known result must have been known to van Kampen
by 1932, but the only place where I could find it explicitly stated (in its
cohomological formulation) is p. 210 of Wu’s book [32]. One can prove it
directly without defining the van Kampen Obstruction as follows.

It is easily seen that there is a ZE-map from X, to S iff there is a ZE-map
from the deleted join (see (3.5.1) below) X to S2. But the deleted joins of the
Kuratowski Graphs are ZE-hOmeomorphic to S (see (3.5.2)). Hence by the
Borsuk-Ulam Theorem, X cannot have a subspace homeomorphic to a
Kuratowski Graph, and so must be a planar graph.
We will show elsewhere that one can turn things around and prove this

criterion without using Kuratowski’s Theorem, and then deduce the latter
from it. By using Weber’s Theorem such techniques also yield some higher
dimensional generalizations of Kuratowski’s Theorem: see [34].

(2.3.3) For any poset P (and in particular for simplicial complexes) we
equip P P with the product partial order, (a1, aE) < (b1, bE) iff a _< b1,

a 2 _< bE, and the involution s which switches the coordinates, s(a1, aE)=
(a2, al). If K is a simplicial complex its deleted product K, will be the
ZE-subposet of K x K consisting of all pairs (o1, o2), o t 02 J. Note that
K, can be considered as a ZE-cell complex coveting a compact portion of the
deleted product of the space Xr. In fact one can say more.

Po’osrriON 1. For any simplicial complex K,
tion retract of ( X:),.

is a strong ZE-deforma-

Thus the ZE-hOmotopy type of the space of K, depends only on the
homeomorphism type of the space of K. This result is due to Wu [30]. (Or else
see: [32] or [9]. Note that the argument on p. 257 of [22] is flawed because
fl(p, q) does not vary continuously with p and q.)

(2.4) Self-dual posets.
(2.4.1) A ZE-poset (P, ,) is called a self-dual poset if its involution v is

order reversing and non-degenerate, i.e., if a v(a) for a P.
The v-product P of a self-dual poset (P, v) is the ZE-subposet of P P

consisting of all pairs (a, b), a _< ,(b).

this context we will denote the cells of Kg by o o2 rather than by (0t, o2).
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LEMMA 2.
equivalent.

For any self-dual poset (P, ,), X, and X,. are Z2-homotopy

Proof Define O’P’ --) P’ by associating to each chain (at, bt) < <
(an, bn) of P the chain a < < a < ,(bn) < < ,(bt) of P. Though
it is not simplicial 0 is surjective, inclusion preserving and commutes with the
simplicial involutions s’: P’ ---) P’ and ,’: P’ P’. For each simplex

of P’, the subcomplex om of all faces of om has as its pullback the subcomplex
0-1(o,,) of P’ consisting of all chains of the form

(C/o, l(jo)) < < (Cir, lI(Cjr) )
where 0 < o < < < Jr < < J0 < m. Since 0-1(O’mm) is a cone over
the vertex (co, ,(c,)) its space is contractible. Thus a Z2-section (I)" Xe, --) X,;
of the Z2-map I’1" s; -, s, can be constructed by an upward induction on
the m-skeletons (X,,)m U,,Xo. This (I) is the requisite homotopy inverse of
10’1.

(2.4.2) The graph of a self-dual poser G(P, v) is the graph (i.e., 1-dimen-
sional simplicial complex) whose vertices are the minimal dements of P with 2
vertices a and b joined iff a < v(b). The chromatic number of this graph will
also be referred to as the chromatic number of the self dual poset.

TH.OIM 1. A self-dual poset P has chromatic number < k + 2 only if there
is a Z2-map from Xe to Sk. Thus if the space X, of a self-dual poser P is
k-connected then its chromatic number is at least k + 3.

Proof. Let P0 denote the subset of P consisting of the minimal elements
and let (p: Po -) {1,2,..., k + 2} be a function such that a < v(b) implies
(p(a) (p (b). Let -k/ denote the simplicial complex whose simplices are allk+l
the non-empty subsets of (1,2,..., k + 2}. We can define a Z2-monotone
function

f.p._ (_/+1Ok+ 1"

by

(a, b) (q(A), ep(B))

where A (resp. B) denotes the subset of all minimal elements c < a (resp.
c < b). This follows because if a0 A, b0 B, then a0 < a < ,(b) < ,(b0)
and so (p(ao) (P (b0): thus (p(A) N (p(B) . Since ak+tk/ t triangulates a
(k + 1)-disk its deleted product has, by Proposition 1, the Z2-homotopy type
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of the deleted product of a (k + 1)-disk, and so, by Lemma 1, that of the
ok+lk-sphere Sk. (In fact it is easy to see directly that I( k+lJ, is Z2-homeomor-

phic to sk.) On the other hand Lemma 2 gives us a Z2-map from Xp to
Thus we get a Z2-map from Xp to Sk.
To see the second part note that under the given connectedness hypothesis

one has a Z2-map Sk+ Sp: for each 0 < r < k suitably extend the Z2-map
Sr Xv from the equator S of Sr+l to the northern and southern hemi-
spheres. If chromatic number were less than k / 3 we would have a ZE-map
sk+ 1 Sk. This contradicts Borsuk’s Theorem [2].
The following cases of Theorem I are due to Lovhsz [12], [13], and Walker

[27]: (1) P is a "strongly self-dual polytope"; (2) P is "the proper part .’(G)
of the ortholattice .L’(G) of a graph G"" such an .oCa(G) has the same
homotopy type as (G), "the neighborhood complex of the graph G".

(2.5) Dual deleted product.
(2.5.1) If we equip the set

((ol, o2)’olK,o2K,o1No2= }

of all ordered pairs of disjoint simplices of K with the involution s and the
partial order (o1, o2) (01,/92) iff o

_
01, 02

_
o2 (instead of the product

partial order of (2.3.3)) then we get a self-dual poset Kt which will be called
the dual deleted product of K.

THEOREM 2. If G(K) has chromatic number <_ m + 1, (here m > 0), then
there is a ZE-map (XKn), -- Sm-1. Thus if further 2m >_ 3(n + 1), or else
n 1 and m 2, then Xrn embeds in Rm.

Proof. The second part will follow from Weber’s Theorem. To prove the
first part we note that by Proposition 1 it suffices to find a ZE-map

Under the given chromatic hypothesis Theorem 1 supplies us with a Z2-map

Thus the result follows from the following 1emma.

For any simplicial complex K, Xro has the same Z2-homotopy

Proof. Let X KI and identify K with the geometrical simplicial com-
plex coveting X and thus K, c K K with the cell complex consisting of all
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cells o O, o K, O K, o c O . The space K, covered by K, is thus
a compact Z2-subspace Y of the deleted product, X, c X x X KI x KI,
of X.
Choose a barycenter 8 in each o K and think of K’ as the barycentric

derived of K, i.e., each o’K’ which is a chain o0___ ___oh of K, is
thought of as the geometrical simplex which is the convex hull [80,..., 8]. Let
us now cut up the cells o 0 of K K into smaller cells of the form
o’ 0’, o’ K’, 0’ K’, o’

_
o, 0’

_
0. This gives us the cell complex K’

K’; we denote by C the subcomplex of K’ K’ coveting IK.I.
Consider the cells o’ O’ of C,

OoC co ,k

0t [0,...,], 00 C 01.

We can further cut them up into simplices

[(0.o,o),...,(o/,,6;)1, O<io< <i,.<k,O<jo<

This gives us a simplicial complex isomorphic to Kg. Alternatively we can cut
them up into the simplices

[(OO, 6"O),...,(O’r, 6"r)], O -- io -- < ir < k,l >jo > jr > O.

This gives us a simplicial complex isomorphic to a subcomplex of K6. Thus
[Kg[ Y and [Kh[

_
Y (this already suffices to complete the proof of

Theorem 2). Figure 1 shows an example where IKgl is not homeomorphic
to Y.
To get an isomorph Ko of Kn we have thus to consider also the simplices

[(io’o)’’’’’(ir’OJr)]’
0 <_ io< <_ i,l>jo< onO o , aris-
ing in the above fashion, within cells o x 8 of K K which are not in K..
Since o 0, , note that any such simplex of K6 cannot have the barycen-
ter (,/) of (o, 8) as a vertex. For each cell o 8 of (K K) K. let ro
denote the radial deformation of (o x 8) (,/) from the barycenter (, d)
towards the boundary 0(o x 8). This deformation to maps IK61 n o x 8
into itself. To see this we note that a simplex of above type lies outside
(o x ) iff #Jo 19 and % o and that under the deformation it moves over

the region given as the convex hull of the vertices of the simplex and the points
(8i, Oj), 0 < k < 1 < r, Oj 0, % o (cf. shaded areas in Figure 1). Since

oi Oj, K., it is easy to check that this region is covered by simplices of
Kg. We can now obtain a Z:-deformation of Igl onto Ig, by a step-by-step
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a, bc)

(6, ) (bc, ) (, )

FIG.

(,, e) (a%, e) (?,, e)

procedure in which at each step these radial deformations are used in those
highest dimensional antipodal pair of cells { o O, 0 o } of K K- K,
which still contain some part of the deformed IKI.

(2.5.2) Remarks.
(a) Twisted triangulations analogous to K6 can be defined also on higher

"deleted powers" and "configuration complexes" of K. We will show else-
where that this leads to interesting generalizations of the results of this paper
for finite groups G other than Z2.

(b) Note that the argument used to prove Lemma 3 is applicable to any
Z2-subcomplex of K K. Thus one has:

LV,MMA 3’. If a Z2-subcomplex E of the cell complex K K is considered as
a poset P under then Xe has the same ZE-hOmotopy type as Xe.

This observation will be used in the proof of Theorem 3 below.
(c) In the above proof of Theorem 2 one can avoid using Theorem 1 by means

of the following direct construction.
Let S c Kt denote the set of all minimal dements. Let

f: S--. {O, 1,...,m} =om

denote the given coloring. So

(01, 01) (/32, 02) S,/31 ( 02, 02 ( 01 =0 f(01 01 ) :# f(02 02). (1)
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We now define a (non-simplicial) function F: KD

complex containing all faces of 0m) by
(the simplicial

F(a,,8) (f(o, e) l(o, e) S, o a, e D_ fl). (2)

Note that F(a, fl) is indeed always a non-empty subset of o ". (Had we
started from a coloring f defined over some other S c Kt we would have got
an F with a possibly smaller domain S

___
Kn.) Next we note that F(a, fl) is

always disjoint from F(fl, a) because

01 tl, 01 D fl, /)2 fl, 02 __D tl = /)1 02, /)2 01 =: f(/)1, 01) :i/: f(/)2, 02)

by (1). Finally note that

R1 ----- R2, fll _D f12 =} F(R1, ill) ___.C F(a2, f12)-

Thus we can define a simplicial map fn: Kg (om) by mapping each
simplex

{(ill, ill), (t12, f12),’’" ), R1 ----- t12 ___C fll a f12 D__

of K to the simplex

{(F(0/1, 1), F(I, 1)), (F(o2, 2), F(2, 2)),.--}

of (o),. Then Ifl is the requisite Z2-map from Xr= to S’-1.
(d) Even the graph-theoretical case n 1, m 2, of Theorem 2 seems to

be new. It says that for any non-planar graph K1, the associated graph G(K)
must have chromatic number bigger than 3. In the opposite direction we have:

A FOUR COLOR THEOREM. For any planar graph K the associated graph
G(KXm) has chromatic number < 4.

We will show elsewhere that it is enough to consider the case when K is
hamiltonian. Let L

___
K be a circle containing all the vertices of K1. Choose

an embedding of K in R2 and let the vertices of K be 1,2,..., t, as one
proceeds along L in a clockwise direction. A vertex ({ a ), { b, c }), b < c, of
G(K) will be given (i) the color a if a < b < c, (ii) the color fl if b < a < c
and { b, c} is either {1, } or an edge lying in the bounded component of
112 -IZtl, (iii) the color 3’ if b < a < c and { b, c} is in the unbounded
component of R2 IZl, and (iv) the color 3 if b < c < a. It is easily verified
that this is a good 4-coloring of the vertices of G(K).
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I do not know whether the above bound is the best possible.
Also one has Heawood-type upper bounds for the chromatic number of

G(Klm) as K1 runs over all graphs embeddable in any fixed 2-pseudomani-
fold X2.

(e) It is easy to check that for any graph g the associated graph G(K)
does not contain a complete graph on four vertices. However there are graphs
K for which the chromatic number of G(K) can be arbitrarily big. For
example let oN {0,1,..., N } and let K1 o/v, the complete graph on
N + 1 vertices. Suppose there is a good vertex coloring of G((o)D) with rn
colors. To any 2-simplex { a, b, c } c a N, a < b < c, assign the color of the
vertex (b, (a, c)) of G((o()n). We note that any 3-simplex (e, f, g, h} c
a N, e < f < g < h, has two incident 2-simplices, namely { e, f, g } and
{ f, g, h } which have different colors. By Ramsey’s Theorem no such m-color-
ing of the 2-simplices of aN is possible if N is sufficiently big.

(2.5.3) Let Gs(KD), s > 0, denote the graph whose vertices are pairs (as, 0)
where a is an s-simplex of K and 0 a maximal simplex of K disjoint from as,
with (a, 01) adjacent to (a, 02) iff a 02 and a] 01. So Go(K,-,) G(Km).
Note further that if a vertex (o, 0) of Gs(K) has dim0 < s, then it is an
isolated vertex. Modulo such vertices Gs(Kt) coincides With G(K), the graph
of minimal elements of the sub self-dual poset K of Kt consisting of all
pairs (a,/3) with dim a > s, dim fl > s. The following result generalizes Theo-
rem 2.

THEOREM 3. If Gs(K) has chromatic number < m + 1 2s (here m >
2s), then there is a ZE-map (XKg) --> Sm-1. Thus if further 2m >_ 3(n + 1)
then Xr. embeds in Rm.

Proof Because of Theorem 2 we can assume that K is a proper subset of
K[]. Since m 1 2s > 0, the given chromatic hypothesis and Theorem 1 (or
else the construction of (2.5.2)(c)) supply us with a Z2-map

I(g)’l Y’ Sm--2.

Any chain of K, is built up in a unique way from a chain of K and a chain
of the complementary self-dual poset P Kt- Kx. We note that I(g:)’l
and IP’l are disjoint subspaces of I(K)’ and that any point x of I(K)’I
which is in neither of these subspaces is an interior point of a unique
geometrical simplex of (Kg)’ having some vertices in (K:)’ and some in P’. In
other words I(g)’ is a Z2-subspace of the join ](K.)’], IP’]. Hence if we
could produce a Z2-map g: IP’I --’ S2-x, then we would have the desired
Z2-map

Xra --- I(Kg,)’I sm-l-2s * S2S-1 - am-1.
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Note that the cells 0 0 P are all those cells of Kg for which either
dim 0 or dim 0 is less than s. Thus they constitute a subcomplex E of the cell
complex K. By Lemma Y, [P’[ has the same Z2-homotopy type as its
subspace IE’I. Thus there will be a Z2-map g: IP’I S2-t itf such a Z2-map
can be defined on the subspace E’[: Let T denote the full subcomplex of E’
spanned by vertices of the type (,/f) where either dim 0 > s, dim 0 < s (the
full subcomplex of T determined by all such vertices will be called Tt) or
dim 0 < s, dim 0 > s (these determine the subcomplex T2 of T). We note that
an edge of T cannot have one vertex in T and the other in T2. So T is the
disjoint union of the antipodal subcomplexes T and T2. Thus we can find a

Z2-map

ITI
g

S.
The remaining vertices of E’ are of the type (8, 0), dim o < s, dim 0 < s, and
thus determine a full subcomplex U of E’ of dimension _< 2(s- 1). By
working up inductively on the skeletons of U we see that there is no
obstruction to finding a Z2-map

This gives us the required Z2-map

iE,lg-g_..g2So 2(s- 1) 2s-1*S mS

(2.5.4) Remarks.
more than

(a) The graphs Gs(K) cannot contain a complete graph on

1+
n+l
s+l

vertices: If (o, 0z), (o, Or) are all mutually adjacent, then o, o, ot-1
would be mutually disjoint subsets of the simplex Ot- Since dim Ot < n we thus
get(t- 1)(s+l)<n+landso

n+l
t< +1-s+l

(b) Theorem 3 gives a host of new examples of triangle-free graphs
Gs(K), n < 2s, n s large, having large chromatic numbers:

For instance if we make sure that the n-dimensional simplicial complex gn

does not p.1. embed in R2n, then, by Theorem 3, the chromatic number of
Gs(K) will be at least 2(n s) + 2. Or, again, if n is a power of 2, and Kn
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is a triangulation of RP", the real n-dimensional projective space, then the
chromatic number of Gs(K) is at least 2(n- s)+ 1. This follows because
such a projective space does not p.1. embed in R2"-1 (e.g., see Steenrod [24],
p. 34, or Milnor [15], p. 120).

Since n < 2s the high chromaticity of these graphs is obviously not due to
any contained isomorphs of the "classical Kneser graphs"; see proof of
Theorem 4 below.

(c) Conjecture. The chromatic number of the graph G,_x(K) is bounded
as Kn runs over all n-dimensional simplicial complexes embeddable in R2,
and, more generally, as K runs over all n-dimensional simplicial complexes
embeddable in a fixed X2n (cf. the analogous Conjecture 2 of [19] which deals
with "Ramsey Colorings", and (2.5.2)(d) above).

(2.5.5) We now take a closer look at the chromatic lower bounds which
must be satisfied by the graphs Gs(K) merely by virtue of the local topologi-
cal fact that Kn is n-dimensional. Since there is no Z2-map from gl to
Sn-2, the following result is included in Theorem 3. We give below another
argument which further clarifies the constructions introduced above.

THEOREM 4. For any n-dimensional simplicial complex K" the chromatic
number of G(K) (here n > 2s) is greater than n 2s.

Proof For any subcomplex L of K one can find an isomorph of G,(Lt) in
the graph G,(Kt): assign to each vertex (o, 0) of Gs(Lo) a vertex (o, 0’) of
Gs(Kt) where 0’ is a maximal simplex of K disjoint from o" and containing 0.
Thus it is enough to prove the result when K" o, the simplicial complex
consisting of all the faces of an n-simplex o" {0,1,..., n }. But G((o)=) is
obviously isomorphic to the s-th classical Kneser graph Gs(o) of off, i.e., the
graph whose vertices are the s-faces of o" with 2 vertices adjacent iff they are
disjoint. The theorem follows because the well-known Kneser Conjecture [11],
1955, proved by Lovhsz [12], 1978, tells us that the chromatic number of this
graph is exactly n 2s + 1.

The Lov6sz-Kneser Theorem can also be proved as follows. That n 2s + 1
colors suffice is very easy to see" assign to each s-face having a vertex in

{0,1,..., n- 2s- 1}

its first vertex and to all other s-faces the vertex n 2s. Clearly n 2s 0 or
1 colors won’t do if n 2s or n 2s + 1. So assume n 1 > 2s. If n 2s
colors would do, then Theorem 1 (or else the construction of (2.5.2)(c))
supplies us with a Z2-map
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o= (a,b,c}

(a,b)

(c,

(a,?) \

(b,a)

FIG. 2

where (%n) is the subposet of (o) consisting of all disjoint pairs of faces
(a, fl) of with dim a >_ s, dim/3 > s, i.e., all pairs (ct, fl) with

s<dima, dimfl<n-s-1.

Consider also the subposet (o)s of (off)m consisting of all (a, fl) with
dim a + dim fl n 1, i.e., all (a, fl) for which fl o" et. Any chain of
(o)s has at most n members (corresponding to 0 < dim a < n 1), out of
which at most n (n 2s) 2s (i.e., those with dim a not in [s, n s 1])
are outside (o). So (as in the proof of Theorem 3) we can construct a

Z2-map from 1(%");1 to Sn-2s-2 * S2s-1 Sn-2. This is not possible because
the poset (o), is isomorphic to the poset underlying the simplicial complex,
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o_ 1, of all proper faces of o" (under (a, r) a), and so its space I(off)l is
homeomorphic to the (n 1)-sphere off_ I-
One can check either directly, or else using Lemmas 2 and 3, that the

2(n 1)-dimensional Z2-space I(o)1 has the same Z2-homotopy type as the
Z2-subspaces I(off)l and I(off)l, these being Z2-homeomorphs of S"-1.
Figure 2 shows all these spaces and the deleted join I(o)1 (see (3.5.1)) for
n=2.

3. Kneser graphs of polyhedra

(3.1) Interior of K,.
(3.1.1) Besides the generalisation Gs(K)--or even G(S), S c K--of the

classical Kneser graphs, it is of interest also to examine some others. For
example one can define the i-th Kneser graph Gi(K) of a simplicial complex K
to have as vertices the i-simplices t of K with a joined to et iff a ( a .
THEOREM 5. Let K be a homogeneously n-dimensional simplicial complex

whose deleted product has the same Z2-homotopy type as its interior in ( Xr,),.
If Gn(K ) has chromatic number < rn + 1, then there is a Z2-map (Xm),
S"- 1. Thus iffurther 2m >_ 3(n + 1) then Xr embeds in Rm.

Proof4. Let S(K) be the set of all n-simplices of K and let

q" S,(K) -’+ om= (1,2,...,m + l}

be the postulated coloring: so a’ a implies p(a’) 4= (a). Let
P(K) denote the sub Zz-poset of K x K consisting of all cells 01 o2

___
int K, I. (Since we are considering elements of K K as cells we write them
as o x % instead of as pairs (ox, o_). From the abstract viewpoint we
have P(K) {(o1, (I2): 01 K, (I2 K, StKO f3 StKO2 }.) For each
01 X 02 - P(K), the sets :1 and ’]2 of all n-simplices incident to 01 and o2
respectively, are non-empty and each a’ in 1 is disjoint from each a in Y’E-
Thus we can define an order reversing ZE-morphism

by

(,,, x x

4See also [35] where a variant of this simple argument is used to establish a generalized
ErdSs-Kneser Conjecture.
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In the barycentric subdivision (K K)’, the derived complex (P(K))’ occurs
as the subcomplex made up of all simplices having vertices in intlK, I. Each
point of IK KI lying in neither I(P(K))’I nor in the complement of intlggi
lies in a unique open simplex of (K K)’ having some vertices in (P(K))’
and some outside intlKl thus it is an interior point of a unique line segment
having one end in I(P(K))’I and one outside intlKgl. By pushing along these
line segments towards [(P(K))’[ we see that [(P(K))’[ is a Z2-deformation
retract of intlKgl. Also, by hypothesis, Igl which by Proposition 1 has the
Z2-homotopy type of (Xr),--has the same Z2-homotopy type as intlKgl,
and we know that I(omm),l has the Z2-homotopy type of S’-1. Thus f
furnishes us with a Z2-map (Xrn), S’-1.

(3.1.2) Remarks. (1) The condition Igl intlK[ used in the above
theorem holds whenever Kn is an n-manifold, and its deleted product Kg a
2n-manifold-with-boundary. However very few such Kns will satisfy the
chromatic hypothesis of Theorem 5.

(2) A colorability implies embeddability theorem of the above type cannot
hold unconditionally. To see this consider the n-skeleton of a (2n + 2)-simplex
t2/2. It was proved by van Kampen [25] and Flores [4] that a2+2 does not
embed in R2n. On the other hand the Lovtsz-Kneser Theorem tells us that the
chromatic number of Gn(t2+2) is only 3.

(3) However that is about as bad as things can be. Any K with G(K)
bichromatic embeds in R2. Indeed we will proceed now to show that there are
graphs much smaller than G(K), and depending only on the homeomor-
phism type of the underlying polyhedron X= [Kn[, whose bichromaticity
still forces the same conclusion.

(3.2) The van Kampen construction.
(3.2.1) A point x of a compact n-dimensional space X, n > 1, is called a

singular point (or "of intrinsic dimension < n 1" in the terminology of Akin
[1]) if no triangulation of X contains x in the interior of an n-simplex. A
singular point will be said to lie on the edge of Xn if, in some triangulation of
X, it is incident to exactly one n-simplex. Let sing(Xn) denote the subpolyhe-
dron of all singular points, and X the closures, in Xn, of the components of
Xn sing(X). We define G(xn), the Kneser graph ofpolyhedron Xn, to have
as vertices all those X/ which have no points on the edge of X, with vertices
X/ and X.n joined iff X/n n Xy .
A polyhedron X is said to unknot in Rm if Xn embeds in Rm, and any two

embeddings of Xn in Rm are ambient isotropic to each other. Hudson’s
Isotopy Extension Theorem--see Hudson [10] for background and Akin [1],
Corollary 17, p. 465--assures us that, for m n > 3, this is equivalent to just
demanding that any two embeddings of X in Rm be isotopic to each other.
We now strengthen the theorem of Sarkaria [21] to the following.
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THEOREM 6. The graph G( X"), n 4: 2, can be 2-colored only if X" embeds
in R2n. And G( X"), n 4: 1, can be 1-colored only if X" unknots in R2"+ 1.

Proof We’ll color the vertices of G(X") by w and b. Let W be the union
of all X" G (i.e., those having a point on the edge of X"), and all those
Xfl G which have color w; and let B be the union of all X,." G having
color b. Since WnB has dimension < n-1 it embeds in the 2n-1
dimensional vector subspace

of R2", and we can extend this embedding to a general position map f: X"
R2" which images W W tq B (resp. B W B) into the half space x2, < 0
(resp. x2, > 0). The map f is one-one except for a finite number of pairs of
double points (Pl, P2) which are non-singular.

If one of these double points lies in an X" G we join it, via non-singular
non-double points, to a point on the edge of X" and delete from X" an open
regular neighborhood of this arc. The resulting polyhedron being homeomor-
phic to X, this pair of double points gets eliminated.

Otherwise pl X" G, P2 X: G with X" and X: having the same
color, and so X" q X/" 4: . Such a pair (px, P2) is eliminated, when n > 3,
by means of the van Kampen-Penrose-Whitehead-Zeeman cone construction.
(See [25], p. 152, and [16]; also [33], p. 66.) Briefly, as in [21], join px to P2 via
an arc A, all of whose (other) points are non-singular non-double points, with
at most one exception, which is a singular point. Since n > 3, the circle
C f(A) bounds a 2-disk D_ R2" meeting f(X") only in C. Its regular
neighborhood N(O)ma 2n-diskmmeets f(X") in f(N(A)) with ON(D)(
f(X") =f(ON(A)). Here N(A) denotes regular neighborhood of A. From
hypotheses on A, N(A) is a cone over its boundary ON(A). So we can alter f
on N(A) by coning f(ON(A)) over an interior point of N(D).
The graph-theoretical case n 1 is trivial. In fact, there is no X= KI

which satisfies the hypothesis and for which all vertices of K have valence
>_ 3: This follows by noting that the subcomplexes W and B of K
determined by the white and black edges of K must in fact be in the closed
stars of two vertices w and b, but one cannot have K (Srlw) tA (S-’Trlb).
The second part follows by noting that if n > 2 and G(X") has no edge,

then an analogous elimination of double points converts any general position
map

X"x [0,1]--, R2"+ x [0,1]

into a concordance between the pair of embeddings

X" {0,1} 12n+1 X {0,1}.
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(3.2.2) Remarks. (1) The first part of Theorem 6 is probably true also for
n 2 but we have not written a complete proof for this so far.5 The second
part of Theorem 6 is not true for n 1" G(S1) pt. is 1-colorable but S
knots in R3. However note that any two embeddings of S in R are still
isotopic though of course not necessarily ambient isotopic.

(2) If X" IK"I, then G(Xn) can be identified to a subgraph of Gn(K) by
choosing an n-simplex in each vertex X of G(X"). Obviously G(X") is
usually much smaller than G,(K").

(3) And thus Theorem 6 easily checks the embeddability in R2" and the
unknotting in R2n+ of many interesting n-dimensional spaces. However the
sufficient conditions for embeddability and unknotting given in Theorem 6 are far
from being necessary. There exist polyhedra X", with chromatic number of
G(X") arbitrarily big, which embed in R2n (or unknot in R2n+l). If X" is the
disjoint union of N n-spheres then X" embeds in Rn+ and G(X) has
chromatic number N. Again take the Zeeman Dunce Hat Z2. It is a con-
tractible 2-dimensional polyhedron without an edge. If X" is the disjoint
union of N copies of Z2 S-2, G(X) is once again the complete graph on
N vertices. That Xn unknots in R2+1 follows from Price’s Theorem [17]: If
n > 2 and H(X; Z) 0, then X unknots in R2n+ 1.

(3.3) Equivariant cohomology
We recall some simple facts regarding the cohomology of a polyhedron E

equipped with a fixed point free involution ,.
(3.3.1) The (singular, integral) cochain complex C(E) of E, the total space

of the 2-fold cover r: E E/Z2, has two important subcomplexes. The first,
Cs(E ), consisting of symmetric cochains c invariant under the involution of E,
,*c c, can be identified with the pull back of cochains of E/Z2. The second;
Ca(E ), consisting of antisymmetric cochains c which change sign under the
involution of E, v*c -c, can be identified with the pull back of cochains of
E/Z2 with twisted integer coefficients Z E z2 Z. The cohomologies of
these two subcomplexes can thus be denoted by

Hi(E/Z2; Z) and Hi(E/Z2; ).

LEMMA 4. In Hm(Em Z Hm(Em Z/ 2; Z) or / 2; ), multiplication by 2 is
surjective iff it is bijective iff this group is finite and has no elements of order two.
Further, this happens iff Hm(Em/z2; Z2) 0.

Proof. The first part follows because Hm(Em/Z2; Z) and Hm(Em/Z2; )
are finitely generated Abelian groups. To see the second part one recalls that

5A proof of this delicate case is proposed in [34].
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the short exact coefficient sequences

give rise to long exact Bockstein sequences

Z Hm( E’/Z2,nm(E / 2; Z) x2 Z) ---> nm(Em/Z2; Z2) ---> 0

and

--’> nm(Em/Z2; ) nm(Em/Z2" ’a) ---> nm(Em/Z2" Z2) ---> 0.

(Note that for Hm(Em/Z2; Z) one has an analogue for primes p 4:2 also.)
(3.3.2) There is a natural bijective correspondence between equivariant

maps E --, S and sections of the /-sphere bundle E z2 Si E/Z2 associ-
ated to the 2-fold cover ,r: E ---> E/Z2. For each > 0, even (resp. odd),
obstruction theory (Steenrod [23], pp. 177-198, or Milnor [15], pp. 139-148)
provides us with an obstruction class

oi+l(E) Hi+I(E/Z2; ) (resp. oi+l(E ) ni+l(E/Z2; Z))

which is zero iff this/-sphere bundle has a cross-section over the + 1-skeleton
of any triangulation of E/Zz. In particular if m dim E there is an equivari-
ant map Em ---, Sm. Further, there is a Hopf classification of such maps: the
equivariant homotopy classes of equivariant maps Em --, Sm can be put in
bijective correspondence with the elements of the cohomology group
Hm(Em/Z2; Z) or Hm(Em/Z2; Z) depending on the parity of m.

LEMMA 5. A non-zero obstruction class has order 2.

Proof Under the map ,r: E --, E/Z2, o i+l(E ) pulls back to the + 1-th
obstruction class of the pulled back/-sphere bundle ,r*(E z2 Si) But this is
just the trivial/-sphere bundle E S E. Thus if is even (resp. odd), and
antisymmetric (resp. symmetric) cocycle z represents 0+ I(E), then we must
have a cochain c of E such that /Jc z; therefore i(c- v’c)= 2z (resp.
5(c + v’c) 2z) and so 20i+l(E ) 0.

(3.3.3) One checks easily that cochain complex sequences

0--> Cs(E ) c. C(E)1d-v*
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and

0 C(E) G C(E)--*C(E) --) 0

are exact. Their long exact sequences, which run

(1) --) Hi(E/Z2

’J U’+(E/Z:,Z)"
(2) H’(E/Z2; ,) H’(E; Z) --> Hi(E/Z2; Z)

Hi+1(E/Z2
are called the Smith-Richardson sequences (e.g., see Wu [32], Ch. II) of E. One
has the following characterisation of the obstruction classes, in terms of the
connecting homomorphisms of these sequences:

(3) ox(E) 82(1), o2(E) 8(o1(E)) o3(E ) a2(02(E))

LEMMA 6.

Hm(Em/Z2" Z) ---->"" Hm(E (resp. Hm(Em/Z2; ’) Um(Em’ Z))
is surjectioe iff it is bijective iff

nm(Em/Z2" ) 0 (resp. nm(Em/Z2" Z) 0).

Proofi That surjectivity is equivalent to the vanishing of the stated group is
dear from the exact sequence (1) (resp. (2)). But this in turn ensures, by

zLemma 4, that in Hm(E / 2; Z) (resp. Hm(Em/Z2; )) multiplication by 2
is bijective. At the cochain level multiplication by 2 can be written as the
composite

Cs(E )
_
C(E) t-LY*Cs(E) (resp. Ca(E ) C(E) ld-’, Ca(E)).

So r*, which is induced by the first factor C,(E)c_ C(E) (resp. Ca(E
C(E)) must be injective.

(3.4) Kneser deleted product.
(3.4.1) Before returning to the Kneser graph G(Xn) let us record some

consequences of Weber’s Theorem.
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VAN KAMPEN-WU-SHAPIRO THEOREM. If n 2, Xn embeds in R2 iff the
obstruction class o2,,(X,) H2n(x/z2; Z) vanishes.

Since there is a Z2-map X -- S2n-1 iff 02n(S) 0 this older result is, for
n > 3, merely a special case of Weber’s Theorem. If n 1 the above charac-
terization of planar graphs follows easily from the well-known Kuratowski
Theorem; see Wu [32], p. 210. The 4-dimensional methods of Freedman [5]
may have a beating on the unknown case n 2.6

THEOREM 7. (a) If n > 2, isotopy classes of embeddings X ---, R2+ are
in bijectioe correspondence with the elements of H2(X;/Z2; ).

(b) For n > 2, ,r*: H2(X/Z2; Z) H2n(X; Z) is surjective iff it is bi-
jective iff H2(X7/Z2; ) 0 iffX unknots in R2+ t.

(c) For n 2, X unknots in R2"+1 only if it embeds in R2n.

Proof. To see (a) and (b) use Weber’s Theorem in conjunction with (3.3.2)
and Lemma 6. (Note that (a) and (b) are not true for n 1: a circle S has
H2(S./Z2; ) 0 but does knot in R3.) To see (c) for n > 3 note that if

then, by Lemma 4, H2(X/Z2; Z) is finite with no dements of order two,
and so, by Lemma 5, 02(X) 0. (It would be interesting to have a purely
geometric proof of this.) For n 1, (c) followg because an X unknots in R3

iff it has no loops, in which case it does embed in R2.

PRICE’S THEOREM. If H(Xn; Z) 0, then H2n(x;/z2; ) 0.

Proof. In fact, H(X"; Z) 0 implies H2n(Xn X Xn; Z) 0 (because if
n-cochain bn is coboundary of c-x in K", then 8(c-1 e) b e" in
KX K) which in turn implies H2(X7;Z)= 0 (by exact cohomology
sequence of pair (XX X, X)) and this implies H2(X/Z2;Z)= 0
H2"(X7/Z2; Z) by using exact sequences (1) and (2) of (3.3.3).

(3.4.2) We define Xg,, the Kneser deleted product of the polyhedron X, to
be the Z2-subpolyhedron of X given by

U(XX’(X,X} an edge of G(X")).

6A direct proof is proposed in [34"].
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It is important to observe that in general Xg, does not have the same
Z2-homotopy type as Xg; e.g., in the case of a circle S the deleted product S,
has the homotopy type of S while the Kneser deleted product S,t, is empty.
Again, note that the 2-fold cover X, ---, X,/Z2 is hardly ever trivial; the only
connected X" ’s for which it is trivial are the point and the closed interval. On
the other hand the bichromaticity of G(X) ensures that the 2-fold cover
X,, --* X,,/Z2 is trivial.
However we will now check that X7, does retain some of the information

contained in X:

PROPOSITION 2. The inclusions X.** c_ X and X,/Z2 _c X/Z2 induce
isomorphisms for the 2n-th homologies and cohomologies.

Proof Choose a triangulation K" of X". Since each X" is covered by a
subcomplex K" of K", it follows that X7, is covered by a subcomplex Kg, of
K. Proposition 1 shows that our result will follow if we can show that
K, K7 induces isomorphisms for the 2n-th cohomologies and homologies.
Any 2n-cell xIt2n tl n X O n of K Kg, either (1) lies in an X7 Xj with

X7 f3 Xj :# or (2)lies in an X7 Xj with X7 X with at least one
of the XT, Xj (say X) having some points on the edge of X. Note that
int X (resp. intX/ Xj) is a connected open n-dimensional (resp. 2n-di-
mensional) manifold. In case (1) choose a sequence of (open) n-simplices
o o, o’,..., o of int X/ (resp. O" O, O’,..., O of int Xj), each shar-
ing a common (n 1)-simplex of int X (resp. int Xj) with the next one, such
that 08: but OaotT= ifa<rorb<s. Then

is a sequence of open 2n-cells of Kg tq int(X/" X Xj"), each sharing a common
(2n 1)-face, el2"-1,1 _< _< l- 1, of int(X" x Xj") with the
next one, with the very last one t2 having a (2n 1)-face tI)t2"-1 Or" X
(0"_ (3 0) which is incident to no other 2n-cell of K. In case (2) choose a
sequence of n-simplices o n o, o’,..., or" of int X/", each sharing a common
(n 1)-simplex of int X" with the next one, and with the last, or", having an
(n 1)-face ,-1 incident to no other n-simplex of K. Now
has exactly the same properties as before. With appropriate orientations of the
cells one has the coboundary formula 8(Y’/a-- l"X’atl)2n-l$I xI’2"; this shows that
any 2n-cochain of Kg is cohomologous to one which is supported on Kg,.
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Likewise the boundary formula,

0 c,?t’ + terms involving other 2n-cells of K2
a0

/--1

(c.- c._)’ + c,- + terms involving other
a--1

(2n 1)-cells of K2,

shows that ’t’" cannot occur (with a non-zero coettcient) in any 2n-cycle of
K2, and thus any 2n-cycle of K2 is supported on K2..
With reference to the above proof let us observe that with the appropriate

orientations all 2n-cells of each X x X
_

X2, occur with the same coeffi-
cient in a 2n-cycle of Kg,. Thus each 2n-cycle e HEn(X,/Z2; R) is sup-
ported (i.e., has non-zero coefficients) on a ZE-subspace E of X, which is a
union of some Xn X, (Xfl, Xn ) an edge of G(Xn). For any such E the
corresponding subgraph of G(Xn) determined by these edges and their
vertices will be denoted by G(E).

L,MMA 7. G(E) is bichromatic only if there is a Z2-map f: E sO; also
conversely provided G(E) is known to be a full triangle-free subgraph of G( Xn).

Proof. Let us denote So by (1, 2} and let 1 and 2 also denote the two
colors. If G(E) is 2-colored then the Z2-function f: E SO imaging each
Xfl X. to the color of Xn is easily checked to be continuous. Conversely,
G(E) is triangle-free, so X/n

:SX’ Xn X only if X X : ,
and thus for any Z2-map f: E one has f(X/ Xn) f(’/ X). So
we can 2-color G(E) by assigning to X/n the color f(X/n X).

If each element of H2(Xg/z2; R) can be written as a sum of elements e
with chromatic number of G(E) < k, then we say that H2n(X/Z2; R) has
chromatic number < k.
For all k sufficiently large, H2n(X,/Z2; Z2) is independent of k. This

homology group will be denoted by H2n(X/z2; Z2(R) ).
We now strengthen the first part of Theorem 6 to the following.

THEOmM 8. If H2n(X,/Z2; Z2** ) is bichromatic then there is a Z2-map
X SEn- 1. Thus if we further have n 2 then Xn embeds in R2n.

Proof. Let us choose k so large that H2n(x/z2; Z) has no elements of
order 2k+ 1. The short exact coefficient sequence

0 ’’ Z X--2k Z -- Z2k --- 0
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induces the Bockstein sequence

--) H:’( X/Z2; Z) H2"(X/Z2; Z) -- H2"(X/Z2; Z:,,) --) O.

Observe that x(02n(s)) 0 implies 02n(s) 2k2n for some 2n
H2(X/Z2; Z); but, by Lemma 5, 202(X) 2g+lk2 0, and so, by our
choice of k, 2k2, i.e., 02n(X), is 0. Thus it would suffice to check that the
given hypotheses ensure x(02(Xg))= 0. But H2(X,/Z2;Z2k) is dual to
H2,(Xg,/Z2; Z2k ) (e.g., see Maunder [14], p. 166). Hence it would suffice to
prove that (x(02(Xg,))(e)= 0 whenever e H2(X,/Z2; Z2) has a bichro-
matic G(E). Observe that e lies in the subgroup H2n(E/Z2; Z2) and that the
restriction of 02(X) to E is 02(E) (this follows for example by (3) of
(3.3.3)). Thus

r( O2n( g))(e) x( o2.(E))(e )

and it would suffice to prove that 02n(E)= 0, i.e., that there is a Z2-map
E - S2"-1. But this follows at once from Lemma 7: G(E) is bichromatic so
there is in fact a ZE-map E - S.

(3.5) The deletedjoin.
(3.5.1) Since the deleted product Kg of a simplicial complex K" is only a

cell complex, for some purposes it is more convenient to use instead the
deletedjoin K of K": Take a disjoint copy K of K. The_join K. K--i.e., the
simp__licial complex generated by all simpl_ices of type o0(= o to 0), o K, 0
Kisequipped with the involution o0_---, 06. K# is the Z2-subcomplex

of K. K obtained by omitting those o0 for which o 0 is non-empty.
Likewise the deleted join X, of a space, X", is obtained by deleting all points
of the type 1/2x + 1/22 from the join of spaces X, X. Analogously to Proposi-
tion 1 one can verify that if K triangulates X, then K#I and X# have the
same Z2-homotopy type.
As in [19] we denote by 8(K) the i-th least valence (i.e., the least number of

(i + 1)-simplices incident to an/-simplex) of simplicial complex K.
As an illustration of the use of the deleted join functor we prove the

following polynomial inequality.

THEOREM 9. For any n-dimensional simplicial complex K,

(4) ,_I(K) < 3(n+ 1) or [| 6’-l(K)+n- 1]\
2n+2 !

< dim H2,(Kg; Z2).

Proof The space Igl consists of points of the type tx + (1- t).,
0 < < 1, where x and y lie in disjoint closed simplices of KI We note
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that the subspaces Knl/2 and Knl/2 of [K,[, defined by _< 1/2 and
t >_ 1/2 respectively, retract to the two ends 0 and 1, which are
homeomorphic to IKI; and their intersection, defined by 1/2, is homeo-
morphic to the deleted product [Kg[. Thus the Mayer-Vietoris sequence of the
pair (Knl/2, K1/2 ) yields the exact sequence

Hi(Kn) Hi(Kn) H(K)-- Hi_l(Kn) Hi_l(Kn) --
In particular HE+I(K,; Z2) -’ H2n(g; Z2); SO by applying Theorem 1 of

[19] to the simplicial complex Kg we get

(6) 2n(K,) < 2n +2 or ( 2n(K)2n+2+ 2n) < dim H2,(Kg; Z2).

The required inequality (4) follows from (6) and the fact (compare (2.2.3) of
[20]) that for any simplicial complex K,

(7) 8._1(K) < n or 82.(K) < 8._1(K) < 82.(K) + n + 1.

By Theorem 7(a), K", n > 2, unknots in Rz"+ iff H2n(K/Z2; ) 0, and
so only if H2"(Kg/Z2; Z2)= 0 and so (using exact sequence (1) of (3.3.3)
with Z2 coefficients) only if H2"(Kg; Z2)= 0. Thus Theorem 9 implies the
following result of Sarkaria [20].

COROLLARY 1. If K" unknots in R2" + 1, then /,_ I(K) < 3(n + 1).

As in [19] the weak i-th chromatic number of a simplicial complex, ci(K ), is
the least number of colors which can be assigned to the i-simplices of K in
such a way that no (i + 1)-simplex has all its/-faces of the same color.
We have conjectured [19] that there exists a constant C, depending only on

n such that c,_l(K) <_ C, for all simplicial complexes K embeddable in
R2". In this context we have the following results.

COROLLARY 2. For n 4 2, the class of complexes K" which unknot in R2"+
is contained in the class of complexes which embed in R2n and for this smaller
class one has C,_l(K) _< 3(n + 1).

This follows from Corollary 1 and Theorem 7(c).

COROLLARY 3. For n 4 2, the class of complexes K" for which the Kneser
graph of the underlying polyhedron is bichromatic is contained in the class of



complexes which embed in R9n and for this smaller class one has cn_t(Kn) <
6(n + 1).

In fact if G(XKn) can be well colored by N colors, then for each color t, one
gets a subpolyhedron X

_
XKn which is the union of all Xn’s colored t. Since

any two Xfl’s in X intersect Theorem 6 implies that X unknots in R2+ and
so the subcomplex Kt of K coveting X can have its (n 1)-simplices well
colored by 3(n + 1) colors. Taking N disjoint sets of 3(n + 1) colors to color
each Kt

_
K we see that the (n 1)-simplices of K can be well colored by

3N(n + 1) colors.
Further results regarding the aforementioned conjecture will be given in a

sequel to this paper.7

(3.5.2) Remarks. The following interesting observations regarding the
deleted join are due to Flores [4].

(1) The deletedjoin of the n-skeleton of a (2n + 2)-simplex is Z2-homeomor-
phic to S 2,, + 1.
By exploiting the formula (K. L)# K# L# Flores in fact goes on to

give some more examplesmthe join of n + 1 copies of three points, the join of
o2k+2 and o2(-k-1)+2 etc.mof n-complexes whose deleted join is alsok n-k-1
ZE-hOmeomorphic to S2"+1. (See also Griinbaum [6], exercise 26, p. 67, pp.
210-212, and [7].)

(2) The deleted join of a simplicial complex is ZE-homeomorphic to the
deleted product of its cone.
To see this homeomorphism

IK#I -=-’ I(o" K), l,

map each line segment [x, fi] to the broken line [(x, o), (x, y)] tA [(x, y), (o, y)]
with x going to (x, o), 1/2(x + .) to (x, y) and y to (o, y). Since K embeds in
R’ iff its cone embeds in R’’+1 it follows from (2) that a K embeds in
only if there is a Z2-map from the deleted join of Kn to S’. So Borsuk’s
Theorem implies that the examples of (1) do not embed in R2. Griinbaum [7]
proves that if one knocks out an n-simplex from any of these complexes then
the resulting complex embeds rectilinearly in 12n. Optimal rectilinear immer-
sions (with just one double point) of some of these examples K in R2
had been considered also by van Kampen [25] who used them to show
02,(Kg) : 0 by a direct computation.

7By incorporating Kalai’s "algebraic shifting" into the above cohomological setup we have now
proved the conjectures of [19] as well as (2.5.4)(c); see [34]. However the special cases considered
here continue to retain their interest.
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