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1. Basic definitions and statements of results

A modern treatment of the normal family of holomorphic mappings
between complex manifolds was given in [6]. We shall recall some of the basic
definitions here.

Let M and N be two metric spaces. A subset F of C(M, N), the set of
continuous mappings between M and N, is called normal if every sequence
of F contains a subsequence which is either relatively compact in C(M, N)
or compactly divergent. A sequence {fi} c C(M,N) is called compactly
divergent if for any compact sets K c M and K’ c N there exists no such
that fi(K) n K’ for all > n0.

DEFINITION. A complex manifold N is said to be taut if for every
complex manifold M, the set of all holomorphic mappings from M to N,
denoted by Hol(M, N), is a normal family.
A subset F c_ C(M, N) is called an equicontinuous family if for any e > 0

and any point x M there is a neighborhood U of x such that if x’ U,
then dN(f(x), f(x’)) < e for all f F. Here N is a metric space equipped
with a metric dN inducing its underlying topology.

DEFINITION. Let N be a complex manifold equipped with a metric d
inducing its underlying topology. (N, d) is called a tight manifold if for every
complex manifold M, Hol(M, N) is equicontinuous.

An equivalent theory to the normal family of holomorphic mappings
concerning intrinsic measures on complex manifolds has been developed by
Eisenman, Kobayashi, Royden [1], [3], [5] and others. We recall its definition
here for future use.
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HOLOMORPHIC MAPPINGS 657

DEFINITION. Let M be a complex manifold of dimension n, x e M, k an
integer between 1 and n. The Eisenman differential k-measure on M is a
function

E" AkTx(M) R

such that for all (x, v) e Ak T(M),

[

E(x, v) inf/R-2k there exists a f Hol(B(R), M)such that

f(O) x, df - A A -k (0) V

where Bk(R) {w (w1, w2,... Wk) - ckl Iwl < R}.

When k n, it associates with the Eisenman-Kobayashi volume form
denoted by the same symbol

E IEldz A d A Adzn A dn,

where IEtl is a local function on M. Here we identify

x, , ) Z,( x, v

complex conjugate of the vector v An Tn(M).

When k 1, it corresponds to the Kobayashi-Royden differential metric,
denoted by KM eEau. Its integrated form is called the Kobayashi distance
function on M, denoted by dur [3], [5]. Both Eur and d are decreasing
under holomorphic mappings between complex manifolds. As a consequence,
they are invariant under biholomorphisms. If dt is a metric on M, then M is
called a hyperbolic manifold. If dt is Cauchy complete, then M is called a
completely hyperbolic manifold. Cauchy completeness of d on a hyperbolic
manifold M is equivalent to compact completeness, i.e., for every r > 0 the
level set

Mr= {yMId(x,y) <r}

is relatively compact on M, where x is a fixed point in M. It follows from the
definitions that taut manifolds are always tight. Tight manifolds are equiva-
lent to hyperbolic manifolds. Completely hyperbolic manifolds are always
taut, but the converse is not necessarily true. It is a well-known fact that a
tight manifold does not admit any non-trivial holomorphic curve [3].
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The differential Caratheodory k-measure CkM, 1 < k < n, on a complex
manifold M is defined as follows:

C: A’T(M) R, (x,v) A’T(M),

where

CM(X,V) sup( R--- there exists an f Hol(M, B(R)) such that

0
f(x) O, dfx(U) OW (o)

Bk(R) {w (w1, W2,... Wk) Ck" Iwl < R}.

CkM has the important property of being measure-decreasing under holomor-
phic mappings. For this reason, C is invariant under biholomorphisms.
When k n, it associates with a volume form

Ct ICldZl A d. A A dz A

where Ctl is a local function defined on M. When k 1, it corresponds to
the Caratheodory-Reiffen differential metric, denoted by

The Caratheodory distance function d is defined as follows: Let x, y e M,

d(x, y) sup{ 6(2, )l there exists a holomorphic mapping

f Hol(M, B1), so that 2 f(x), y f(y)}.

Here 6(2, y) denotes the distance between 2 and p with respect to the
Poincare metric on B1 {w clt wl < 1}. The Caratheodory distance
function is decreasing under holomorphic mappings and invariant under
biholomorphisms.

Let N be a complex manifold with dNc nontrivial everywhere. Suppose dc
is compactly complete, in the sense that for any r > 0 and x N, the level
set

N,. {YldNC(x, y) < r}

is compact in N. It is easy to prove that N is holomorphically convex with
respect to the set of bounded holomorphic functions (for the proof of this
standard fact, see [3]).
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Let D be a domain on a complex manifold M and pOD a fixed

boundary point. A boundary neighborhood / of D at p means an open set
D U D, where U is an open set in M containing p. A boundary point
p OD is called totally real if there exists no complex analytic variety
containing p of positive dimension lying on OD. We remark here that for a
relatively compact domain D on a complex manifold which admits a strictly
plurisubharmonic function, the set of totally real points on OD is nonempty.
A domain D on a complex manifold is said to be admitting a compact

quotient if D/Aut(D) is compact, where Aut(D) is the group of biholomor-
phisms of D. One should notice that D/Aut(D) is compact if D covers a
compact complex manifold. When D is either a taut manifold or a relatively
compact set of a tight manifold, Aut(D) is a Lie group [6]. Furthermore,
Aut(D) acts properly on D if D is taut.

DEFINITION. Let D and D2 be two domains on two complex manifolds
respectively. D is said to be locally biholomorphic to DE at two boundary
points /91 OD and P2 ODE if:

(i) There exist boundary^neighborhoods /1 of px and /2 of P2 with a
biholomorphism f: D1 D2.

(ii) There is a sequence {xi} c/1 converging to PI such that {f(xi) /2}
will converge to/92

THEOREM 1. Let D and D2 be domains on two taut manifolds X and Xz
respectively. Suppose both D and DE admit compact quotients and D is locally
biholomorphic to DE at two totally real boundary points Pl OD1, P2 OD2.
Then D is biholomorphic to DE.

The second part of this paper is concerning an open problem to character-
ize those Stein manifolds with nontrivial bounded holomorphic functions.
The following problem is of interest to both Kihler geometry and several
complex variables.

Main Problem. Let M be a compact Kihler manifold with negative
sectional curvature; does its universal cover admit a non-trivial bounded
holomorphic function?

We have the following observations.

THEOREM 2. Let D c M be a domain admitting a compact quotient on a
taut manifold M. Suppose there is a boundary neighborhood D U N D of a
totally real boundary point p OD satisfying one of the following local condi-
tions:

(1) Cb/K6 > c2 0 on if) for some constant c 2 > O;
(2) C/E > d2 > 0 on ) for some constant d2 > O.
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Then D admits a lot of bounded holomorphic functions which give local
coordinate functions at each point of D.

THEOREM 3. Let D be a domain admitting a compact quotient on a taut

manifold M. Suppose there exists a boundary neighborhood D V D of a
totally real boundary point p OD with the condition

>e2>0,

for all distinct points x, y in D, where e is a constant. Then D is a holomorphi-
cally convex with respect to the set of all bounded holomorphic functions.

It is hoped that the localization procedure developed here would be
helpful to solve our main problem stated above.

2. Remarks on the normal family of holomorphic mappings,
biholomorphic group actions and proof of theorem 1

LEMMA 2.1. Let D be a domain on a taut manifold such that D/Aut(D) is
compact. Then there exists a compact subset K on D with the properly that for
every y D there is x K and g Aut(D) such that g(x) y (i.e., Aut(D)
K D; K is sometimes called a fundamental domain of Aut(D)).

Proof One can always exhaust D by a sequence of relatively compact
open set Oii= such that D c c Di+ and LI i= 1De D. Let

rr: D D/Aut(D)

be the canonical projection.- is an open map and D/Aut(D) is compact. Hence there is a positive
integer m such that

rr(Dm) D/Aut(D).

We can take K to be the closure of Dm.

LEMMA 2.2. Let X and Y be complex manifolds and let Y be taut. Suppose:
(1) fi: Xi - Y is holomorphic and {Xi} is an increasing family of open sets

in X with X X + and X I,) i= Xi
(2) There exist compact subsets K X and L Y such that fi(K) L 4=

for all sufficiently large i.
Then there is a subsequence of {fi} converging uniformly on compact sets to a

holomorphic mapping f: X--, Y.
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Proof Consider only those j so large that K c X. Fix such a j, then a
subsequence of {fi} converges uniformly on compact sets on X to a holomor-
phic map X. ---> Y because of the tautness of Y and the assumption that
f/(K) n L 0 for sufficiently large i. Now let j --> . By passing to subse-
quences repeatedly and by the usual diagonal process, we arrive at the
desired holomorphic map f: X Y.

LEMMA 2.3. Let D be a domain on a taut manifold with D/Aut(D)
compact. Then D is taut.

Remark. We shall actually prove that D is completely hyperbolic.

Proof By Lemma 2.1, there is a compact set K c D such that for any
point x D there exist y K and g Aut(D) with g(y) x. Let e > 0 be
a sufficiently small number such that

L {z DidrD(W, z) < e, w K}
is a compact set. Let {xi} be a Cauchy sequence in D with respect to dDr. We
can find a positive integer m such that for all > m, d)(Xm, Xi) < e.
Moreover there is a g Aut(D) such that g(x,,) K. Clearly, g(xi) L for
all > m because dDr is invariant under Aut(D). Passing through a subse-
quence if necessary, {g(xi)} will converge to a point q L because L is
compact. It is easy to see {xi} must converge to g-l(q), for the same reason
that g is an isometry with respect to dDr.
LEMMA 2.4. Let D be a domain on a taut manifold X with D/Aut(D)

compact. Let {xi} be a sequence ofpoints in D converging to a boundary point
p 3D. Then there exists {mi} c Aut(D) such that {’i--" ml(xi)}, through a
subsequence if necessary, converges to a point x D. Furthermore, z mi(x)}
will also converge to p.

Proof. Let K be a compact subset of D as in Lemma 2.1 and let m be an
element in Aut(D) such that Yc ml(xi) K. Through a subsequence, {i}
will converge to a point x K D. To prove {z mi(x)} is convergent to
p, we consider the distance with respect to dDr as follows:

dff) ( zi, xi) dKD (mi( x) xi) dKD (x, m; I( Xi) ) dKD ( X, YCi)

The following inequality is clear by distance decreasing property:

dor > d on D, where d is the Kobayashi metric on X.

We observe that dl(Zi, Xi) "-> 0 as ---> because drD(X, ,i) -"> 0 as {.i}
x. By (.), d(zi, xi) 0 as --> . Since d is finite around an open set of
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p 0D, hence d(xi, p) --) 0, as {xi} -- 19. By the triangle inequality for d, one
has d(zi, 19) "-) 0 as - . Thus {zi} p as a limit.

LEMMA 2.5. Let D be a domain of a taut manifold X. Suppose there is a
totally real point p OD. Let {me} c Aut(D) be a sequence such that {mi(x)}- p for some x D. Then for afly compact subset K c D and any boundary
neighborhood t ofp, mi(K) c D for sufficiently large i. In particular, {mi(Y)}
--* p for any y D.

Proof By normal family argument, through a subsequence, {mi} will
converge on compacta to a holomorphic mapping m: D- X such that
m(D) c OD and m(x) p. Nevertheless, there is no complex analytic variety
of positive dimension lying on OD through p. This implies m must be a
constant map such that m(D) p. Our lemma now follows easily from this
fact.

Proof of Theorem 1. Since D and D2 are locally biholomorphic at

PI OD1 and P2 0DE,^there is a biholomorphism f between two boundary
neighborhood D and D2 of Pl and P2 respectively. Choose two sequences
of relatively compact open subsets {Xi} and {Y/} in D and D2 respectively so
that

(i)
(ii)
(iii)

Xi cc Xi+l, Yi cc Yi+l,
U i=lXi D1, U i=IY/ /2’
X is biholomorphic to 1</ under f (i.e. f(Xi) Yi).

Clearly the sequence of relatively compact open subsets

D g]-1(El), D h-l(y/)

will satisfy the following properties, where

gi} c Aut( D1) and {hi} c Aut(D2)

are the corresponding sequences obtained in Lemmas 2.4, 2.5 (with respect
to the sequences {Xi} and {f(Xi)} in the definition of local biholomorphism at
two boundary points Pl and P2):

(i) D c c D+ 1, Di2 c c Di+1
2

(ii) U i=lD{ D1, U i=lD*2 D2,

(iii) the composition of mappings F h :
between D and D/2

f gi is a biholomorphism

Let K and L be the compact subsets (i.e., fundamental domains) in D
and D2 respectively which are obtained in Lemma 2.1. It is easy to show that
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{F/, D, K, L} satisfies the non-divergent condition in Lemma 2.2. Thus {F/},
through a subsequence, will converge to a holomorphic mapping F" D D2.

On the other hand, one can repeat the same argument to {Fi- 1, D, L, K}. In
this way, one can then prove Fi-1 converge to a holomorphic map G:
D2 - D1. Let a be a fixed point in K. By taking subsequences and readjust-
ments of indices, one can assume gi(a) Si, f gi(a) Yi for all i. It is
clear from the proofs of Lemmas 2.4 and 2.5; one can choose the above
sequence {h i} c Aut(D2) satisfying further property, namely, (h-1 f gi)(a)

L. Let’s say {(h-lo f gi)(a)} converge to b L. Apparently we obtain
the following two conclusions:

(i) G F(a) b,
(ii) Idet(Go F)(a)l 1.

To see that F is a biholomorphism, we apply the following result due to
Dektyarev-Graham-Wu [2] which is a generalization of a theorem of H.
Cartan [4].

THEOREM (Dektyarev-Graham-Wu). Let M and N be complex manifolds of
dimension n, where M is taut. Let a M and b N be two fixed points.
Consider the set T of all holomorphic mappings h: M N and g" N - M such
that h(a) b and g(b) a. If

sup det( go h) (a) 1
T

then M and N are biholomorphic.

3. Proofs of Theorem 2 and 3

LEMMA 3.1. Let D be a domain admitting a compact quotient on the taut

manifold M. Then KD does not vanish everywhere on D.

Proof By Lemma 2.3, D is taut. It follows immediately from Lemma 2.2,
definition of KD and normal family, that KD cannot vanish everywhere on
D, otherwise D would admit a nontrivial holomorphic curve.

LEMMA 3.2. Under the assumptions of Theorem 2(1), Co does not vanish
everywhere on D.

Proof Let x D, be an arbitrary point. Suppose {mi} is the sequence in
Lemma 2.5 such that {mi(x)} p.
D can always be exhausted by a sequence of open sets {Dk}= with

De CCDk+ 1. Let (x,v) be a nonzero vector at x. For a fixed k and
sufficiently large i, from Lemma 2.5, we have mi(Dk) c . We therefore
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have the following chain of inequality:

x. .).
KD(X,V) KD(mi(x),dmi(v))

C6(mi(x),dmi(v))
KD(mi(x), dmi())

The above inequality follows from the fact that the Caratheodory and
Eisenman measures are decreasing under holomorphic mappings (note: the
inclusion mi(D)E3 is holomorphic) and they are invariant under biholo-
morphisms. If one considers the inclusion map DD, then it is clear that

Kb(mi(x),dmi(v)) > Ko(mi(x),dmi(v))

by the volume decreasing property again. Thus we have

Ko(x,v) >-
Cb(mi(x),dmi(v))

C2

Kb(mi(x) dmi(v) ) > > O.

Finally, letting k , by the normal family argument as in Lemma 2.2, it
is easy to prove that CDk(X, V) is convergent to Co(x, v). Then Co(x, v) >
c2Km(x, v) and, from Lemma 3.1, CO does not vanish everywhere on D.

The proof of Theorem 2(1) follows from Lemma 3.2 and the definition of
CO The proof of Theorem 2(2) is similar to Theorem 2(1).
As for the proof of Theorem 3, one can go through the same argument as

for Theorem 2 above and conclude that dCo > c2d. Since doK is a complete
hyperbolic metric on D (Lemma 2.3), doc is compactly complete. By a remark
in the first section of this paper, D is therefore holomorphically convex with
respect to bounded holomorphic functions.
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