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CURVATURE CHARACTERIZATION OF TWO-POINT

HOMOGENEOUS SPACES
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0. Introduction

This note is a continuation of the study in [9] on a conjecture of Bob
Osserman:

Conjecture. A nonflat Riemannian manifold is locally symmetric of rank
one if the curvature operator Ko R(., v)v for any unit vector v has
constant eigenvalues, counting multiplicities.

The affirmation of this conjecture would give us a very geometric under-
standing of two-point homogeneous spaces, for which the curvature condition
in the conjecture is automatically satisfied.
The author showed in [9] that the conjecture is true if the dimension of the

manifold is 4, an odd number, or 2 times an odd number, or if it is a Kaehler
manifold of nonnegative or nonpositive curvature. The Kaehler case is a
direct consequence of a result of Bishop and Goldberg stating that the
maximal (minimal resp.) sectional curvature at each point of a Kaehler
manifold is holomorphic, provided the manifold is nonnegatively (nonposi-
tively resp.) holomorphically pinched [6]. Upon noticing that the curvature
condition in the above conjecture implies the manifold is locally irreducible
(Lemma 2), it is natural to study the quaternionic case after the Kaehler one
in view of the short list of Berger on the possible holonomy groups for
irreducible spaces [2], [18].
A quaternionic Kaehler manifold of dimension 4n, n > 2, is a Riemannian

manifold whose holonomy group lies in Sp(n). Sp(1)c SO(4n) [5], [10],
[11], [12], [15]. Such spaces bear some resemblence to, though differ much
from Kaehler manifolds due to the fact that the Sp(1) part of the holonomy
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group gives rise to a three-dimensional vector bundle 7 consisting at each
point of certain complex structures compatible with the metric (see 1); for
instance, all quaternionic Kaehler manifolds are Einstein for n > 2. How-
ever, after some preliminaries we prove in Section two that a similar result to
that of Bishop and Goldberg does hold for quaternionic Kaehler manifolds as
well (Theorem 1), namely, the maximal (minimal resp.) sectional curvature of
a quaternionic Kaehler manifold at each nonflat point is quaternionic holo-
morphic, i.e., is of the form (R(X, JX)JX, X) for some orthogonal J in U, if
the Einstein constant is nonnegative (nonpositive resp.). We then apply this
result in Section three to the pullback bundle of U over the unit sphere
bundle of the manifold and use some characteristic class arguments and basic
harmonic theory to verify the conjecture for compact simply connected
quaternionic Kaehler manifolds whose second Betti number vanishes, in a
broader context, namely we show that the constancy of the maximal (minimal)
eigenvalue of Kv alone, which may be dependent on the base point of v, will
suffice for the conclusion (Theorem 2).

In Section 4 a modification of Theorem 2 implies that in the category of
compact spaces whose integral cohomology rings are those of compact
symmetric spaces of rank one, the eigenvalues (maximal eigenvalue if the
scalar curvature is nonnegative)of K depending only on the base point of v
characterizes the quaternionic projective spaces among simply connected
quaternionic Kaehler manifolds (Theorem 3). In particular, this and the
affirmation of the conjecture of Osserman in the Kaehler case mentioned in
the beginning assert that the classification of two-point homogeneous spaces
from our geometric-topological approach would be complete if one could
prove that the space is a sphere when the holonomy group is special
orthogonal (Corollaries 3 & 4).

I would like to thank Jun-ichi Hano and David Webb for discussions on
topological aspects of this paper.

1. Preliminaries

We review some basic facts about quaternionic Kaehler manifolds in this
section, leaving the details to [5], [10], [11], [12], [15].
A quaternionic Kaehler manifold M of dimension 4n, n > 2, is an ori-

ented Riemannian manifold whose holonomy group lies in

Sp(n) Sp(1) c SO(4n).

For such a manifold, fix an orientation and choose a local positively oriented
orthonormal frame X1, X2,..., X4, adapted to Sp(n) Sp(1). Then quater-
nionic multiplications on the right on the quaternionic vector space I-I" Ran
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by -i, -j, -k, where 1, i, j, k stand for the standard basis for the quaternion
algebra, induce three local orthogonal complex structures I, J, K with re-
spect to the chosen frame such that IJ K. The complex structures I, J, K
for another adapted frame are related to I, J, K by an orthogonal transfor-
mation in SO(3), therefore glUing V-- Span(I, J, K) into a vector bundle of
dimension 3 over M. Let if= {aI + bJ + cK; a2 + b2 + c2 1} be the unit
sphere bundle of V. For notational conveniencewe will refer to I, J, K as
11, 12, I from now on. Let 0u, to’ and f be the dual forms, connection
forms, and curvature forms for the adapted frame. The connection V on the
manifold induces a connection on V also denoted by V. Then

(1.1) VI ESiI,

where

(1.2)

t-,3 l+4k 3+4k
to2+4k to4+4k

t-,1 l+4k 4+4k
to3+4k to2+2k

S12 t0+4k .2+4k
+4k t3+4k

for 0 < k < n 1. Taking exterior derivatives with respect to (1.2), one finds
the curvature forms A for the connection on 7g to be

(1.3)
32

()l+4k C13+4k
a,2+4k a,4+4k

13
ol+4k 14+4k
a,3+4k a,2+4k

c}l +4k 02+4k
a,,4+4k au3+4k

for0<k<n- 1.
In fact by examining the representation of Sp(n) Sp(1) over R4n, it can be

shown via (1.3) that the manifold is Einstein with Einstein constant
(n + 2)A, where

3

(1.4) 3 Z (R(X,/X)/X, X),
i=1

and

3

(1.5) h E (R(Y, IX)IX,Y),
i=0

for all unit X and unit Y perpendicular to all IiX, where I0 denotes the
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identity transformation. Also

(1.6) A32 -hi, A13 -AJ, A21 -AK,

where whenever without confusion I, J, K denote the skew-symmetric forms
associated with I, J, K. Hence the first Pontrjagin class of ]/is represented
by the harmonic 4-form

(1.7) /,, A2/aqr2(I / I + J/ J + K/ K).

Furthermore H4S(M, R) = 0, s < n, since I / I + J A J + K/ K
Ha(M, R), where H*(M, R) as usual denotes the real cohomology ring of M.
Finally using (1.1) one derives

(1.8) n(x,v);iz IiS(x,v)z +
k

2. Sectional curvature in terms of quaternionic
holomorphic sectional curvatures

Motivated by [6] for the Kaehler case we first prove an algebraic identity
for any sectional curvature in terms of certain quaternionic holomorphic
sectional curvatures for quaternionic Kaehler manifolds. Similar to [6] for
1 <i<3wedefine

Q,( X) ( R( X, IX)IX, X), H(X) a(X)/ llgll 4

and

K(X,Y) (R(X,Y)Y,X).

LEMMA 1.
Then

Let X, Y be perpendicular unit vectors. Let cos(ill) ( IiX, Y ).

24K(X,Y) =-12All- (cos(/3i))2]
+ [. 3(1 + cos(/3i))2Hi(X + I,Y)

+3(1 cos([i))2ni(x I,r)].
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Proof. By algebraic computation one finds that

3Q,(X + IiY ) + 3Qi (X IiY )
6[ Qi(S) + Q(Y) + K(X, Y) + K(IiX, IiY )
+2(R(IiX, X)V, IiV) + 2(R(IiX, IiY)Y,X)

6[Qi(X) + Qi(Y) + 4K(X,Y) + 2(R(IiX, X)Y, IiY)

+ 3 -’Xi( X’ Y)( IkV’ + -"/ki( IiX’ IiY)( IkY’ IiX)]
where the last equality is obtained by applying (1.8) on the fourth and the last
terms of the previous equality. Similarly,

Qi(X + Y) + Qi(X Y)
2[Qi(X) + Qi(Y) + 2(R(IiX, Y)Y, IiY)
+ 2(R(IiX, Y)X, IiY) + (R( IiX Y)Y, IiX)
+(R(IiY, X)X, IiY)

2[Qi(X) + Qi(Y) + 2(R(IiX, X)Y, IiY)

+4(R(IiX, V)X, IiV) _Ai(IiX, Y)(IkX, Y)
k

’Ak(x’ IiY)(Y’ IkX)]
One therefore yields

3Qi( X + IiY ) + 3Qi(X IiY ) Qi(X + Y)
Qi(X- Y) 4Qi(X) 4Qi(Y)
24K(X,Y) + 8(R(IiX, X)Y, IiY) S(R(IiX, Y)X, IiY)
+ 18Eb;ki(x,Y)(IkY, IiX) + 6EAki(IiX, IiY)(IkY, IiX)

k k

2.,Aki(IiX, Y)(IkX, Y) 2.,k(x, IiY)(Y, IkX)
k k

24K(X, Y) + 8(R(X, Y) IiY, IiX)
+ four remaining terms involving A in the previous equality

32K(X, Y) + 26E Ak(x, Y)( IkY, IiX)
k

+ three remaining terms involving A’ in the previous equality,
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where the last equality is obtained by applying (1.8) to the second term of the
previous equality. Summing up over i, using (1.6), and recalling the definition
of ai(x) and Hi(X), one gets

96K(X,Y) 4[3 ,. (1 + cos(fli))2Hi(X + IiY )

+3E(li cs(fli))2ni(x- IiY)]
4

_
Hi(X + Y) + Hi(X Y) + Hi(X) + Hi(Y)]

+ E

which proves the lemma when we notice that the second bracketed summa-
tion is 12A by (1.4). Q.E.D.

THEOREM 1. The maximal (resp. minimal) sectional curvature at each
nonflat point of a quaternionic Kaehler manifold is quaternionic holomorphic if
the scalar curvature is nonnegative (resp. nonpositive).

Proof. We will prove the case when the scalar curvature is nonnegative;
the other case is similar.

Let X and Y be perpendicular unit vectors spanning the section of the
maximal curvature which is a nonnegative constant by the assumption on
the scalar curvature. By Lemma 1

t K( X, Y)

_< --A/2 1- E(COS(i))2]i
+ t/SE [(1 + cos(/3i)) + (1 cos(/3i))2]

1 Ei (cs(/3’))2] [t/4 + h/2].

If either 6 or A is greater than zero then Y’q(cos(fli))2-- 1, as desired.
Otherwise 0 A 6, which implies all the sectional curvatures at the point
are zero. Q.E.D.

COROLLARY 1. Given a quaternionic Kaehler manifold such that the maxi-
mal (minimal resp. if the scalar curvature is negative) eigenvalue of R(., v)v,
IIv II 1, has multiplicity 3 and depends only on the base point of v. Then the
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space must be covered by the quaternionic projective space or its noncompact
dual.

Proof First of all no points can be flat, otherwise at the flat points the
multiplicity of R(., v)v for any unit v would not be 3. Theorem 1 then says
that the maximal (minimal resp. if the scalar is negative) eigenvalue of
R(., v)v must be quaternionic holomorphic, and hence by (1.4) must be equal
to A/3. This implies all the quaternionic holomorphic sectional curvatures
are equal to A/3. Hence the result follows from an argument in [11].

Q.E.D.

3. Aftirmation of the conjecture when H2(M, R) 0

By Corollary 1 the conjecture of Osserman is true once the multiplicity of
the maximal (minimal resp. if the scalar curvature is negative) eigenvalue for
each Ko is 3. We will prove in this section that this is the case when the
second Betti number is zero.

THEOREM 2. A compact simply connected quaternionic Kaehler manifold
M with HE(M, R) 0 must be the quaternionic projective space, provided the
maximal (resp. minimal if the scalar curvature is negative) eigenvalue of the
curvature operator Ko R(., v)v for each unit v depends only on the base point
of v with a fixed constant multiplicity for all v.

Proof Recall that 7v is the 3-dimensional vector bundle and its unit
sphere bundle associated with the manifold. It suffices to show the multiplic-
ity of the maximal (minimal if the scalar curvature is negative) eigenvalue for
Ko is 3 by Corollary 1. Suppose the contrary. For each v denote by the
eigenspace of the maximal (minimal resp.) eigenvalue for Ko. By Theorem 1,
o is contained in Span(Iv, Jr, Kv), and either o or o+/-, the
orthogonal complement of o in , is 1-dimensional. We may assume
dim Wo 1 without loss of generality. Let SM be the unit sphere bundle of
M with the projection 7r" SM M. The vertical tangent space of SM at v,
denoted SM, can be identified with the space v +/- of tangent vectors
perpendicular to v; say g,/ SM v +/- is the identification. Via g-l,
and Wo define two continuous vector bundles /and e respectively over SM
with /3 W. Also / is easily seen to be bundle isomorphic to 7r-1#/ the
pullback bundle of , via the map

f: (v, J) 7"I’-I/c SM Jv

Since d is 1-dimensional and since SM is simply connected, e is a trivial
bundle. Let s be a section of 6 of unit length, i.e., so air + bJv + cKv,
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where a2 + b2 + 172 1. Then

g ’f-IS" SM -’*

is a continuous bundle map over M, where denotes the projection of
SM onto /; locally this simply says

go aI + bJ + cK

when so air + bJv + cKv. Moreover g-lgogo: do +/- - +/- defines a com-
plex structure on the 2-dimensional bundle 1, making 1 into a 1-
dimensional complex line bundle; for, after making a change of coordinates
we may assume go I so that o (Jr, Kv), from which it follows that I
leaves do invariant. Since ;/= 1 and since d is trivial, one has

(3.1) /i(/) =fl’l( f 1) [c,1(,911.)] 2
O,

where c. and/ denote the first Chern and Pontrjagin classes, and the last
equality is gotten by the assumption that H2(M,R)= 0 and hence
H2(SM, R) 0 by the Gysin sequence with m 2, k dim M 1:

r* m I(SM, R)--) Hm-k(M,R) Hm+I(M,R) H +

-.-) Hm-k+I(M,R)

where 7r* is the induced map by r. However 0 =/1(/) 7r*/l(Y) since
;re/= zr-y. Therefore /1(7v)--0 because 7r* is an isomorphism in the
Gysin sequence with m 3. It follows that/, the representative of/(Y)
given in (1.6), is exact besides being harmonic; thus /--0 by the Hodge
theory. This forces )t 0, implying that the manifold is hyperkaehlerian, i.e.,
7v is trivial. Let I in ff be a global complex structure such that it is parallel
with respect to the connection V. Then (M,I) is a Kaehler manifold;
therefore H2(M, R) 0. This contradiction completes the proof. Q.E.D.

Remark 1. All the quaternionic Kaehler symmetric spaces of compact
type classified in [19], except the complex Grassmann G(n + 2,2), have
trivial second cohomology group with real coefficients [20]. Our result shows
that one can not prescribe constant values as the eigenvalues of R(., v)v on
these spaces except I-IP n.

Remark 2. The result in [15] stating, in particular, that a quaternionic
Kaehler manifold of positive scalar curvature with H2(M, Z2) 0 is isomet-
ric to I-IP does not imply Theorem 2, since on the one hand a manifold with
H2(M, R) 0 may have H2(M, Z2) 4 0, as can be seen by the examples in
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Remark 1. On the other hand Theorem 2 is true for any scalar curvature, not
just the positive ones.

COROLLARY 2. A compact simply connected quaternionic Kaehler manifold
whose second Betti number is zero must be the quaternionic projective space,
provided K R(.,v)v has constant eigenvalues, counting multiplicities. In
particular, the statement holds if the real cohomology ring of the space is that of
a quaternionic projective space.

4. Implications of the previous results

DEFINITION. We say a compact manifold M is homologically modelled on
symmetric spaces of rank one if its integral cohomology ring H*(M, Z) is that
of a compact symmetric space of rank one.

LEMMA 2. Suppose the maximal eigenvalue of Kv is positive and depends
only on the base point of v. Then the manifold is locally irreducible.

Proof Suppose locally the manifold splits as the Riemannian product
M N. Select unit vectors x and y with the same base point such that x is
tangent to M and y is tangent to N. Consider w (x / y)/x/. It is easy to
see that Kx annihilates vectors tangent to N and so does Ky to those
tangent to M and Kw (Kx + K)/2, since R(., x)y 0 by the Bianchi
identity. Let r be the common maximal eigenvalue and let z a + b, a
tangent to M and b tangent to N, be an arbitrary unit vector. Then

r sup(Kw(z),z)= Sup((Kx(a),a) + (Ky(b),b))/2 < r/2,
z

which is impossible. Q.E.D.

THEOREM 3. In the category of compact manifolds homologically modelled
on symmetric spaces of rank one, the eigenvalues (maximal eigenvalue if the
scalar curvature is nonnegative) of the operator Kv depending only on the base
point of v with constant multiplicities ]’or all v characterizes the quaternionic
projective spaces among simply connected quaternionic Kaehler manifolds.

Proof. Given a quaternionic Kaehler manifold M of dimension 4n in the
category. H4(M, R) 0 and thus H4(M, Z) 0. It follows that H*(M, Z)
H*(Cp2n, Z), or H*(I-IPn, Z), where as usual CP and HPn- denote the
complex and quaternionic projective spaces. If H*(M,Z)--H*(Hpn, z),
then H2(M, R) 0 in particular. Therefore Theorem 2 implies the space is
the quaternionic projective space. We will next show H*(M,Z)
H*(CP2, Z). Suppose the contrary; then by [14] the second Stiefel-Whitney
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class of M (2n + 1)to to 4: 0, where to H2(M, Z2) Z2 denotes the
generator. Let a be the generator of H2(M,Z) such that a

2n is the
preferred fundamental cycle induced by the isomorphism H*(M,Z)=

kn ( 1)n[ A2/4,n.Z]nH*(CP2 Z). By a direct computation ,’, where
is as in (1.7) and ,{ denotes the Riemannian volume form of the space.

2nTherefore by choosing , to be compatible or reverse to a properly, we
may always require [/a()]" be a negative multiple of a

2n if A 4: 0.
However, notations as in Theorem 2, we already saw/1(1v) 2 for some o

in view of (3.1) if Y’// splits; hence letting a for some integer t,
[/1(7/)]" tzazn, which is always a positive multiple of a2". This contradic-
tion shows A 0 so that M is hyper-Kaehlerian and so 7/is trivial, which
implies the second Stiefel-Whitney class of 7/is zero and hence so is that of
M by [13], [15], contradicting the fact that the second Stiefel-Whitney class of
M is never zero by the discussions above. This establishes that YP" never
splits, the same arguments as in Theorem 2 then shows that the space is
isometric to I-IP", so that H*(M,Z)4= H*(CpZn, Z), a contradiction.

Q.E.D.

COROLLARY 3. A compact simply connected manifold of nonnegative cur-
vature homologically modelled on rank-one symmetric spaces whose holonomy
group is not special orthogonal must be the appropriate projective space,
provided the maximal eigenvalue ofK depends only on the base point of v with
a fixed multiplicity for all v.

Proof Notice that the scalar curvature must be everywhere positive since
the existence of a point where the scalar curvature vanishes would imply the
space is flat by the constant multiplicity of the maximal eigenvalue of Kv, and
so the space would not be compact. This implies that the holonomy group of
M lies in U(2n), Sp(n). Sp(1), or Spin(9) by [2], [18], and Lemma 2, i.e., M is
Kaehler, quaternionic Kaehler, or isometric to the Cayley plane [8]. If M is
Kaehler then M is isometric to CP2n by [9]. If M is quaternionic Kaehler
then Theorem 3 completes the proof. Q.E.D.

Since a Blaschke manifold is homologically modelled on symmetric spaces
of rank one and must be simply connected unless it is the standard real
projective space [4], Corollary 3 provides a curvature criterion for Blaschke
manifolds of nonnegative curvature whose holonomy group is not special
orthogonal to be rank-one symmetric.

In particular, a compact two-point homogeneous space must be a Blaschke
manifold of nonnegative curvature satisfying the curvature condition in
Corollary 3, hence

COROLLARY 4. A compact two-point homogeneous space whose holonomy
group is not special orthogonal must be the appropriate projective space.
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This semi-classification of two-point homogeneous spaces from the present
geometric-topological approach leaves only the sphere case to tackle.
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