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Introduction

The central purpose of the present paper is to investigate conditions which
assure that a Banach algebra A possessing a bounded approximate identity
and ordered by a closed multiplicative cone A+ is isomorphic to a sublattice
and subalgebra of the set of all continuous real-valued functions on a
compact Hausdorff space. For example, for the existence of such a represen-
tation it suffices that A be an almost f-algebra, or that every element can be
written as a difference of two positive elements with product zero. We
emphasize that for the second criterion no lattice property has to be as-
sumed. In this context it seems to be interesting to consider the following
analogous property:

(DDP) For all z A there exists x, y A+ with z x y and [0, x] c
[0, y] {0}.

Positive elements x, y with the property [0, x] c [0, y] {0} are called
disjoint and a partially ordered vector space possesses the Disjoint Decompo-
sition Property iff condition DDP is fulfilled. We show in the first section that
a partially ordered vector space is a vector lattice if and only if it possesses
the DDP and the well known Riesz Decomposition Property, briefly RDP,
which is defined by the validity of the equation [0, x] + [0, y] [0, x + y] for
all positive x, y A. The main results about the lattice properties of ordered
Banach algebras are presented in Section 2. Our main tool is a representa-
tion theorem for Banach algebras possessing a bounded approximate identity
which are ordered by a multiplicative cone containing all squares. The proof
of the Representation Theorem is given in Section 3. As an interesting
consequence we obtain that an almost f-Banach lattice algebra A (in the
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sense of [14]) is isometrically isomorphic to the set C0(X, R) of all continuous
real-valued functions vanishing at infinity on a locally compact space if and
only if A possesses a bounded approximate identity with norm bound 1. In
the fourth section we show that the positive cones of certain almost f-Banach
lattice algebras are uniquely determined by their Banach algebra multiplica-
tions.

1. A characterization of vector lattices

Let E be a vector space over the real numbers. A subset E + of E is called
a wedge if x+yE+ and AxlE+ for all x,yE+ and for all real
non-negative A. The set E+ endows E with a partial ordering < if we define
x < y to mean that y x E +. A partially ordered vector space is a vector
space with a fixed wedge E+. The wedge E+ is antisymmetric if 0 < x < 0
implies x 0, or equivalently, if E+c- E+= {0}, i.e., E+ is a cone. E+ is
generating if the linear span of E+ is the whole space E. The order interval
[x, y is the set of all z E with x < z < y. An element u E+ is an order
unit if E is the linear span of the order interval [0, u].

1.1 PROPOSITION. Let E be a partially ordered real vector space with DDP.
Then E+ is generating and antisymmetric.

The proof is obvious and therefore omitted.

1.2 THEOREM. Let E be a partially ordered real vector space. Then E is a
vector lattice if and only ifE possesses the RDP and the DDP. In that case, the
disjoint positive elements x, y occurring in the representation z x-y of an
arbitrary z E are uniquely determined.

Proof. It suffices to show that for all z E the supremum of z and 0
exists. The DDP yields a disjoint representation of z, i.e., z x-y with
x, y E+ and [0, x] n [0, y] {0}. We show that x is the supremum of z
and 0. Moreover, this yields the uniqueness of the disjoint representation. At
first we observe that x is an upper bound since we have z < x and 0 < x. Let
w be another upper bound. Since x y z < w we have 0 < x < w + y. By
the RDP there exists z [0, w] and z 2 [0, y] with x z + z2. In particu-
lar, we have z2 [0, x]. Since x and y are disjoint we conclude that z2 is
equal to zero. Then x z [0, w], i.e., we have x < w.
For a vector lattice E two elements x, y E are called disjoint if

inf{ixl, lyl} 0. Our definition of disjointness only applies to positive ele-
ments x, y E+, but it easy to see that the two definitions coincide for
positive elements in the case of a vector lattice.
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Example 1. Let X be a compact Hausdorff space and C(X, R) the set of
all continuous real-valued functions on X. A function f C(X, R) is called
strictly positive if f(t) > 0 for all X. It is not very difficult to see that
every subalgebra of C(X, R) containing the constants possesses the RDP but
not the DDP relative to the strict ordering. Moreover this example shows
that the Riesz Decomposition is not unique in general.

An order theoretic characterization of the strict ordering can be found in
[19]. Further examples of partially ordered vector spaces with the RDP can
be found in [7] and [16, p. 122].

Example 2. Let S be the set of all selfadjoint bounded operators on a
complex Hilbert space, or (more generally) the selfadjoint part of a C*-alge-
bra. Then S possesses the DDP, since for every a S there exist positive
u, v S with a u v and uv vu 0. Lemma 3 in [18] shows that this
representation is disjoint. Thus S possesses the RDP if and only if S is a
lattice which in turn is equivalent to the commutativity of S, see [18].
Moreover, this example shows that the disjoint representation is in general
not unique" let a, b be positive, non-commuting operators which induce
extreme rays of the cone of all positive operators. Then x a- b is a
disjoint representation which is different from the above-mentioned since ab
or ba is not zero.

2. Banach algebras ordered by a multiplicative cone

Let A be an associative algebra over the real or complex numbers, and let

A+ be a wedge in A. We call the wedge A+ multiplicative if a, b > 0 implies
ab > O. Sometimes, a multiplicative wedge is also called a semi-algebra; see
[4, p. 256].
A unital algebra is an algebra with a unit element 1; if A is unital let

A A. If A does not possess a unit element then Ae denotes the algebra
A K, where K is the real or complex field. An element a in A or Ae is
invertible if there exists b A with ab ba-- 1. Note that the product
a-lb with a Ae, b A is contained in A if a is invertible. Thus the
following property is well defined, even for non-unital algebras:

(I) For every a >_ 0 there exists A > 1 such that A + a is invertible and for
all b >_ 0 the element (A + a)-2b(A + a) -2 is positive.

2.1 PROPOSITION. Let A be an algebra endowed with a multiplicative cone

A+ satisfying condition (I). Then any product of two positive disjoint elements
is zero.
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Proof Let al, a 2 be positive and disjoint. Since a + a2 is positive there
exists , > 1 such that (, + a + a2)-1 exists in A e. It is easy to see that the
following inequality holds for j 1, 2

(1) 0 < ala2 <_ (A + al + a:z)Za(h + a + ae) 2.

Now the condition (I) allows us to multiply (1) by (, + aa + a2)-2 on both
sides proving the nice formula 0 < (h + a + az)-Zala2(, + a + a2)-2 _<

at. Since a, a2 are disjoint we obtain (, + al + az)-Zalaz(h + a + a2)-2
0. The proof is complete.

Example 2 shows that the Proposition fails if the cone is not multiplicative.
The next example shows that the condition (I) is essential. Theorem 2.2
shows that condition (I) is necessary for a large class of algebras.

Example 3. Let A be the algebra of all polynomials with real coefficients
under the pointwise ordering. It is easy to see that the constant function 1
and the polynomial x 2 are disjoint positive elements. But their product is not
zero.

2.2 THEOREM. Let A be a unital real Banach algebra with the DDP and
with a multiplicative cone A +. Then the following assertions are equivalent"

(a) A + possesses property (I).
(b) ab 0 if a, b are positive and disjoint.
(c) For all a in A there exist a, a2 0 with a a- a2 and ala 2

aza O.
(d) a2 is positive for all a in A.
(e) The unit element is an interior point ofA +, i.e., 1 is an order unit.

Proof Proposition 2.1 shows (a) (b). For the implication (b) (c) note
that any disjoint decomposition of a A satisfies (c). The next implication is
clear in view of a 2

al
2 + a. Now we prove (d) (a). Let a A +. Since A

is a Banach algebra there exists h > 1 such that (h + a)- exists in Ae. As
A is unital, assumption (d)yields the positivity of (h + a) -2. Since A+ is
multiplicative, property (I) holds. Let us prove (d) (e). Let a A with
][all < 1. Consider the square root b :-v/1-a which is defined by the
Taylor expansion of the square root function; cf. [4]. Then 1-a---b2 is
positive by assumption (d), i.e., a < 1. Replacing a by -a we obtain
-1 < a < 1. For the last implication (e) (a) let a A +. Choose h0 > 1
such that (h + a) -1 exists for all real h > h0. Using the continuity of
inversion we obtain that (1 + a/h)-a converges to the interior point 1 when
h converges to infinity. Thus there exists h > 1 such that (h + a) -1 is
positive. Since A+ is multiplicative, property (I) is verified.
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We note that the implication (d) (e) is true for any unital Banach
algebra even without the DDP. Example 1 shows that the converse is not
valid unless A/ possesses the DDP or is closed, see Theorem 2.7. Moreover
Theorem 2.6 (d) (a), (b), (c) is not valid for Banach algebras without a unit
element as the example in [17, p. 364] shows.

2.3 Remark. The equivalences of the first four statements of Theorem 2.2
are still valid for more general algebras than Banach algebras. In fact, we
only need to show that for every positive a A there exists > 1 such that, + a is invertible. Concrete examples of non-Banach algebras having this
property are the algebra of all measurable functions on the unit interval or
the Arens algebra.
There exists a vast literature about the structure of lattice ordered algebras,

i.e., (associative) algebras which are lattice ordered by a multiplicative cone,
see [3],[8],[17]. These mathematical objects can be rather pathological as
pointed out in [3, p. 48]. Therefore some additional properties are needed in
order to obtain a reasonable theory. The most common are the following
which are meaningful for any lattice ordered algebra:

(f*) inf{lal, bl} 0 ab 0 for all a, b A.
(f) inf{a, b} 0 implies inf{ca, b} inf{ac, b} 0 for all a, b A and

c>0.
(d) Every square is positive and ]ab [a[ [b[ for all a, b A.
(af) inf{a, b} 0 implies ab 0 for all a, b A.

It is known that each of these conditions implies the subsequent condition:
(f*) (D is trivial since A is associative, for (f) (d) see [2, p. 404] and for
(d) (af) see [3, p. 58 (Lemma 1) and p. 60 (Lemma 3)]. As pointed out in
[14] these inclusions are in general proper. A lattice ordered algebra satisfy-
ing condition (f*), (D,(aD resp. is called an f*-algebra, f-algebra, almost
f-algebra respectively. The following result is an easy consequence of known
results:

2.4 PROPOSITION. An associative almost f-algebra is an f*-algebra if and
only if a 2 4:0 for all a 4: O.

Proof Let A be an f*-algebra and a 4: 0. Since 0 4: lal inf{lal, lal}
the condition (f*) implies 0 4: [a I" lal- la21. Thus a24: 0. Conversely,
suppose that A is an almost f-algebra. Then the proof of Lemma 1 in [2, p.
406] shows that A is an f-algebra. Now let us prove the condition (f*). If
ab 0 then 0 < (inf{lal, Ibl})2 _< lal" Ibl labl O. Hence (inf{lal, Ibl})2

0 and our assumption yields inf{lal, Ibl} 0. If we have inf{lal, Ibl} 0
then lal" [bl- 0 by condition (af). It follows that ab 0 since A is an
f-algebra.
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The following theorem is essentially due to Steinberg [17] and yields a
sufficient criterion for the equivalence of the above conditions. The example
16 in [3] shows that the statement is not true in general for a non-archi-
medean cone.

2.5 THEOREM. An archimedean unital lattice ordered algebra such that
every square is positive is an f*-algebra.

Proof Corollary 1 in [17] shows that A is an f-algebra. By Proposition 2.4
it suffices to show that a2 0 implies a 0. Since (1 + na)2 is positive we
obtain +2na < 1. Thus a 0.

An almost f-Banach lattice algebra (in [14] called FF-Banachverbandsal-
gebra) is a Banach lattice and a Banach algebra ordered by a multiplicative
cone satisfying the condition (af). Using the Corollary 2 in [12] and Proposi-
tion 2.4 one obtains a quite elementary proof of the following result in [14,
Korollar 1.5, Satz 2.5].

2.6 THEOREM. Let A be an almost f-Banach lattice algebra. Then the
following assertions are equivalent:

(a) A is an f*-algebra.
(b) a 2 4:0 for all a 4: O.
(c) A is semi-simple.

Theorem 2.4 in [14] shows that an almost f-Banach lattice algebra is
semi-simple if and only if A is isomorphic to a separating subalgebra and
sublattice of the set Co(X, R) of all continuous functions vanishing at infinity
on a locally compact space X.

It is a matter of fact that many results valid for unital Banach algebras can
be generalized to Banach algebras possessing a bounded approximate iden-
tity. More important, this class of algebras is more appropriate for applica-
tions. A bounded approximate identity is a net (e) i c A such that aea and

eaa converge to a when A converges to infinity and I[e[I < C for some
C>0.

2.7 THEOREM. Let A be a Banach algebra possessing a bounded approxi-
mate identity and endowed with a closed multiplicative cone. Then the following
assertions are equivalent"

(a)
(b)
(c)
(d)
(e)

A is an f*-algebra.
A is an f-algebra.
A is an almost f-algebra.
A is a vector lattice with property (I).
A possesses the DDP and any product of disjoint positive elements is
zero.
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(f)
(g)

(h)

A possesses the DDP and every square is positive.
For all a in A there exist al, a2 >- 0 with a a a 2 and ala2 a2a
--0.
A is isomorphic to a subalgebra and sublattice of C(X, R) for a suitable
compact Hausdorff space X.

Proof Note that (a) = (b) (c) (O is valid for any associative alge-
bra. (h) (a) is trivial. Hence it suffices to show that (d)-(h) are equivalent.
The implications (d) (e) (f) are clear. Now we show that (f) implies (g)
and (g) implies (h). First observe that both conditions imply that every square
is positive. Let X be the set of all positive multiplicative functionals.
Corollary 3.5 shows that A is isomorphic to a subalgebra of C(X, R). The
monomorphism Gx: A C(X, R) is defined by Gx(a) and R(x) x(a).
It remains to show that the image Gx(A) is a sublattice of C(X, R). In the
case (g) (h) the representation a a a 2 with ala 2 0 shows that
l(X) sup((x), 0) for every x X since x is multiplicative. In the case
(f) (g) it is enough to prove condition (I) since A possesses the DDP. Let
a > 0. Since A is a Banach algebra there exists A > 0 such that (A + a)-1

exists in A e. The positivity of (A + a)-Zb(A + a) -2 with b A+ follows
from the positivity of x((A + a)-Zb(A + a) -2) for every positive multiplica-
tive functional x. Moreover this argument yields (h) (d), thus (d)-(h) are
equivalent. The proof is complete.

3. A representation theorem

An application of Stone’s representation theorem (see [9, p. 173]) shows
that a unital Banach algebra with a closed multiplicative cone containing the
algebraic unit as an order unit is isomorphic to a subalgebra of C(X, R) for a
suitable compact space. This space X can be defined as the set of all
(continuous) positive multiplicative functionals. Note that this fact implies
that the closed cone A+ contains the closure of the wedge of all finite sums
of squares, which will be denoted by A in our further discussion. But it may
happen that the cone A+ is strictly larger than A as the following example
shows:

Example 4.
fBby

Let B be the disc algebra with the involution defined for

f*(z) f() ( z D)

where D denotes the closed unit disc in the complex plane. Then the
selfadjoint part A is a real Banach algebra and the cone A consists of all
functions f: A C which are pointwise non-negative for each z [-1, 1].
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Define A+ as the multiplicative cone consisting of all functions f: A C
which are real-valued on [-1, 1] and non-negative on [0, 1]. Then the func-
tion f: A -+ C defined by f(z)= z is in A/ but not A . Moreover, the
evaluation at a point [-1, 0) is a real-valued multiplicative functional on
A which is not positive.
On the other hand there exists a representation theorem for commutative

complex Banach *-algebras with a bounded approximate identity endowed
with the wedge A; cf. [13, Theorem 4.6.12 and Theorem 4.5.14]. Our
representation theorem generalizes this result to Banach algebras with a
closed multiplicative cone containing all squares. Moreover, our proof avoids
the techniques of the representation theory of Banach *-algebras and is
influenced by the geometrical methods used in [5] for unital Banach *-alge-
bras.

3.1 DEFINITION. Let A be a real algebra with a wedge A +. We call a
functional f: A R a Schwarz map if it satisfies the Schwarz inequality
f(a)2 < f(a2) for all a A. The set of all Schwarz maps is denoted by SA,
and S is defined to be the subset of all functionals with f(A +) c [0, ).

It is easy to see that SA and ST are convex sets. If A is non-unital then SA
is affinely bijective to the set of all unital Schwarz maps on Ae; the bijection
is given by f f where

f(a + A):=f(a) + a (a A,A R).

Moreover f is non-negative on squares of A because of the Schwarz
inequality; conversely, the restriction of a (positive) functional g with g(1) < 1
which is non-negative on squares yields a (positive) Schwarz map on A, cf.
the weak Cauchy-Schwarz inequality in [13, p. 231]. Note that positivity means
g(A +) c [0, ).

Let A be a Banach algebra. The spectral radius 1 can be defined by the
formula

lal lim r nv/ll an ( a A )

It is well known that for every a A with [a[ < 1 there exists b A,e2with
(1 a) b 2. This yields 0 < f(b2) 1 -f(a). Replacing a by a2/lal / e

with e > 0 we obtain in connection with the Schwarz inequality the following:

3.2 LEMMA. Let A be a real Banach algebra. Then every Schwarz map f is
continuous and satisfies If(a)[ < [al for all a A. In particular, SA is
convex and w*-compact.
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For the proof of our representation theorem we need two conditions which
seem to be rather technical"

(II) f(x2a2) > 0 holds for every f S and for all x, a Ae.
(III) xZa A+ holds for all x A and all a A +.

Observe that condition (II) is always satisfied if A is commutative. More-
over (III) is valid for a commutative algebra if every positive element is a sum
of squares, i.e., that (II) and (III) are fulfilled for the wedge generated by the
squares in a commutative algebra. Thus the following theorem can be applied
to the selfadjoint part of a commutative Banach *-algebra in order to prove
Theorem 4.5.15 in [13].

3.3 THEOREM. Let A be a real Banach algebra with a wedge satisfying the
conditions (II) and (III). Then the extreme points of SJ are exactly the positive
multiplicative functionals.

Proof Let f S be extreme. If A possesses a unit element put f f,
otherwise consider f: A R. For x A with Ix l < 1 define Sx2: A ---) R
by

Sx2(a) f(x2a) f(x2)f(a).

We show that f___
that

f + Sx2 is non-negative on squares and positive. Note

f+ (a) (1 f( X 2) )f(a) + f(x2a).

Since 1 -x2 b2 for some b A we have 1 -f(x2) > 0. Thus f+ is
positive by condition (III) and non-negative on squares of A by condition
(II). Similarly it follows that

f_ (a) f(a x2a) nt- f( X 2) f(a) f(b2a) + f( X 2) f(a)

is positive and non-negative on squares of A e. Therefore the restrictions of

f+ on A are contained in S. The extremality yields Sx(a)= 0 for all
a- A, i.e., that f(xZa) f(xZ)f(a) for all a A and for all x A by the
linearity of f. Substituting x by 1 + b with b A one easily obtains
f(ba) f(b)f(a) for all a, b A. A multiplicative positive Schwarz map is
always extreme; cf. Proposition 5.2.2 in [9].

3.4 LEMMA. Let A be a Banach algebra possessing a bounded approximate
identity. Then a closed multiplicative wedge A+ containing all squares satisfies
condition (II) and (III). For every (continuous) positive non-trivial functional f
there exists h > 0 such that hf is a Schwarz map.
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Proof. Let (eh)h i be a bounded approximate identity and let x, a A e.
Then we have (xe;)2 A+ and (ae;t)2 A+. Thus (xe;t)Z(aeh)2 is positive
and converges to xZa 2. It follows by the continuity of f that f(xZa2) >_ O.
The second statement follows similarly. Let f: A--* R be a continuous
positive functional. Then

f(e2) <_ Ilfllsuplle2]l C.

Furthermore 2f(a)= limaif(ae + ea) and the weak Cauchy-Schwarz
inequality yields 4f(a)2 _< Cf(a2) for all a A. Hence Af is a Schwarz map
for ,X 4/C.

3.5 COROLLARY. Let A be a Banach algebra with a bounded approximate
identity and with a closed multiplicative cone containing all squares. Then A is
isomorphic to a subalgebra of C(X, R) where X is the w*-compact space of all
positive multiplicative functionals.

Proof. X is w*-compact by Lemma 3.2. Lemma 3.4, Theorem 3.3 and the
Krein-Milman Theorem show that S is the w*-closed convex hull of X. The
map Gx: A C(X, R) defined by Gx(a) and (x) x(a) is obviously
a continuous algebra homomorphism. It is as well an order isomorphism" A+
is a closed cone and S generates the topological dual cone, i.e., that for
every positive continuous non-trivial functional f: A - R there exists A > 0
with Af S.; cf. Lemma 3.4 and Lemma 1.2 in [10].

3.6 Remark. Observe that the subalgebra Gx(A) c C(X, R) is generally
not a separating subalgebra. But it easy to see that Gx(A) is isometrically
isomorphic (with respect to the supremum norm) to a separating subalgebra
of Co(Y, R) where

Y:=X\ {xX:(x) =0foralla A}

is a locally compact Hausdorff space.

3.7 COROLLARY. An almost f-Banach lattice algebra A is isometrically
isomorphic to C0(X,R) (X locally compact) if and only if A possesses a
bounded approximate identity with norm bound at most one.

Proof For the non-trivial implication it is enough to show that the map
Gx is an isometry. Let a A and consider b lal > 0. It is an immediate
consequence of Corollary 3.5 that 0 < be2 < [blse2, where Ibls
supfslf(b)[. The norm is monotone, thus we obtain 0 < ][be2]l <

Ibisilell and therefore 0 < Ilbll < Ibls. But we have lals Ibls since
every extreme functional in SJ is a lattice homomorphism. This yields
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Ilall Ilbll lals lal by Lemma 3.2. Thus the non-trivial implication is
proved since the reverse inequality lal _< Ilall is always true.

4. Uniqueness of the positive cone and of the multiplication

Example 4 shows that a multiplicative real-valued functional need not to
be positive. But observe that the algebra is not lattice ordered. The main
result of this paragraph says that this can not happen if the algebra satisfies
one of the equivalent conditions listed in Theorem 2.7. The proof of this
result is essentially due to E. Scheffold who introduced in [15] the following
condition for a lattice ordered Banach algebra A:

() inf{lal, Ibl} 0 implies labl 0 for all a, b A.

Since we are dealing with partially ordered algebras we weaken the condition
(if) to the following condition:

(wff) [0, a] t [0, b] {0} implies lab[ 0 for all a, b A/.

Note that example 4 satisfies the condition (w). It is easy to see that the
proof of Theorem 2.2 in [14] can be used to establish the following result.

4.1 THEOREM. Let A be a real algebra and a vector lattice. If the positive
cone contains all squares and satisfies (w) then every multiplicative order
bounded functional f: A - R is a positive lattice homomorphism.

4.2 COROLLARY. Let A be a real Banach algebra possessing a bounded
approximate identity. IrA+ is a closed multiplicative cone satisfying one of the
equivalent conditions listed in Theorem 2.7, then A+ is the closure of the cone
generated by the squares.

Proof. If A+ satisfies one of the equivalent conditions of Theorem 2.7
then A/ contains all squares and satisfies condition (w). It is easy to see
that every multiplicative functional is order bounded. Let a A /. Theorem
4.1 shows that f(a) > 0 for every multiplicative functional. But this property
characterizes the elements of the closure of the cone generated by the
squares; cf. Corollary 3.5 applied to the cone A x.

4.3 COROLLARY. Let A be a Banach algebra possessing a bounded approxi-
mate identity. Then there exists at most one cone which makes A into an almost
f-algebra.

Observe that the assumption of an approximate identity in Corollary 4.2 is
essential, even if A is a semi-simple Banach algebra; cf. Example M4 in [14].
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Corollary 4.3 shows that the multiplication determines uniquely the posi-
tive cone of a unital almost f-Banach lattice algebra. This result should be
seen as a converse to the following result (see [1, Theorem 8.23]): If A is an
archimedean vector lattice and e is positive then there exists at most one
product on A that makes A an f-algebra having e as its unit element. Now,
this means that the order structure determines the multiplication uniquely.
This result can be strengthened if one considers only Banach algebra multi-
plications:

4.4 THEOREM. Let A be a Banach space with a closed cone A+ and let e be
a positive element. Then there exists at most one product on A that makes A a
Banach algebra having e as its unit element and such thatA + is a multiplicative
cone containing all squares.

Proof. Assume that the two products and have the properties
required in Theorem 4.4. By Corollary 3.5 it suffices to show that f(x’y
x, y)- 0 for every non-trivial positive functional which is multiplicative
relative to the first multiplication. But a multiplicative positive functional
induces an extreme ray of the cone of all positive continuous functionals.
Furthermore every extreme ray induces an extreme point of the set of all
positive Schwarz maps with respect to the second multiplication, i.e., that
there exists A > 0 such that f- Ag and g is multiplicative relative to the
product ,. But e is a unit element with respect to both products and
therefore A 1. The proof is complete.
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