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FOLIATIONS INVARIANT UNDER THE MEAN
CURVATURE FLOW

PAWEL G. WALCZAK

Introduction

Let - be a foliation of a Riemannian manifold (M, g) equipped with the
Levi-Civita connection V. The tangent bundle of M splits into the orthogonal
sum T- T +/- -of the bundle tangent to F and its orthogonal complement,
so any vector v decomposes into the sum v v + v +/- of vectors respectively
tangent and perpendicular to o-. For any point x M, H(x) denotes the
mean curvature at x of the leaf L of -which passes through x. H is
defined as the trace of the second fundamental form B of r:

(1) B(X, Y) (VxY)"

for all vector fields X and Y tangent to and

P

(2) H E B(X, X),
i=1

where p dim r and X1,..., Xp is a (local) orthonormal frame of vector
fields tangent to r. (For ,suitable background in Riemannian geometry we
refer to [K], for the notions and results of the theory of foliations to [CN],
[HH] and [T].)

In this paper, we are interested in those foliations -which are invariant
under the local flows generated by the vector field H. Such foliations are said
to be mean curvature invariant, or MCI for short. The infinitesimal condition
sufficient and necessary for r to be MCI is that

(3) ([H,X],N) =0

for all vector fields X tangent to r and N orthogonal to -. In other words,- is MCI iff H is parallel w.r.t, the (partial) Bott connection in TM/Tr=
T +/-r, i.e. iff the Lie derivation -n maps the module r(r) of vector fields
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tangent to or the ideal (r) of forms vanishing along r into itself. For
a transversely oriented codimension-q foliation r the condition (3) can be
expressed in the form

(4) -Hto fto,

where to is a non-vanishing q-form defining r. If q 1 and to(N) 1 for a
unit vector field N orthogonal to -, then the factor f in (4) is given by

(5) f (Vh,

where h (H, N) is the (scalar) mean curvature of - and Vu denotes the
gradient of a smooth function u: M R. For arbitrary q and to with

f div H + IIHII 2.

The interest in MCI-foliations is motivated by the following.
Mean curvature of foliations of Riemannian manifolds was studied from

the very beginning of the theory of foliations. G. Reeb [Re] observed that

(6) fMh =0
for the mean curvature h of any codimension-one foliation -of any
compact Riemannian manifold M and so either h 0 and all the leaves are
minimal submanifolds of M or h is somewhere positive and elsewhere
negative on M. This observation led to a number of papers concerned with
the problem of "minimalizability" of foliations ([Su], [Ru], [Ha], etc.), several
articles on minimal foliations and their properties ([HI, [KT 1], etc.) and some
results on prescribing mean curvature of foliations ([O 2], [W 1], etc.). Also,
the "integral formula" (6) was generalized to the higher codimension case in
different ways ([BLR], [R], [W 2], etc.).
On the other hand, since several years there is a lot of interest in

deforming submanifolds of Rn by their mean curvature flow ([Br], [CGG],
[ES], etc.; see [Hu 2] for a review of results). Being more precise, given a
hypersurface L, the problem consists in building a one parameter family (f,)
of immersions of L such that for any x L and t the variation vector
(s fs(x))’(t) is equal to the mean curvature vector of ft(L) at ft(x). For
example, if L is convex and closed, then the family (ft; 0 < t < 0) exists for
some o > 0 such that the hypersurfaces L ft(L) shrink to a point p when
t to and form an MCI-foliation of the punctured convex body bounded by
L [GH], [Hu 1].
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In this article, we describe some elementary properties of MCI-foliations
(Section 1), prove the existence of minimal leaves in some situations (Section
2), get some integral formulae analogous to those mentioned above (Section
3) and collect some examples of MCI-foliations (Section 4).
The above discussion and the examples of Section 4 show that MCI

foliations appear in different geometric situations as well as in some prob-
lems of physics such as, for example, the structure of crystals [F] or perturba-
tion theory related to phase transition phenomena ([Ga], [MS], etc.).
The paper was written during the author’s stay at the Washington Univer-

sity in St. Louis where he enjoyed the hospitality of the faculty and the staff
of the Department of Mathematics. Especially, he is indebted to Larry
Conlon and Gary Jensen for arranging the visit and valuable discussions.

I. First observations

Let be an MCI-foliation of M. If H(x) 0 for a point x of a leaf L,
then x is a fixed point of a local flow of H. Since this flow maps leaves to
leaves, an open neighbourhood U of x in L consists of fixed points of this
/tow and H 0 on U. Since leaves are connected, H vanishes identically
on L:

PROPOSITION 1. If L is a leaf of an MCI-foliation and the mean curvature
vector of L vanishes at one point, then L is a minimal submanifold.

For codimension one MCI-foliations it follows that the scalar mean curva-
ture has constant sign along any leaf. Also, the above Proposition together
with (6) lead immediately to the following.

COROLLARY 1.
has minimal leaves.

Any codimension-one MCI-foliation of a compact manifold

Assume now that the vector field H is complete (this is the case when M is
compact) and denote its flow by (qt). If L is a non-minimal leaf of -, then
all the leaves pt(L) are diffeomorphic to L. Moreover, if c: [0, 1] L is a
closed leaf curve, then the curves qt c are closed and lie on the leaves
pt(L). Therefore, the holonomy map hc preserves all the points qt(x), where
x c(0). We get the following.

PROPOSITION 2. The mean curvature vector H(x) of an MCI-foliation rat
a point x of a non-minimal leaf L is preserved by the linear holonomy group of
L. If codimension of equals 1, then any non-minimal leaf of has trivial
holonomy
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Let fl- be the volume form of an oriented foliation 9z-. Elementary
calculation shows that

(7)

(see [T], p. 67). It follows that if L is a compact leaf of an MCI-foliation
and (t) is, as before, the mean curvature flow of -, then

(8) vol qt(L) vol(L) (tf IIHII2 dads.
drd..0 q:,s(L)

Assume now that L is an arbitrary submanifold of a Riemannian manifold
M. If x L and H(x) O, then one can find a codimension one submani-
fold N of M foliated by p-dimensional submanifolds such that x N,
L n N is one of the leaves and the mean curvature vector of the foliation of
N is everywhere transverse to N. In the same way, if L is compact and
embedded, and H(x) 0 for all the points x L, then there exists an
embedded codimension one submanifold N foliated by compact p-dimen-
sional leaves such that L is one of them and the mean curvature vector of the
leaves is again transverse to N everywhere. The existence and uniqueness
results for deformations by the mean curvature flow ([GH] and [CGG]) lead
to the following.

PROPOSITION 3. (1) If L is a submanifold of a Riemannian manifold M,
x L and H(x) 4 0, then there exists an open neighbourhood U ofx in M and
an MCI-foliation c-of U such that the connected component of L U
containing x is one of the leaves of -.

(2) IfL is compact embedded and H(x) 4:0 for any x ofL, then there exists
an open neighbourhood U of L and an MCI-foliation -of U such that L is a
leaj oj

(3) If codim(L) 1, then the foliations of (1) and (2) are unique (up to the
domain).

It is clear that uniqueness established in the above Proposition does not
hold in codimension > 1. For example, for any curve c (x, y, z): R R3

such that the function z is strictly increasing and maps R onto R one can
foliate the punctured planes z const, by concentric circles centered at the
appropriate point of the curve c. All those foliations form an MCI-foliation
of R3\ c(R). For different curves c one obtains different MCI-foliations
which could coincide on some horizontal planes z const.



INVARIANT FOLIATIONS 613

2. Minimal leaves

As we observed in Section 1, codimension-one MCI-foliations of compact
manifolds must have minimal leaves. In this section, we are going to prove
the existence of minimal leaves under different circumstances and to show
how they are distributed over the foliated manifold.
Assume that an MCI-foliated manifold (M, r) is compact. Its mean

curvature flow (qt) acts in the manifold M as well as in the space of leaves
M/qr. Therefore, for any leaf L one can consider the orbit (qgt(Z)) in M/r

together with all associated objects and properties like limit sets, recurrency,
wandering etc.

THEOREM 1.
minimal leaves.

If L is a compact leaf, then the to-limit set of L contains

Proof Assume that the to-limit set of a compact leaf L does not contain
minimal leaves and denote by F/ the closure of the subset U{qt(L); >_ 0}.
Let a > 0 be the minimum over F+ of the norm of H. Denote also by Umin
the (positive) minimum of volumes of leaves of 9z-. From (8) it follows that

vol (t(Z) vol(L) a2Vmin

when t - oo. Contradiction.

THEOREM 2. /f codim(z-) 1 and L is compact, then also the a-limit set

of L contains minimal leaves.

Proof. Assume to the contrary that a min{ Iln(x)ll; x F-} is positive,
where F- is the closure of the negative half-orbit of L. Cover F- with a
finite number of charts bi-distinguished by r and H (compare [HH]).
The formula (8) shows that the orbit of L can meet each of the charts only

once. In fact, otherwise the equality ps(L) qgt(L)would hold for some reals
s < implying the condition vol(qs(L)) vol(qt(L))which contradicts (8). It
follows that the volumes of leaves in F- are bounded from above (for
example, by the product of the number of charts times the maximum of
volumes of plaques of our cover).
On the other hand, if Umin has the same meaning as before, then (8)

implies that

vol(qgt(L)) > vol(L) a2Vmint -- oo

when -oo. Contradiction.
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The Novikov’s results (IN], compare [HH]) on the structure of transversely
oriented codimension-one foliations allow to formulate the following.

COROLLARY 2. For any open Novikov component U of a transversely
oriented codimension-one MCI-foliation of a compact Riemannian manifold M,
the closure of U contains minimal leaves.

Proof. The boundary of U consists of finite number of compact leaves
L1,... Lk. If one of them is minimal, we have done. If not, some of the limit
sets of Li’s are contained in U and the statement follows from our Theorems
1 and 2.
Frankel [Fr] has shown that two compact minimal codimension-one sub-

manifolds of a complete Riemannian manifold of positive Ricci curvature
have to intersect. This fact combined with the above observations yields
another result.

COROLLARY 3. If a transversely oriented codimension-one MCI-foliation r
of a compact Riemannian manifold M of positive Ricci curvature has at least
two compact leaves, then r is given by a locally trivial fibration ofM over S 1.

Proof If L and L2 are compact leaves of -, then only one of them, say
L2, is minimal. The orbit U of L under the mean curvature flow is open and
contains L2 in its closure. It follows that M U u L2, so all the leaves of M
are compact of trivial, holonomy and form fibres of a fibration M --. S 1.

Remark. In the proof of Theorem 2, the essential step consists in estab-
lishing an upper bound for the volumes of the leaves in F-. The results and
methods of [EMS] seem to be promising for the proof of an analogous
theorem in the case codim(F) 2.

3. Integral formulae

Assume that a codimension q MCI-foliation z-of M is transversely
oriented and let to be a q-form defining r. The integrability of T- yields
the existence of an 1-form r/such that

(9) dto=r/ Ato and /_/r/ =0.

THEOREM 3. The form z_I to /x q /x dq is exact. In particular,

(10) fM.to A "r/ A (dr/) k 0

when M is oriented and compact, and dim r= 2k.
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Proof Conditions (4) and (9) imply that

fto dHto + *H do dHto + H(q A to)

and ,/_/(r/ A to)= -r/ A ,/_/to. Consequently,

d( fto) -dn /x i-ioo + n/ dHto
and

Remark. Note that the form/3 r/ A (dr/)q is closed and represents the
Godbillon-Vey invariant gv of ([GV], [T], etc.). If /3 is harmonic and
3q lim M, then the above result could be interpreted by saying that the
harmonic part of /4to represents the cohomology class w for which
wUgv=O.

Recall now the notion of a harmonic measure on a foliated Riemannian
manifold as defined by Lucy Garnett [Ga]. For any foliation 9r of a
Riemannian manifold M and any smooth function f on M, the foliated
Laplacian A of f is defined at a point x M as the value at x of the
Laplacian of flL on the leaf L(x L) equipped with the induced Rie-
mannian structure. A finite measure/z on M is said to be harmonic if

o

for any f. Note that a compact foliated Riemannian manifold always admits
nontrivial harmonic measures. For examples and properties of harmonic
measures we refer to [Gal.

THEOREM 4. If - is a codimension-one transversely oriented MCI-foliation
of a compact Riemannian manifold M and N is an unit vector field orthogonal
to 9r, then

(11) f2(Ric(N) + IIBII2 + IIX7NNII 2- (Vh, N))d/z 0.

for any harmonic measure tz on M.

Proof Let us compute the foliated Laplacian of the scalar mean curva-
ture h of

A(h) div(Vh) T.
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From (3) it follows that for any X tangent to ,-we have

(12) <Vh, X> -<VHN, X>,

so

Consequently,

(Vh)-r -hVNN.

(13) A(h) -h div VNN <VNN, Vh>.

Moreover, the formulae (2.16) and (2.17) of [BKO] (compare also [O 1]) yield

(14) div VNN Ric(N) + [IBI[ 2 <Vh, N>.

Also, the formula (12) applied to X VNN yields

(15) <Vh, VNN> IIVNNII 2.

Formulae (13)-(15) yield

(16) A(h) -h(Ric(N) + IIBII 2 + IIVNNII 2 (Vh, N))
and this proves (11) according to the definition of harmonic measures.

Since the volume form of a compact leaf provides us with a harmonic
measure we get the following.

COROLLARY 4. If L is compact leaf on an MCI-foliation, then

fLh(Ric(N) + IIBII 2 + X7Nll 2 <Vh, N>) d volL O.

4. Examples

4.1. Two dimensional torus. C2-foliations of T2 have been classified by
Kneser ([Kn], see also [Go]) several years ago. If the leaves of a foliation r
are not dense, then the torus splits into the family of annuli A1,... Ak,

k 1,2,...,o% such that the boundary circles of Ai’s are leaves and the
interiors are foliated in one of the following ways:

(1) All the leaves are closed.
(2) All the leaves are spiralling approaching the boundary components

which are oriented in the same way.
(3) All the leaves are approaching the boundary components which are

oriented in the opposite way (this is called Reeb component).
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If the foliation like this is MCI (w.r.t. the standard flat metric), then from
observations of Section 1 it follows that the boundary components of Ai’s are
geodesics. They do not intersect, so they should have the same length. Also
all the leaves of components of type (1) should be geodesics otherwise they
should have the strictly positive (or, strictly negative) curvature. The compo-
nents of type (2) cannot appear: The curvature of any leaf contained in a
component of this type should vanish somewhere, so the leaves should be
geodesics but this is impossible. Finally, consider Reeb components of
MCI-foliations. Lift the foliation to the universal covering [0, 7r] R and
denote by X the unit vector field tangent to the lifted foliation:

(17) X(x, y) sin a(x, y) --- + cos a(x, y) --.
The condition (3) can be expressed in terms of the function a as follows:

(18) sin2 a axx + 2 sin a cos a Otxy + COS2 a ayy O.

The function a should be periodic in y (a(x, y + 1)= a(x, y)) and satisfy
the initial conditions a(0, y)= 0 and a(Tr, y)- 7r for all y. Obviously, the
linear functions solve equation (18) and among them there is precisely one,
a(x, y)= x, which satisfies the above conditions. It follows that for any
n 0, 1,2,... there are MCI-foliations of T 2 with n Reeb components
A1,..., An" The remaining part of the torus TE\ 1,3 A has to be foliated by
geodesics of the same length. In general, the foliation obtained is of the class
C. It is smooth of the class C iff either n 0 or Reeb components are
pairwise congruent and fill up the whole torus.

If the leaves of an MCI-foliation are dense, then the curvature of leaves
has to vanish identically, so -consists of dense geodesics.

Remarks. (i) It would be interesting to study equation (18) more deeply
getting all its solutions satisfying the periodicity and initial conditions that
should lead to a complete classification of MCI-foliations of T2.

(ii) One could easily modify the above consideration to get a similar
description of MCI-foliations of the Klein bottle.

4.2. Three-sphere. Any codimension-one foliation 9r of S3 contains a
Reeb component DE S [N]. If r is MCI, its boundary L T2 should
be minimal. Assume that L is congruent to the Clifford torus Xl

2 + x
x32 + x42 and lift the Reeb component to the universal covering

A DE(0, 1/V-) R,

equip A with the Riemannian structure lifted from S3 and consider the unit
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normal N of the lifted foliation. In cylindrical coordinates (r, 0, z), the
condition (3) is equivalent to

(19) r2(1 r2)sin2 a" a" + r(1 2r 2) a’

1 -r2 + 2r 4

+ sin a cos a
1 r 2 0

for r (0, 1/x/-) if N is given by

1 0 O
N -cos a(r) - + c sin a(r) -,

where c V/1 r 2 Studying the existence and uniqueness of solutions a of
(19) satisfying the conditions a(0) 7r/2 and a(1/x/) 0 one could con-
struct and classify three-dimensional MCI-Reeb components. Gluing to-
gether two Reeb components equipped with MCI-foliations one could con-
struct an MCI-foliation of S3.

Moreover, our Corollary 3 shows that an MCI-foliation of S3 has at most
one compact leaf T2. This leaf is unknotted according to the Lawson’s result
on closed minimal surfaces in S3 [L]. Therefore, any MCI-foliation of S3

should be diffeomorphic to a standard Reeb foliation obtained by gluing
together two Reeb components ([HH], Part B, p. 42).

4.3. Homogeneous foliations. Let G be a Lie group equipped with a left
invariant Riemannian metric, a closed connected subgroup K and a discrete
subgroup F. Let M F \ G and denote by r the foliation of M obtained by
projecting submanifolds aK, a G. If and k denote the Lie algebras of G
and K, respectively, then

H=

_
cia,iSa

<p, ot>p

and - is MCI iff

(20) _, ci,iC, 0
<p, a >p

for all <p and /3 > p. Here, p dim K and Cc
a,b are structure constants

of g, w.r.t, an orthonormal frame (Xa,..., X)of g’ such that Xg k for
1,..., p. It is easy to see that the condition (20) is satisfied when K is a

normal subgroup of G.
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4,4. Riemannian foliations.
bundle-like metric g iff

A Riemannian foliation o- is MCI w.r.t, a

(21) Vo’H -A"H

for any vector v tangent to oq-, where A - is the Weingarten operator
associated to the bundle T +/--and 7 +/- is the natural connection in this
bundle induced by the Levi-Civita connection on M.

If the bundle T -- is integrable, then A +/-= 0 and (21) reduces to

(22) Vo-H 0 (v T" -).

In other words, a Riemannian foliation with involutive normal bundle is MCI
w.r.t, a bundle-like metric iff its leaves have parallel mean curvature vector.

In general, if oqz- is Riemannian and MCI, then the norm IIHII is constant
along the leaves. In fact, if X is a vector field tangent to , then

sllnll 2 ( =xg) ( H, H) + 2 X, n ], H) 0,

The similar argument was used in [KT 2], where the authors proved
(Lemma 1.17) that the mean curvature form of a Riemannian foliation is
basic iff H is parallel w.r.t, the (partial) Bott connection in the bundle
TM/T.Yr identified under the canonical projection with the bundle T-r.
The results of [BKO] imply:

If codim -= 1, M is compact and the Ricci curvature ofM is non-negative,
then r is totally geodesic and the Ricci curvature ofM in the normal direction
vanishes.

This result could be obtained also from our Theorem 4 and the integral
formula of [W 2]. In fact, z- has to be minimal: Otherwise, we could
consider the set K where the mean curvature h attains its positive maximum
(or, negative minimum). K is closed and saturated, and there exists a
harmonic measure/x supported in K. Formula (11) implies that h 0 on K.
The mentioned integral formula reduces now to

ft(Ric(N) + Ilnll z) 0

and this yields our observation.
The first Structure Theorem for Riemannian foliations ([M], p. 155) says

that the closures of the leaves of a Riemannian foliation - form a possibly
singular foliation 0- If is MCI, 0 is preserved by (0t) and IIHII
is constant along the leaves of 0, however 0, need not be MCI. If
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codim -= 1, then either ,0 or the leaves of are dense. In the last
case, is MCI iff minimal.

4.5. Principal foliations. A codimension-one hypersurface M of the Eu-
clidean space Rn+l is called a Dupin hypersurface if the number and
multiplicities of different principal curvatures are the same at all the points
of M, and the principal curvature functions are constant along the leaves of
the foliations induced by the corresponding distributions of principal vectors
[CR]. (It is known that the distributions corresponding to principal curvature
functions are integrable.)

Let A A0, A1,..., A be the principal curvature functions on a Dupin
hypersurface M. Let - be the principal foliation corresponding to A and let
B be its second fundamental tensor. If X and Y are tangent to -and Z is a
principal vector corresponding to A i, >_ 0, then [W 2]

(23) (t ii)( n( g, Y), Z) (X, Y)(I, Z).

It follows that the mean curvature vector H of is given by

k

(24) H E (A Ai)-lmi(A)i,
i=1

where m is the multiplicity of A and (7) is the component of VA tangent
to the principal distribution corresponding to A i. Note that if M is isopara-
metric (principal curvatures are constant), then B 0 and H 0; if k 1,
then the formula (24) reduces to

(25) H (/ /1) -1mVA.

Recall also [W 1] the relation between the mean curvature vectors H and
H of an arbitrary p-dimensional foliation of any manifold equipped with two
conformally equivalent Riemannian metrics g and og"

(26) l(/_/+
Finally, note the following classification ([CR], Theorem 6.2) of connected

complete Dupin hypersurfaces M of Rn+ with two principal curvatures: If
M is non-compact and one principal curvature is identically zero then M is a
standard product S’(r) R-’, otherwise M is obtained from a standard
product St’(r) S"-k(s), r z + s2 1, in S/ 1(1) via the stereographic pro-
jection S+1\ {x0} Rn/l from a point x0 of S/1. This classification
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together with an elementary calculation involving formulae (25) and (26)
yield:

Principal foliations of a complete Dupin hypersurface with two principal
curvatures are MCI.

4.6. Horocycle foliations. Let N be an n-dimensional complete Rie-
mannian manifold of constant negative curvature -1 and let M TIN be
its unit tangent bundle. M carries the so called Sasaki Riemannian metric g
induced by the Riemannian structure g of N and the Levi-Civita connection
V of (N, g). The tangent bundle TTN splits into the direct sum of the
horizontal and vertical subbundles, so every vector : of TM can be written as
the sum :h + :v of its horizontal and vertical components. The bundle TM
splits also ([K], Chapter 3) into the orthogonal sum of integrable subbundles

TM E E Eu

which could be described in the following way under the canonical identifica-
tion of the horizontal and vertical fibres with the tangent spaces of M.
E is the one-dimensional bundle spanned by the geodesic flow (gt) of N,

E is the stable subbundle consisting of all the vectors : TwM, w M, for
which h _sOy and : +/- w and E is the unstable bundle which is defined
in the similar way: sc Ewu iff :h and _t. w. The bundles E and E
are invariant under the geodesic flow (gt):

Let - be the strong stable foliation of M: T-= E. From the known
formulae [Ko] describing the Levi-Civita connection X7 of the Sasaki metric it
follows that

(27) (:): (VxX) (VxX)w + e,(R(X, w)X)w,

where R is the curvature tensor on (N,g), oV’(u)w and 7(U)w denote
respectively the horizontal and vertical lifts of a vector u to the tangent space
TwTN, and : gg(X)- 7V(X) is the vector field on TN determined by a
vector field X on N. From (27) and the well known formula for the curvature
tensor in the case of constant sectional curvature it follows that the mean
curvature vector H of r is given by

H=(n-1)G,

where G is the vector field of the flow (gt). Therefore:

The stable (and also the unstable) foliation of the unit tangent bundle of a
complete Riemannian manifold of constant negative curvature is MCI.
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