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RELATION OF THE VAN EST SPECTRAL SEQUENCE
TO K-THEORY AND CYCLIC HOMOLOGY

ULRIKE TILLMANN

1. Introduction

In this paper we study how the smooth cohomology of the infinite general
linear group GLA for a Banach algebra A relates to cyclic cohomology, Lie
algebra cohomology and Dennis trace. Our main result is as follows.

THEOREM A. The following diagram is commutative:

ns*maLZ

Here B is the boundary map in Connes’ long exact sequence relating
continuous cyclic cohomology to continuous Hochschild cohomology [C].
denotes the dual of the alternation operation that induces an isomorphism
between the primitive elements in the Lie algebra homology of a MA
and the cyclic homology of A [LQ] [T]. A is the classical map from the
smooth cohomology of a group to its Lie algebra cohomology, which can be
identified with one of the edge homomorphisms in the van Est spectral
sequence. The definition of Dsm will rest on the observation that the dual of
the Dennis trace map factors through the smooth group cohomology of GLA.
We incorporate the above diagram into a bigger commutative diagram to

show its relation with the van Est spectral sequence and the various other
well-known cohomology groups associated with a topological group.
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DIAGRAM B.

HC*A I B SHHc*A HC*c A ,HC*c+A

H*BGLA H,mGLA x
Hie g a H*GLA

H*BGLA H*(BGLA) H*(GLA/GLA) H*GLA

The top row is Connes’ exact sequence. The second row is associated to
the van Est spectral sequence. While the bottom row we consider as the
cohomology sequence induced by the fibration

(GLA/GLAa)
+

( BGLAa)
+

BGLA.

(A* denotes the algebra A with discrete topology. The definition of the
quotient space GLA/GLA will be made precise as a quotient of two
simplicial sets. + denotes Ouillen’s plus construction which does not alter
the cohomology of a space.) Its homotopy sequence is by definition the long
exact sequence of relative, Quillen’s algebraic, and periodic K-theory groups

The columns in Diagram B find their interpretation as follows. The left
one is dual to the Dennis trace map D" Ka,lgA H, (BGLA) HH, A. In
particular, the dual factors through the smooth cohomology of GLA. This is
shown at the end of Section 2. The right column is the dual of Karoubi’s
relative Chern character

chrel’KTIA ----> H, (GLAIGLA) HCC, _1A

which was shown to factor through nL,ieg Ct in [Ti].
Diagram B can thus be interpreted as the dual of diagram [K2, III] where

Hs*mGLA takes the role of multiplicative K-theory MK, A. (See also [K3,
Th6or6me 7.11].) Hence, Theorem A may be considered as a step towards
verifying a conjecture by Karoubi that Hs*mGLA is the dual of MK, A [K5].
This should not be too surprising as both groups yield secondary characteris-
tic classes as for example those of foliations [K4] [D]. While Karoubi’s point
of view is very much rooted in differential geometry, our treatment here
relies on purely algebraic and topological methods.

In its topological outlook, our approach is closer related to some widely
circulated but unpublished notes by Graeme Segal [$3], in which he defines a
functor ,A as the homotopy groups of the fiber of the Chern character
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as a map in the category of spaces with two topologies. This fibration is
closely related to another fibration that gives rise to the van Est spectral
sequence. Indeed, the cohomology of the fiber space in this category is
identical to the continuous cohomology Hc* GLA.

Contents. Section 2 is devoted to a categorical approach in which the
smooth Dennis trace map Dm finds its natural setting. This leads us to the
construction of a free module over a topological ring A with basis X, a
topological space. The construction relies on the Dold-Thom free abelian
group functor [DT]. The resulting space is identified in 2.13 with the infinite
loop space associated to the spectrum

X /x BA, X /x B2A, X A B3A,... }.

We also prove in 2.6 that the continuous cyclic cohomology of a topological
group G is isomorphic to the continuous cohomology of G tensored with the
cyclic cohomology of a point.

Section 3 proves Theorem A. Commutativity of the remaining squares in
Diagram B is shown in Section 4. Section 5 contains some final remarks.

Acknowledgements. I would very much like to thank Ralph Cohen and
Graeme Segal, from whom I learned the arguments used in Section 4, for
many helpful discussions. Most of the writing was done while the author
visited the Mathematical Sciences Research Institute, Berkeley.

2. Continuous cohomology and Dennis trace map

With the possible exception of Theorem 2.6 and the factorization of the
Dennis trace map, this section is of purely expository nature. Its main
purpose is to establish notation and give most of the definitions needed later.

Recall from [C] [G], a cyclic object in a category ’ is a simplicial object
S. (Xn, tgi, si) with an action of the cyclic group Z/(n + 1) (tn+ 1) on Xn,
for each n, satisfying the following relations:

tnOi_l, 0 < <_ n,
Oitn + On O,

tn+2Si_l, 0 < n,
Sitn+ 2tn+ESn, O.

Cyclic spaces. Let - denote the category of compactly generated spaces
in the sense of [St]. For Y Y" and A a locally contractible, abelian group,
let Maps(Y, A) denote the space of continuous maps from Y to A. Given a
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cyclic object X. in q-, Maps(X., A) forms a cocyclic space. The associated
cochain complex has total boundary

n

b=
i=0

The cyclic structure defines an action T on the cochain complex, such that
for f Maps(Xn, A),

T(f)(x) (--1)nf(tn+lX).

It is easy to check that the set of T-invariant maps Maps(X., A)r form a
subcomplex. We define,

H-( X., A) .’= H, (Maps(X., A), b)
HC(X., A) H, (Maps( X., A) T, b)

The first cohomology theory is of course the continuous cohomology of X
with coefficients in A (see for example [BS]). The second cohomology theory
is called the continuous cyclic cohomology of X. with coefficients in A. If
A C, we will subpress the second argument.

Remark 2.1. Alternatively, following [LQ] or [G], one can define
HC-(X., A) as the total homology of the following double complex C**:

(2.2)
Maps(Xn+ 1, A)

1-T NMaps(Xn + 1, A)

Maps(Xn A) 1-T NMaps(Xn, A)

where b’ n- Tn.Y;i=o (-1)9’ and N 1 + T + T2 + If A is a topologi-
cal vector space over R or C then these two definitions coincide. (The proof
in the algebraic case [LQ] carries over straight away.) Consider the shift
operator S" C** C*+2’*. The cokernel of S are the first two columns.
Since the odd columns are acyclic, its homology is the homology of the first
column. This yields Connes’ long exact sequence

(2.3) HC(X.) .’., H(X.) B____) HC__I(x.) S, HC,_+I(x.) ----)
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Example 2.4. Let X.= (pt) be the trivial cyclic space of a point. Then

H-(pt, A) H, (A ,A---A ...)=(A, =0,
o O, > O,

A,HCr(pt, A) H,(A - 0 -,A - 0"") O,

Example 2.5. Let G be a topological group. Then its bar construction is
the cyclic space E.G with EnG Gn+ and

Oi( go, gn) ( go,’’’, i,’’" gn)

tn+ l(g0,’’’, gn) ( gn, go,’’’, gn-1)

The diagonal left action of G on E.G is compatible with the cyclic action.
The quotient space E.G/G can be identified with the cyclic space B.G where
BnG G and

(g2,’.., gn), O,

( gl, gigi+l, g), 0 < < n,

(gl,’",gn-1), i=n,

tn+l(gl, gn) ((glg2 gn) -1
gl,’’" gn-1

This identification is induced by the map

"(go, gn) -- ((g0) -1
gl (gn-1) gn)"

THEOREM 2.6.

HC(B.G) H(B.G) (R) HC-(pt)

In particular, Connes’ boundary operator B is zero in cohomology.

This is a generalization of Karoubi’s result [K1, Th6orme II]. For the
proof we need to introduce the definition of continuous cohomology of G
with coefficients in a (non-trivial) G-module A [HM] IS1]. The standard
homogeneous resolution of ,A is just

ff*(G, A) := (Maps(E.G, A), b)

Thus, in particular, both the cohomology and the cyclic cohomology of E.G



594 ULRIKE TILLMANN

are that of a point. The G-action on ff*(G, A) is given by

( g.f )( go, gn) gf( g-lgo, g-lgn)"

induces an isomorphism of ff*(G, A)G with the non-homogeneous cochains

F* (G, A) := (Maps( B.G, A), b)

where the action of G on A twists the boundary b. The continuous
cohomology of G with coefficients in A is defined as

Hc*(G,A) :=H,(f*(G,A)G,b)
=H,(F*(G,A),b)

By definition then, H(B.G) Hc*(G).

Proof Let C** denote the double complex (2.2)with X.= E.G and
A C. Via the map 7r, its G-invariant subspace (C**)G can canonically be
identified with the double complex for the cyclic space B.G, the homology of
which we seek to calculate. For this consider the triple complex

Drst:=Fr(G, CSt).

If 01(= b),02(= 1 T or N),03(= b or b’) denote the respective differen-
tials in the r, s, t directions, then d 01 + (- 1)r02 + (-- 1)r+s03 is the dif-
ferential of the total complex Tot D***, the homology of which we abbrevi-
ate by H*D.
To prove the theorem, we compare two spectral sequences, both converg-

ing to H*D. The first one is the (first) spectral sequence associated with the
double complex

Eq FP(G, (Tot C**)q).

Since each Ct= Maps(Gs+l, C)is G-injective,2

E(’ H(G, (Tot C**)) (Tot(C**) G)q
for p 0, and zero otherwise. Thus the spectral sequence collapses at the

2in [HM] only locally compact groups are considered. However, all the relevant results in 2
are valid for the larger class of compactly generated groups such as GLA. Alternatively, Cst is
clearly of the form Maps(G, A) where A is contractible, i.e. Cst is soft in the terminology of [$1]
and hence G-injective.
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E2-1evel with

E2 q Eq nf-( n.a).

As EPq 0 for p > 0, there are no extension problems, and hence canoni-
cally

H*D HC(B.G).

Consider now the (second) spectral sequence associated to the double
complex

EPq 2 FS( G, Cta)
s+t=p

For a fixed even t, Ct* F*(G) is homotopy equivalent to its cohomology
H*(ff*(G)) C. The inclusion of the constant functions C fr(G) and the
evaluation at the identity ff*(G) C give such a homotopy equivalence.
Thus Ct* is split.3 Similarly, for a fixed odd t, Ct* is split with zero
homology. Therefore,

Eq E Fs(G, Hq(Ct*))
s +t=p

As nq(ct*) C when q 0 and even, and zero otherwise, again the
spectral sequence collapses to yield

E’ E3 HP(Tot F*(G,C*)) (H(B.G) (R) C*)
p

with C* C - 0 C 0 HC.(pt).
canonically be identified with E*, and hence

As before, H*D can

HC(B.G) H(B.G) (R) HC-(pt).

To prove the second assertion, consider the double complex (C**) and
filter it by columns. Then the associated spectral sequence gives

E* H(B.G) (R) C*

and thus collapses at this level. In particular, d
Theorem 1.9] and [G, II.2.4]). D

B 0. (Compare [LQ,

3See [B, Lemma 3.1]. A cochain complex C* is split if Cq --Bq Hq(C*) /q+l
Bq c ker(Oq) and /q+ isomorphic to Bq+ 1.

with
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Example 2.7. As above, let G be a topological group. Its cyclic bar
construction is the cyclic space W.G with WnG an+l and

( go,..., gigi+l, gn),
Oi( go, gn)

( gngo, gx,’’’, gn-1),
0 <i <n,
i=n,

tn+l(gO,’’’, gn) (gn, go,’’’, gn-1)"

Define a" B.G - W.G via (gl," gn) -- ((gl gn)-1, gl,’’’, gn). It is easy
to check that this is a map of cyclic spaces and hence induces maps in
cohomology

H}( W.G) -H(B.G)

and cyclic cohomology

HC>(W.G) HC-(B.G) Hc*G (R) HC-(pt).

Remark 2.8. If X. is actually a simplicial manifold we may replace the
continuous functions by the smooth functions Maps(X., C). Though in most
cases of interest the smooth cohomology groups are the same as the continu-
ous ones described above, for example see [HM, Theorem 5.1], this might not
be true in general [Mo, Theorem 8.3].

Cyclic vector spaces. Let /denote the category of topological vector
spaces over C, and let V and W be elements in /. Denote by Hom(V, W) the
set of continuous C-linear maps from V to W. For a cyclic object E. in , we
define

H/(E., W) := H, (Hom(E., W), b)
HC/( E., W) .’= H. (Hom(E., W) r, b)

Equivalently, we could have defined the continuous cyclic cohomology of E
as the total homology of a double complex similar to (2.2). We are only
interested when W C and subpress the second argument.

Example 2.9. For every topological algebra A over C, define a cyclic
vector space N.A with NnA ---A*"/1 and

Oi ( ao, an ) [ ( ao, aiai+ 1,..., an),
(anao, al,...,an_l),

tn+l(ao,...,an) (an, ao,...,an).

0<i <n,
i=n,
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The associated complex C*(A) (Hom(N.A, C); b) is just the continuous
dual of the Hochschild complex, and its invariant subcomplex C*(A)r is by
definition Connes’ cyclic complex for the algebra A. Hence,

(2.10) H/( N.A ) HHc*A
HC/ ( N.A) HC*cA.

Let MqA denote the algebra of q q matrices over A. Matrix multiplica-
tion and the usual trace define a map

tr (mqA)
(R)n+l 1) __) AMq(Z(R)n+ (R) +1

Multiplication here means (mij) (R) (llij) --> (Ekmik (R) thkj). It is easy to
check that tr defines a map of cyclic vector spaces tr" N.MqA -> N.A. As in
the algebraic case [DI], this map induces Morita equivalence so that

(2.11) HHc*MqA HH*A
HC* MqA HC*A.

Topological vector space functor. We will now construct a natural functor
from - to 7/that will take cyclic spaces to cyclic vector spaces. It will be the
continuous version of the free abelian group functor that takes a set S to
Z[S] inducing the Hurewicz map on simplicial sets. More precisely, it
associates to a space X the set of finite linear combinations C[X], topolo-
gized in such a way that it becomes a topological vector space over C and the
natural inclusion X - C[X] is continuous. For the definition of the topology
we are guided by the following two extreme cases:

(1) If X X* is discrete then a natural topology for C[X] is the inductive
limit topology, which, for a topologist, is the fine topology with respect to the
finite dimensional linear subspaces. It is the finest locally convex topology on
C[X]. In particular, Hom(C[X], C) Maps(X, C).

(2) Instead of the base X, the coefficients may be discrete. Dold and
Thom’s [DT] construction of a model for N[X] is well known. Recall, for a
based space (Y, .), SP(Y)= limSPq(Y)where SPq(Y)= Yq/Eq has the
quotient topology. The inclusions are given by (Y1,..., Yq) (Yl,..., Yq, *).
Let X/ denote X with an adjoint base point. Then N[X] SP(X/).

The definition of the topology on C[X] is part of a more general setting
which to explain we will take a small detour. Let A be a locally contractible,
abelian group.



598 ULRIKE TILLMANN

DEFINITION 2.12.

SP(Y) SP(A A Y)/~

where the equivalence relation is generated by (a, y) + (a’, y) (a + a’, y).
SPA(Y) is equipped with the quotient topology.

An abelian group is the simplest example of a F-space as considered by
Segal [$2]. The spectrum it generates is the Eilenberg-MacLane spectrum

BA A, BA, BEA,

with 7r,BA 7r, A. With the notation of [$2], note that

SPz( X) 1-[ An x Xn/F.
n>O

The equivalence relation F identifies (0*a, x) Am Sm with (a, 0, x)
A Xn for all maps 0 from {1,..., m} to the power set of {1,..., n} such
that O(i) is disjoint from O(j)whenever j. Here

O*(al,...,an) (bl,...,bm) with b ak
k GO(i)

and

0, (X1,... Xm) (yl,..., Yn) with Yk Xi if k 0(i).

The right hand side of above formula represents the infinite loop space
associated to the spectrum

BA AX= {A AX, BA AX, B2A AX,...}.

Thus SPA(X)= YI(BA /x X)and we have the Dold-Thom theorem for
SPA(X):

COROLLARY 2.13. The homotopy functor 7r , SPA from topological spaces
to graded abelian groups is the homology functor associated to the spectrum
BA. ForX -,

rrnSPA(X) (D Hn-k(X; rrkA)
k

where H, denotes the reduced homology functor.
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For a topological ring R, any continuous function b from X to an
R-module M can be extended uniquely to an R-module map ’R[X]
SPR(X/) - M. That is,

Maps(X, M) HomR(R[ X], M)

As the extreme cases (1) and (2) satisfy similar universal properties, it is easy
to see that SP(X)= SPN(X) and that C[X] SPc(X+) has the inductive
limit topology. Furthermore, for any cyclic space X.

(2.14) H-(X.) H(C[ X.])
HC( X.) HC} (C[ X.]).

Given a topological group G, C[G] is a topological algebra, and C[W.G] and
N.C[G] are naturally isomorphic. Hence,

(2.15) H(W.G) HHc*C G

HC(W.G) HC*c C[ G].

Dennis trace map. We are now in the position to define the Dennis trace
map and its smooth dual. Let A be a Banach algebra, MqA its q q matrix
algebra with units GLqA. Consider the following sequence of maps of cyclic
vector spaces

(2.16) C[B.GLA] a, C[W.GLqA] N.C[GL,A] --* N.M,A.

The last map is induced by the natural inclusion GLqA MqA. Applying
the functor H/ respectively HC/ and taking the limit over q, yields maps

Dc HHc*A Hc* GLA
chc HC*cA ---) Hc*GLA (R) HC*c C.

Here we used the various identifications (Morita invariance 2.11, 2.10, 2.14,
2.15) and Theorem 2.6. A closer look at the map

Hom(N.MqA, C) Hom(N.C[GLqA], C) Maps(W.GLqA, C)

shows that it factors through the set of smooth function Maps(W.GLgA, C),
as every element in its image is "linear" on GLqA. This leads to the
definition of

Osm HH*A --) H*mGLA H, (Maps(B.GLA), b).
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We have then the following sequence of maps

(2.17) HHc,A O,=, H,m(GLA) --+ Hc, ( GLA) --+ H, (GLA)

where the latter group is the cohomology of the discrete group GLA, or
equivalently, the cohomology groups of the classifying space BGLA. By
definition, sequence (2.17) is then the dual of the Dennis trace map

D" K,tgA .a", ( BGLA)
+

H, ( BGLA) += H, ( BGLA) --) HH, A.

(Here + denotes Quillen’s plus construction. Note that rationally the
Hurewicz map h is an isomorphism onto the primitive elements in
H,(BGLA)+.) In particular, the dual factors through the smooth and
continuous cohomology of GLA.

3. Proof of Theorem A

Let A be a Banach algebra, MqA the algebra of its q q matrices, and
GLqA the group of units thereof. We will prove the following stronger
statement.

THEOREM 3.1. There is a (up to a constant) commutative diagram of
cochain complexes for all q > 0

(*(MqA) B, C,-I(MqA)T

ff(GLqA)GLqA z A* g][qA

Proof of Theorem A. After taking homology of the above cochain com-
plexes and letting q tend to infinity, Theorem A follows now by Morita
equivalence 2.11. D

Before embarking on the proof of Theorem 3.1, recall briefly the defini-
tions of the various chain complexes and chain maps envolved. All vector
spaces and algebras are considered to be over R while coefficients in the
various cochain complexes may be taken to be R or C.

3.2. Lie algebra cochains. Let g be a Lie algebra and A* g denote the
continuous linear functionals on its exterior power algebra. If f An. g and
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Xl,... Xn F. , its differential 8f is defined as

8f(x t n Xn)

E ( 1)i+Jf([ Xi, Xj] A X A A i A A .j A A Xn).
i<j

The homology of this complex is the Lie algebra cohomology nieg.
Next, recall the definition of the alternation operator ’ mapping cyclic

cochains cn-I(MqA)T to Ang[qA. Let f cn-I(MqA)r and Xl,...,Xn .
][ qA. Then

,(f)(Xl,.. Xn)"-
( .--1, n-1

n E sign o’f(Xrl,... Xrn)
0"

where En is the permutation group on n letters. It is straightforward to check
that is a chain map.

3.3. Reduced Hochschild cochains. In order to simplify computations, we
prefer to work with the reduced Hochschild complex C*(MqA). It is the
quasi-isomorphic subcomplex of C*(MqA) consisting of all functionals that
vanish on the degenerate chains (a0,..., an) a 1 for some i, 1 < < n.
Then Connes’ boundary operator

O (n(mqA) -) cn-l(mqA)T

simplifies to

n

B(f)(al,...,an) (-1)" E (--1)(n-lXi-1)f(1, ai,...,an,al,...,ai-1)
i=1

where f n(MqA) and a MqA. (See [LQ, Proposition 1.11]. We ad-
justed the signs so that B is a map of cochain complexes.)

3.4. The map h. For an arbitrary Lie group G, define a map h from the
smooth functions MapsO(Gn+x) to the n-forms fn(G) such that for f
MapsO(Gn+x) and Xl,..., xn TgG,

i( f )( Xl, Xn’ g )
1

sign tr Oto.

0
Otnf(g expg tlXl, expg tnXn)

Here, t - expg tx is the integral curve through g of the vector field obtained
from x by left translation. In particular, we have

expg tX g exp (dLg- X )
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where exp is the exponential map at the identity 1 G and dLg is the
differential of left translation by g. If f is G-invariant then

f(g, eXpgtlxl, eXpgtnXn)

f(g, g exp tldLg-i(Xtrl), g exp tndLg-1(Xn))
f(l, exp tldLg-,( Xtrl),... exp t.dLg-,(x.))

and thus, A(f) is G-invariant. Recall that the invariant forms can canonically
be identified with the Lie algebra cochains. Hence, h induces a map

MapsOO(G+ 1) G --> 12’.G

which again we denote by A. Direct computation shows that A is a chain map,
where Maps(G*/ 1) is given the boundary of the simplicial space E.G, that is
that of if(G).
The above computations apply also when G GLqA since GLqA is an

infinite dimensional smooth Lie group modelled on the Banach vector space
MqA. In particular, its exponential map is well-defined and smooth [M].
Hence, the above formula for G GLqA gives the desired map A.

3.5. Dennis trace. Let go,..., g, GLoA and let f n(MqA). From
the definition of Osm in 2.16, we deduce the explicit formula

Dsm(f)(go,..., gn) f(ao 7r(go,..., gn))

f((gn)-lgo, (g0)-lgl, (g1)-1g2,’", (gn-1)-lgn)
where 7r’E.G/G --. B.G and a’B.G -o W.G are the maps defined in exam-
ples 2.5 and 2.7.

Proof. Theorem 3.1 now follows from a straightforward diagram chase.
Let f cn(MqA) and x,..., xn gIqA. Then, by definition of and B,

<o B(f), x A A Xn)

(B(f) ( l/n-1
n sign o,(xl,..., x,,))

Cr

1
X,rtrn))(f, E signtr E signz(1, X,l,

cr, zZ/n

sign o’f( 1, xo-1,..., Xo.n).
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On the other hand, by the definition of A and Osm we have

(A Osm(f), X /k A Xn)

E sign r0t -n osm(f)(l’ exp txXgl,... exp tnXn )
0...0

1 0. signo’ot
O.

O f((exp tnXgn) -1 exp tlXlOtn

(exp tlXrl) -1 exp t2x2,... (exp tn_lXn_l) -1 exp tnXn)]o...O"
LEMMA 3.6.

0
Ot

0 f((exp tnXn) -1 exp tlXl,.. (exp n x 1)-lexp tnXn)[o...o’lOt n-

=f(1, Xl,...,Xn).

We can now finish our calculation:

1(Ao Osm(f), X /k /k Xn) .l E sign rf(1, xl,... Xrn)
o’X

Proof of Lemma 3.6. We will need the following fact.

SUBLEMMA. LetA be a topological algebra and f" An - C be a multilinear
continuous functional. Then its w (Wl,..., wn) directional derivative at the
point a (al,... an) is given by the formula

n

df.wla _f(al,...,ai_l,wi, ai+l,...,an).
i=1

Proof By definition,

df.wla lim f(a + tw) f(a)
O

The denominator is a polynomial in of degree n in which the constant term
is zero and the coefficient of t is .f(al,.. ai_l, wi, ai+l,. an). [’q
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Formula 3.6 can now be derived from the sublemma in conjunction with
the chain rule and the fact that

0- (cxp tx ) o
"-X.

We demonstrate the proof in the case n 2. Recall that f is an element of
the normalized Hochschild complex.

0 0 f((exp t2X )-1Ot 3t2 2 exp tlXl, (exp tlXl)-lexp t2x2)[o,o
t9 [df.(-x2,0,(exptlXl) -1 )X2 [(1 exp tlXl,(exp tlXl) -1)dt

exp tlX1, (exp tlX1) -1) -[- f(1, exp tlX1, (exp tlX1) -1 )]X2

dr.(O, Xl, -Xl)l(_x2,1,1 q- dr.(0, Xl, -XlX2)l(1,1,x2
=f(1, Xl, X2). D

4. Commutativity of Diagram B

We will prove the commutativity of the remaining squares in Diagram B of
the introduction. I trust that at least for finite dimensional Lie groups this is
well-known. However, since we like to interpret Diagram B as the dual of
Karoubi’s diagram [K2, III], I hope that the reader will find it convenient to
find the arguments reproduced here and generalized to the infinite dimen-
sional setting.

Let G be a smooth, compactly generated Lie group modelled on a
complete, locally convex vector space, possibly of infinite dimensions [M] [B].
Let G.= Maps(A G) denote the simplicial group of its smooth simplices,
where An is the standard n-simplex with vertices labelled 0, 1,..., n. G
contains the discrete group G as the constant simplicial group. We will not
be careful to distinguish between the bisimplicial set B.G., its diagonal, and
the simplicial space B.G as their realizations are homotopic, which we will
denote by BG. The inclusion G - G gives rise to a simplicial fibration

Identifying B.Ga with E.Ga/Ga, the first map is given by evaluation of a
simplex tr" An G at its vertices

eval
r ------ (r(0),... r(n)).
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PROPOSITION 4.1. The following diagram commutes:

HeRB.G HsmG

H*BG H*BG

Proof Consider the double complex of smooth forms g2*(B.G) and the
double complex of singular cochains S*(B.G) on the simplicial space B.G.
Integration of forms defines the de Rham map

deR. f*(Gn) -+ s*(an).

The horizontal maps are given by projection onto the first columns g)(B.G)
and S(B.G). The diagram then clearly commutes, t3

PROPOSITION 4.2. Thefollowing diagram commutes"

nieg HeRG
deRl deRl

H*G/G H*G

Proof More or less by definition H*G/G is the homology of (S’G)Gn,
the G-invariant singular cochains. Their inclusion into S*G defines the map
to H*G on the bottom. Recall that the Lie algebra cochains A*g can
canonically be identified with the left invariant forms (f*G). Clearly, if
to fnG is G-invariant, then so is its image under the de Rham map, which
proves the proposition.

THEOREM 4.3. The following diagram commutes:

* niegnsmG h

H*BG H*G/G
eval

h is defined by formula 3.4. Unlike the previous two propositions, here the
diagram of the underlying chain complex does not commute directly. Indeed,
if tr" A G is an n-simplex and f Maps=(Gn/l) is a homogeneous
n-cochain, then we would need

fA(f) f(tr(0), tr(n)).
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But this cannot hold in general as integration is additive in the sense that

f f + f when r is the union of two n-simplices r and r2, while there
is no such linearity property on the right hand side for generic f.

Proof As before, let S*(G) and I*(G) denote the complex of singular
and de Rham cochains on G with coefficients in C. Adopting the notation of
Theorem 2.6, for a smooth G-module A, let F*(G, A) (Maps(E.G, A), b)
and F*(G, A) (Maps(B.G, A), b). Recall that there is a canonical iso-
morphism between the homogeneous and inhomogeneous group cochains
(if*(G, A))a F*(G, A). Now consider the following diagram:

(4.4)
F*(G, C) F*(G, ll* G), (ll* G)G

I I deRl
e8 F* S* G)G’F*(G, C) (G, G) <._.7__ (S*

where e and e are the edge homomorphisms and C is identified with the
constant functions in 12G and SG. The vertical maps are induced by the
inclusion G G and the de Rham map. Clearly the diagram commutes.
Furthermore, both horizontal arrows on the right hand side are homotopy
equivalences as ’nG is an injective G-module4 and sna is an injective
G8-module for SnG I-I Hom(C[Gn], C), where the product is taken over all
G-orbits of Maps(An, G).

This proves the proposition as soon as we show that in cohomology e and
e are the same as the given maps/ and eval. For this consider

F*(G, C) --, F*(G, ff*(G, C)) <._L_ F*(G, C)

F*(G, C) e F* ,12"(G G) (l’l* G)G

Note the two different maps of F*(G, C) into F*(G, if*(G, C)) in the top
row. While the left one is again an edge homomorphism identifying C with
the constant functions in fr(G, C), the map from the right is given by the
inclusion of the G-invariant submodule ff*(G, C)a into F(G, ff*(G, C)).
Both are natural equivalences: For the map on the left, consider the (second)
spectral sequence associated to filtering the double complex with respect to
columns. Since ff*(G,C) is a split G-resolution of C (see the proof of
Theorem 2.6), E’* F*(G, H.ff*(G, C))--F*(G, C). The right map is a
homotopy equivalence as fin(G, C) is continuously G-injective for all n.5

4See [B, Lemma 8.3] or footnote 2 in the proof of Theorem 2.6.
5See footnote 2 in the proof of Theorem 2.6.
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This proves that e is equal to h in cohomology. A similar argument shows
that e is equal to eval in cohomology. []

Remark 4.5. Van Est spectral sequence [B]. If the de Rham complex
f*G splits, then there is a van Est spectral sequence converging to nie
with E2-term

Eq nsPm(a, nJe R(G) ).

For the proof one considers the double complex F*(G,f* G) of (4.4) with its
two natural filtrations. Then, by definition, e, and hence A, is the first and
nie "-)H*G is the second edge homomorphism in the van Est spectral
sequence.
By [B, Theorem 6.7], the de Rham complex I*GLqA splits whenever A

has a countable basis. In this case, we also have HeRGLqA H*GLaA
and hence HeRB.GLqA H*BGLqA in Proposition 4.2 and Proposition
4.1.

5. Final remarks

Looking back at Diagram B, one is led to ask whether

I

H*BGLA Hs*mGLA

commutes, where ch’ is the dual of the Connes-Karoubi Chern character

ch K.A HC.A.

An argument based on Karoubi’s proof that the Dennis trace map is
compatible with the Chern character can probably be pushed [K3, Theorem
5.20]. However, this does not seem to be very satisfactory in our topological
setting as ch is not a map of chain complexes.

Recall, ch is defined as the trace of the curvature tensor taking values in
the non-commutative de Rham homology Hde R. A which in turn is identified
as a subgroup of HC. A. While Hde R. is the homology of a chain complex
with differential of degree 1, HC. A is the homology of a chain complex with
differential of degree -1. Hence, ch cannot be a map of chain complexes if
defined in this geometric manner.
We are thus left with the search for a natural map HC*cA H*BGLA

induced by a map of spaces or chain complexes. Similarly, or alternatively,
one might hope to find a natural map HC*c +A --, H*GLA.
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