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HANKEL OPERATORS ON COMPLEX ELLIPSOIDS

F. SYMESAK

1. Introduction

For (b) in €2 = ¢*(C), the Hankel matrix H = (k) is the infinite matrix of
which k, [ entry is b4, which may be seen as an operator on £2. As it is well known
[21], such an operator can be realized as an operator on H?(D) where D is the unit
disc of C: H*(D) identifies with €2 if (by) € €2 is identified with Y, bez*. So, let
b(z) = Y, byz*. Given f in H*(D), the Hankel operator 4 is defined by

hf = S(bf), (1.1

where S is the Szegd projection. Since the family (z¥) is an orthonormal basis of
H?*(D), the matrix H and the operator 4 (see [28]) satisfy
(h() /) = —— / @7 L = by = .
2im T Z

Hankel operators have been studied by many authors. They showed how the
properties of the operator or its matrix depend on the symbol b. In 1957, Z. Nehari
[19] showed that % is bounded if and only if b belongs to BM O and, in 1958, P.
Hartman [11] proved that & is a compact operator if and only if b belongs to VM O.
In 1979, V. V. Peller [20] proved that 4 is of the Schatten class S,, 1 < p < +o0 if
and only if b is in the Besov space B"'/”(D). An independent proof was given in
1980 by R. Coifman and R. Rochberg [5] for p = 1 and R. Rochberg extended it for
p > 1[22]. We follow their method.

Let n > 2 and let px = px, k,...k, D€ a sequence of positive real numbers. For
by in the weighted space £2(C", (px)), the generalized Hankel matrix H = (hy),
k,l) = ((ky, ..., k), (L1, ..., 1)), is the matrix with entries

hii = bryi Pryi-

Let px = Pk, ky,..k, = 1. We denote by P" the polydisc in C" and by 9 P" its
boundary. The family e;(z) = z’f' . zﬁ" is an orthonornal family of H2(P"). Let
b(z) =Y « brer(z). The function b is in the Hardy space H 2(P"y and, again, we can
define the Hankel operator & on H?(P™") by the relation (1.1). Then we have

(h(e)/en) =

faP b(&)ex(O)e(t)dey -+ - dEy = by,

2mn
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where dP" = {z, |z1| = |z2] = -+ = |za| = 1}. The projection S is the Szegd
projection from L?(3 P") onto H2(P™). In this case, the results are partial for Hankel
operators; see for instance M. Cotlar and C. Sadosky [8] and T. Nakazi [17]. The
difficulty of the problem is that such operators are related to products of Hilbert
transforms. Our aim, here, is to consider a family of weight for which the symbol b
associated with (b;) belongs to the Hardy space of a complex ellipsoid. As ellipsoids
are convex and pseudoconvex domains of finite type in C", one may hope that the
characterization for D extends in this case. More precisely, letm = (m,, ..., m,) be
an n-tuple of integers, and let

"I (ki + 1D /my) - - T((ka +1)/mn)

P (ks + Dy + -+ (hn + D)
First, assume m = (1,...,1). We consider the Hankel operator 4 defined on
H?(B"), where B" is the unit ball of C". The family e;(z) is an orthogonal basis
of H*(B") and llexl132 gn, = (,q—j—%%'_-ﬁ Given (by) in the weighted space

£2(C", (px)), the function b(z) = Y, brex(z) is in H*(B") and we define the Hankel
operator by the relation (1.1). In this case, (h(ex)/e;) = bry l|ek+,l|i,2 (B and the
results on the disc have been extended by R. Coifman, R. Rochberg and G. Weiss [6],
M. Feldman and R. Rochberg [9] and G. Zhang [29]. For the strictly pseudoconvex
domains in C" and finite type domains in C2, F. Beatrous and S-Y. Li proved that a
Hankel operator H defined on Bergman space is bounded if and only b is in BM O
and compact if and only if b is in VM O [3]. They give a sufficient condition on b so
that H belongs to the Schatten class S, [4]. For domains such that the Bergman kernel
is non vanishing, they proved that this condition is also necessary. A characterization
of Hankel operators on peudoconvex domains of finite type in C> was given by S.
Krantz, S-Y. Li and R. Rochberg [13] and [14].

The purpose of this paper is to study the Hankel operators when m is an n-tuple
different from (1, ..., 1). Let (by) in £2(C", p) and b(z) = Y, brex(z) in H*(Q),
where  is the ellipsoid related to m. We characterize the symbol b for which h,
defined by (1.1), is bounded, compact or an element of the Schatten von-Neumann
class Sp, 1 < p < +o0.

Letm = (my, ..., m,) be an n-tuple. We define

n
Q= |z eC, r@=)Y lzI™ -1<0
j=1

and 3Q = {z € C", r(z) =0}. The complex ellipsoid Q is a bounded convex,
pseudoconvex domain of finite type in C".

Before stating our results, let us recall the definition of S,. If ® is a compact
operator in a Hilbert space H we can consider (s;) the sequence of eigenvalues
of (®*®)!/2. The s; are called singular values of ®. The operator © is said to
belong to S, if and only if (s;) is in £7. The space S, endowed with the norm
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1©ls, = (X2 s,.p)l/p is a Banach space when 1 < p < +oo. The space S is
called the Trace Class of H and S, is the Hilbert Schmidt class [10].

Letg > —1 and dV, = (-r(z))?dV, where dV is the Lebesgue measure of Q.
We denote by B, the weighted Bergman projection: it is the orthogonal projection
from L%(dV,) onto the Bergman space A*(dV,) = L*(dV,) N H(R), where H(S)
is the space of holomorphic functions in . Let f € L*(d Vo),

qu(Z)=fQBq(Z,§)f(C)qu(C),

where B, (z, ¢) is the weighted Bergman kernel. Let By(z, ¢) = B(z, ¢{) and By = B.
Then the following result holds.

THEOREM A. Let 1 < p < +oo andl € N such that Ip > n. Let b be a
holomorphic function and define h by hf = S(bf). Then:

(i) Ifb € BMO(0R2) then h is bounded.
(i) Ifb € VM O(0X2) then h is compact.
(iil) If (—r(¢))'V'b € LP(Q, B(£,$)dV(¢)) thenh € S,.

The condition Ip > n comes from the fact that the weight (—r(z))?' B(z, z) is an
integrable function if and only if [p > n. It follows from the mean-value property
that if [p > nand !’ € N, (=r(¢))'V'b is in LP(Q, B(¢, ¢)dV (¢)) if and only if
(—r@)H' VI bisin LP(Q, B(, $)dV () [12].

The conditions are the same as in the case of the ball [9]. To know whether the
conditions are necessary is still open and, probably, difficult. We give some kind of
necessary condition.

We shall use the homogeneity properties of the ellipsoid: Let us define o as the
measure on 92 such that, for all continuous function f with compact support,

+00 ~
f" f(z)dV(z)=/ U f(a'/'"'zl,...,ozl/’”"zn)do(z)}az’”_ldoc, (1.2)
C 0 aQ

where nm = Z}’:, mlj J. D’ Angelo gave an explicit formula for the Bergman kernel
and an asymptotic formula for B(z,z) [1]. The Szego projection with respect to
o has been studied by A. Bonami and N. Lohoué [2]. They obtained an explicit
formula for the Szego kernel function and they defined an anisotropic pseudometric
d to characterize its singularities. We use a family of polydiscs to give an equivalent
definition of d. Let N be the holomorphic transverse vector field
N=H L e
my 07 m, 02,

Notice that N,r = 1 on 92 and, if N, = T + i L, the real field L is tangent to 9<2.
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We consider the n complex tangent directions

) ar
i=———N;, 1<j<n.
/ 9z az; z =J=n
Since Z;;l ;—-"jL j = 0, the family {L;, j # jo} spans the complex tangential space
in the open set V;, = {¢ € C", |zj,| > 1/2/n > 0}. Let zin V;, § > 0 and

0@ 8 ={ eC" { =z+aN,+ Y _BiL;, la| < 8and |B;| < 7;(z,8)},
J#Jo

where 7;(z, 8) = inf [81/ 2m; | |z_8|'l”'/fz_" } The pseudometric d is given as follows.
]

DEFINITION. Let z and ¢ in C". Then,

d(z,¢) =inf{6 > 0, ¢ € Q(z, 8)}.

Let z on 92 and § > 0. We denote the anisotropic ball of 920 (z, §) N 2 by
B(z,8). Let fin L}, .(3K2). For zon 9Q and § > 0, let

1
m(f,z,8) = o (BE. ) B(Zys)f(f)dﬂ(é'),

1
osc(f,z,8) = o(BG.3) bt [f@) —m(f,z,8)|do(¢).

A function f in L}, (3S2) is in the anisotropic space BM O (0Q) if

I fllemo = sup osc(f,z,8) < +oo.
z, 6>0

Let f € BMO@) and 0 < r < 1. Let M,(f) = suposc(f, z,8) where the
supremum is considered for z on 3Q2 and 0 < § < r. The function f isin VM O (d2)
if lim,_,o M, (f) = 0.

The proof of (i) is classical. The Szegt projection is a singular integral operator
with respect to the pseudometric d [26]. We can consider C; the commutator associ-
ated to b. Let f in L2(3R), Cpf = S(bf) — bSf. Since C,Sf = hf we only have
to study the commutator. The proof of S. Janson [15] extends to this context to show
that C,, is bounded.

Part (ii) of the theorem follows from the first one by routine arguments. We
approximate 4 by finite rank operators. Choose b in BMO(92). Let§ > 0. We
consider bs(z) = m(b, z, ). By part (i) of the theorem,

ICy — Cosll < Cllb — bsllBmocan)-
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We need to prove that C;, is compact only when b is continuous. By the theorem
of Stone-Weierstrass, b is uniformly approximated by polynomials P,. For each
P,, Cp, is a finite rank operator and therefore Cp, is compact. We take the limit
in the sense of operators to conclude that C, is compact. It remains to show that
lims_,0 |6 — bsllsmoey = 0. In the case of the ball, R. Coifman, R. Rochberg and
G. Weiss [6] proved that there exists C > 0 such that

osc(b — bs,r, z) < C (Ms(b) + Mcs(b)) .

The result is still valid in the case of complex ellipsoids. By definition of VM O (3€2),
]ims_,() M,s (b) =0. O

Let us prove (iii). If (¢;) and (f;) are two orthonormal basis, a compact operator
® in a Hilbert space H has the Schmidt decomposition

O=00) =) M(/e)fi, (1.3)
i=0

where ( /) is the inner product in H. If ® is given by (1.3), then A; = s;. The
family (e;) is an orthogonal family in H?(£2) but the relation (1.3) with (e;) does not
allow us to prove that (s;) is in £°. We begin to give a generalization of the Schmidt
decomposition: we prove that a compact operator ® defined as in (1.3) where ¢; and
fi are only nearly weakly orthonormal (Definition 3.1) and (1;) in£”,1 < p < 400,
satisfies Y_; s/ < C Y_; Al. Then we prove that a Hankel operator is a finite sum of
operators of type (1.3). This sum follows from the theorem of atomic decomposition
of Bergman spaces [5], [27]. Let 1 < p < +oo. There exists a sequence K;(z) in A?
such that F in A? may be written as F(z) = Z,' AiKj(z)and | Fllar =~ (O, |A; [PV,
The functions K;(z) are built with the weighted Bergman Kernel B, (z, w;). We use
the relation between the Szegd and the Bergman kernel given in the next part to obtain
the nearly weakly orthonormal sequences.

2. The Szego kernel

The aim of this section is to give the fundamental properties of the Szegd kernel
for the measure o. We give pointwise estimates for Nz"S (z,¢),k € N. Whenn =2
such estimates follow from [18]. When 2 is an ellipsoid of C", n > 3, we use a direct
method.

Recall that S(z,¢{) =Y, IIekIIZZZ(m)ek (z)ex(¢); hence

_ml...m” F((k1+1)/m1++(kn+1)/mn) k_k
$@ ) =—— ; Rl + D/m) T+ Dm0 @9

where 2K = (22 - - (zaZ,)* [2]. Let zin 2\ {(0, ..., 0)}. There exists (/, )
on 32 x R} such that z = (A'/™z], ..., A1/™z]). We define the projection on 9Q
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by 7(z) = z’ and A(z) = A. In a neighborhood of 92, 1 — A(z) =~ —r(z) > 8(z) =
dist (z,0R2). Letzin 2, ¢ on 32 and D(z, ¢) = §(2) +d (7 (z), ). We shall rely on
the following proposition:

PROPOSITION 2.1. Let k € N. There exists C (k) > 0 such that

C(k)

N S(z, '
| p (z,0)] < D(Z,C)kG(B(n(Z)’ D(z,¢)))

(2.5)

Proof. Such a proposition may be deduced from the result of [2] or from the
more general results of J. Mac-Neal for decoupled domains [16]. Let us remark that
the derivatives of S and B, are linked by the following relations:

LEMMA 2.2. Letz in Q and ¢ in Q2. Then:

@) N:S@ ¢) = 3Bz ¢) — Sz, ).
(i) Byr1(z,8) = 4 (N:By(z, &) + (i + 1+ q)By (2, 0)).

Proof of the lemma. ~ Since e, (z) = zi' - - - z% is an orthogonal basis of A%(dV),

the Bergman kernel satisfies

) —
Bz, ¢) =) allell 2y e @e).
k
We use the definition of o to compute || ey ||Zzz( avy:

leclzay) = / 1l V()
Q
2 2
ki/my+ - kn/m, +m lexlizo0

7" T(Ga A D/my) T (e + D/my)
my -y D+ D/my + -+ o + D/my + 1)

The relation sz"fk = (ky/my + -+ k,,/m,,)z"fk and the fact that I'(z + 1) =
z['(z) give ().
The second relation follows from similar arguments. O

The following remark is an immediate consequence of the lemma.

REMARK 2.3.  There exist real numbers ay, ay, . . ., g1 Such that

q+1 q+1
—k
B,(z, w) = Zasz"S(z, w) = ZakN§S(z, w).
=0 k=0
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3. Schatten class

The Schmidt decomposition is not available to obtain the singular values s; in this
particular case. We recall the following characterization which does not require the
spectral theory:

s; =inf{|©® — Ellzm) ; rank(E) <i}. (3.6)

We use (3.6) to prove that A is in the Schatten class. We follow the method developed
by R. Rochberg and S. Semmes [23], [24]. Let ©(A) = Z?io Ai(./e) fi, where (e;)
and (f;) are two nearly weakly orthogonal (N.W.O.) families (Definition 3.1) and (};)
is in £7. We use geometrical arguments to prove that (1) isin Sp, 1 < p < +o0.

Let us define a Whitney covering of €2 by polydiscs Q(w, né(w)), 0 < n < 1.
Let w; be the center of the polydisc and let Q; = Q(w;, nd(w;)). We fix Qo >
0 such that Q(w;, nd(w;)/Co) N Q(w;r, nd(w;i)/Co) = Bifi # i’. Let Q; =
O(wi, nd(w;)/Co), Q; = Q(w;, Cond(w;)) and B; = 7w (Q;).

DEFINITION 3.1.  The family (e;) in L*(dS2) is a N.W.O. family if and only if

(i) there exists C > 0 independent of i such that ||e;|| 120y < C and
(ii) the maximal operator T* defined on L*(32) by

1
T*f(z) = sup ———
R ST

f f@ei¢)do(£)
Q2
is bounded in L*(3S2).

Let (A;) bein£7,1 < p < 400, and let (¢;) and (f;) be two N.W.O. families. We
follow the method of [24] to prove that © (1) is in S,. We approximate @ (A) by the

finite rank operators (1) = Zf;é Ai(-/e;) fi. We define the sequence (M (1);) by

1

M@Q); = o(B)

> o (B, 3.7)

wieT;

where T; = {¢ € @, 7w(¢) € B; and r(w;) < r(¢) < 0} is the tent over the ball B;.
We use (3.6) and the following propositions to estimate the singular values of © ()
[9], [24]. We follow the method given for R"”. We have to do it carefully to control
the constants.

PROPOSITION 3.2. Let (e;) and (f;) be two N.W.O. families and let ® =
Y Xi(-/e) fi. There exists C > O such that, fork € Nand f, g € L2(3Q),

[((® =0 f/8)] < CllfllewllglzonM Ay,

where M (A)* is the nonincreasing rearrangement of M (1).
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Proof. Let ();) a bounded sequence. We consider the discret measure

AQ) =) IAilo (B))dw,,

where &, is the Dirac measure at w;. Let ||A(X)||can the Carleson norm of the
measure A(A). Then |[A(A)|lcan = sup; [IM(A);|. Let (v;) be a bounded sequence
and let v(z) = Z,. v; @i (z), where ¢; () is a continuous function such that |¢(z)| < 1
and

0i(z) = 1ifz € Q(w;, nd(w;)/C3),
0ifz ¢ O;.

¢i(2)

Then

Z)»io(Bi)vi = fQV(K)dA(C) = CllAM) llcan /m V¥ (2) do (2),

where v*(z) = sup,p [vi| [25]. Let f and g in L?(3). The choice v; =

I(fleol 1@/ o
a(B)7 5(B,)/2 BIVES

A

1((® — 00 f/8)l < CIAAY lIcan /m T*f(2)T*g(2) do (2)

IA

CIAOH) canll £l 2e gl 2o

where ()»f.‘) is the sequence deduced from (A;) and defined by )\f.‘ = 0fori =0,...,k—
1 and Af = A; fori > k. We suppose that M (1) is a nonincreasing sequence. It
remains to prove that there exists C > 0 such that, for0 <i <k — 1,

MO, < CM ().

We estimate M (A%); with terms M (A%); = M(L);, 1 > k. Consider the order relation
on A;; = {w;, w; € T; and [ > k} given by

wy < wy iff w, € Ty and r(wy) < r(wy).

Let w; denote the maximal elements for this relation. There exist such maximal
elements as there is at most a finite number of w; for which w; < wy. Moreover, any
wy in A,  is contained in some 77, with wy maximal. The sequence (w;) satisfies the
following technical lemma:
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LEMMA 3.3. LetO<i <k —1. Then:

@) B; clY, B.

(i) 7 (Qwi, nd(w))/C3)) N7 (Q(wrr, nd(wr)/CY)) =B ifl #1.

Proof of the lemma. Let z € B;. Then, for ¢ > 0 small enough, z € n(Q,) C
B(z, &), with w), close to the boundary. Then w), belongs to some T;, with w; which

is maximal and so 7 (w),) belongs to U, B;. As ¢ is arbitrarily small, z is in its closure.
Let z satisfy

d(z, m(w)) < nd(w)/Cg
d(z, m(wr)) < nd(wy)/Cy.
Assume §(wp) < 8(wy). Since d is a Cy pseudometric, d(mw(wy)), mw(w;)) <
né(wy)/Co. Thus wy belongs to 7; and hence wy is not a maximal point. O
The sequence (w;) may be infinite but itis animmediate consequence of Lemma 3.3

thato (B;) /C <Y ,0 (B) < Co (B;). Then

MK,
o(B;)

Y o(B)<CMQA). O

MO, = —— 3 o (BIMO), <
! I}

O'(Bi)

It remains to use the folowing proposition to prove that ® (1) defined as in (1.3)
with ¢; and f; NNW.O. is in Sp:

PROPOSITION 3.4. M is bounded in £7, 1 < p < +o0.

Proof of the proposition. For p > 1, we use the Schur lemma with the sequence
(o) = (o (B;)) [30]. First, let us remark that, for p > 1,

1 " , a(B)\'"*?
B 2o OB <o B ) (a(&)) '

wy€T; wieT;

M(o?); =

Since there exists a finite number of points wy such that r(w;) < —1/2, we denote
by k’ the index such that, for k > k', —1/2 < r(w;) < 0. Leti > k’. We denote by
Jo the index such that w; € V;;. For w in Vj,

o (B((w), §)) ~ 8 ]_[ 7 (w, 8)> =~ /Vol(Q(w, 8)) ﬂ 7 (w, 8).

i*io i*io
We obtain

| Vol(Q0)\ * 1 (5 we. 8w\
M(o"); < Co(By)? wkzeT (Vol(Q,)) ﬂ (—rj(wi,s(wi))) :

i#io
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Since wy is in T;, § (wy) < 8(w;) and T; (wy, 8) = tj(w;, §), § > 0. Then

p

Vol(Qu) \ °
M(?); < Co(B)?
(0?)i < Ca(B;) (wZT Vol(Qi))

The polydiscs Q; are almost disjoint and Vol(Q;) =~ Vol(T;), thus M(a?); < Ca,.” .
Let pand p’suchthat 1/p + 1/p’ =1,

M(o?); < Co(B)?,

M(@c"); < Co(B)".

The Schur lemma implies that M is bounded in £7, 1 < p < 4o00.
Assume p = 1. Let us remark that ), M(A); = ), |Aklo(By) Ew,eAk ;—(13—5,
where Ay = {w;, wy € T;}. We have only to show that there exists C > 0 such that

J(Bk)ZA (B[) C. (3.8)

We consider Aj, the partition of A, given as follows:

DEFINITION 3.5. Let wy in 2. Then:

() Ay ={w € A, QiNQy # 0}
(i) AT = {w; € Ak \ Ui_, AL, suchthat Q; N Qi # @ for some w; € A}}.

The estimation (3.8) follows from the following technical lemma.
Lemma 3.6. There exist N = N(RQ) € Nand R = R(2, n) > 1 such that:

(i) There are at most N points w; in Aj.
(ii) Let wy in Ay, and s > 2. Then §(w;) > R*8(wy).

Proof of the lemma. Let us prove (i). Since §(w;) > 8(wy) when w; € Ay, the
number N is less than the number N’ of domains Q(z;, né(wy)) such that

0(zi, nd(wi)) N Q(wi, nd(wi)) # 0 3.9
Q(zi, n8(wr)/Co) N Q(zir, 8 (wyi)/Co) = Bifi #i'. (3.10)

From (3.9) that there exists C; > 0 such that Q(z;, nd(wy)) € Q(wyg, C1né(wy))
and therefore ; (wk, 8) =~ 7;(z;, 8), § > 0 [7]. Moreover, from (3.10),

n 2
N'8(wi) ]_[rj(wk,S(wk))> < €Y Vol (Q(zi, n8(wi)/Co))
j=1 i
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IA

C Vol (Q(wg, C1n8(wy)))

n 2
C(wy) (I‘[ 7 (wg, S(wk))) :
j=1

where C is independent of the Whitney covering.
Lets > 2 and w; in Ak“ Let us remark that there exists C, > 1 such that for w
in Q(z, c8(z)) and ¢ > 0 small enough,

IA

—61-—(1 — 0)8(2) < 8(w) < Co(1 +©)8(2). 3.1
2

We denote by w; the point of Aj such that Q; N Q; # @. Since é, N éi = ) and
0, N Q; # B, it follows from the relation (3.11) with ¢ = Cio that §(w;) > R§(w;),

cx(C
where R = —Zé"—:")>l. O

Let wy in 2. It follows from Lemma 3.6 that

S o) g b nrj(wk.a(wk» ’
U(Bt) GA 8(wy) T (wr, S(wp) |

leAk wy

Since T (wg, 8) = Tj(w;, 8), § > 0 there exists n(wg) > 0 such that

o (By) 8(we) \"® N s nlh)
2 o < o (8(wl)) NN R sC

w €A, wi €A s=2

where C dependsonnpand Q. O

The following proposition provides the N.W.O. families that we will use to study
the Hankel operators.

PROPOSITION 3.7. Let o > 0 and k € N. The family (e;) defined by
ei(z) = o (B)'8(w) T NES(z, wy)

isa N.W.O. family.
Proof. Let B; = B(m(w;), 2'8(w;)) and C; = By, \ By, the corona of dQ2. Then

leill720) = o (B8 (w)H+ f IN{S@, wi)|*do(2)
B(w(w;),8(w;))

+) o (B)S(w)*> / INES@, wol? do (§).
C

1>1
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On B, we use the fact that [N S(¢, wi)| < C8(wi)) ™ o (B(w(w;), 2'8(w;)))~". On
C;, by Proposition 2.1, |N§S(§, w;)] < C2'8(w;)) o (B)!. Then

Vol(By41)

5 20+2k l —2k
leillzz o) < CEw)™ 21:(2 8w:)) Vol(B)) ~

Let f € L?(3R2) and z on 2. By definition,

T* f(2) < sup 8(w) N, Sf (wy).

Z€B;
The function NZ" Sf is holomorphic, so

C
Vol(Qi)

INE SF(w)] < / INESF@)I8@) dV (©),
Qi

hence

T* f(z) < CM(S()*"N;Sf),
where M is the Hardy-Littlewood maximal function with respect to the pseudometric
d, defined by

I
MF(z) = o .
@ = Sup W, 8) Sy T OV E)

The operator M is bounded in L2(dV). Then

IT* flle2on) < I8 Y NESF 2@y

It follows from the mean-value property that ||§(-)¥ VX Sf || 2@avy < CISfllL2@avy [12].
Then

IT* fllizee) < Cllflleee)- O

It remains to show that a Hankel operator 4 is a finite sum of operators of type
©® (1) and hence is in S, by (3.6). The N.W.O. families and (1) sequences are built
via the atomic decomposition of Bergman spaces A? [5], [27]. Let 3 = (B1, ..., Bn)
in R” and u(©)P = [T, (¢, 8¢))”. Leta inR, B = (Bi,.... B, in R"
and dV,, 3(5) = (—r@)*u@)PdV (). Let1 < j < n, since ()2 < u(¢) <
8(¢)'/2mi | we consider the mapping g; defined by g;(x) = 2ifx < Oand g;(x) = 2m;
if x > 0. We consider a Whitney covering of 2 by domains of type Q(w, né(w))
with n > 0 small enough. Let w; be the center of such domains and (X;) the family
of elements of A?(d V.. ,3(5)) defined by

Ki(2) = 8(w;)=/? u(w;) PP Vol (Q;)' =/ B,(z, w),
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where the parameter ¢ is strictly greater than #y where ) = % + % Z;; 15 ({’ ) + % —1.
The following theorem is the theorem of atomic decomposition of the weighted

Bergman space A”(d Ve, I@(()) (see [26] for details).

THEOREM 3.8. Let1 < p < +oo,ainRand B = (By, ..., Bn) in R" such that
1+a+ 27=1 % > 0. Let F € A”(dVa”@({)). There exists (A}) in £P such that

Q) Fz) = ¥, MKi(2),
i) IFN, g, = (X;1217)"".

In the theorem, the family (K;) is not a basis of A”(d V.. 5(;)) because the decom-
position is not unique.

Lets > —1and D; = (1 + s)"'((N, + (1 + s +m)I). The field D; is trans-
verse and D, B,(z,¢) = By11(z, ¢). Suppose that Vb € AP(8(z)"' B(z, 2)dV (2)),
the function D,_;,| - - - D,_b also belongs to A?(8(z)”' B(z, z)dV (z)). Recall that
B(z,2) ~ 8(2)~! (1= 7, 8(z))) 2. It follows from the theorem of atomic decom-
position witha = —1+1Ip and B = —2 = (-2, ..., —2) that there exists (1}) in £7
such that

Dyty1 - Dioib(@) = Y M8y =P (w7 Vol (0)'~V/7 B, (wi. 2),
i

—2\"/r 1-1/p
— — (wi) Vol(Q:) ~ —
Lets =1 —land u; = (%T‘) (700 )" = 1. Let v = wial. The

sequence (v;) is in £7 and

b(z) =Y vi8(w;)' o (B) B, (wi, 2).

According to Remark 2.3,

s+1

b(z) =) vid(w)'" o (B) Y axNES(z, w)).
i k=0
Choose F in H2(2). Then

hF(z) = /m Sz, $bEIF(§)do (§)

s+1

=Y a ) visw) o (B) fa . NES@E, wb(§)S(z, OF () do (¢)
k=0 i

Since NfS(¢, wy) = _1\7’;,, S(¢, w;) and the function ¢ — S(z, £)F(¢) is antiholomor-
phic,

[ NS wb @)@ OF @ dae)
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Ny, (S, w)F(w,))

k

= 3 CINIS G, w) /3 VIS, BT ) da ).

g=0
We then have
s+1 k _
hF(Z) = Zak ZCth,qF(Z)’
k=0 q=0

where hy 4 F(z) = Y, vid(wi)'" ¥ o (B (NS 4S(, wi)/F)N{S(z, w;). For0 < k <
s+1and0 < g <k,let

ei(z) = a(B)'28(w)*NIS(z, wy),
[i(@ = o(B)' 28 (w)"PTENEIS (2, wy)

and A; = akC,f v;. It is immediate that (¢;) and ( f;) are N.W.O. families and that (1)
is in £7. This completes the proof of theorem. O

4. Remarks and problems
The theorem gives a sufficient condition for a Hankel operator 4 to belong to S,,.
Let I < p < +o00 and suppose that &, a Hankel operator defined as in (1.1), is in S,.
Then there exists C > 0 such that

D e /1P < Clikllg,, (4.12)

where e; and f; are two N.W.O. families [9], [24]. Let e;(z) = o (B;)"/2S(z, w;) and
fi(z) = o (B:)'/28(z, w;). Then (4.12) gives

> o (B)”

Let Th(w) = fasz S2(w, £)b(¢) do(¢). Since (Q;) is a Whitney covering we obtain

p
/ S%(wi, ©)b(E)do ()| < +oo.
aQ

f ITh(w)|P (—r (w)) P B(w, w)' =P dV (w) < +o0. (4.13)
Q

If  is the ball of C", there exist real numbers aq, aj, . . . , a,—; such that S(w, ¢)? =
S oaNES(w, ¢). Then Th(w) = Y}, axNkb(w). Moreover B(w, w) =~
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S(w)~"*D 5o it follows from the relation 4.13 that (—r(¢))"V"b in
LP(2, B(L,¢)dV(¢)) and hence the sufficient condition is also a necessary con-
dition with I = n [9]. The characterization of 7b remains an open problem in the
general case.
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