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CONFORMAL INVARIANTS OF SMOOTH DOMAINS AND
EXTREMAL QUASICONFORMAL MAPPINGS OF ELLIPSES

SHANSHUANG YANG

I. Introduction

Let ft be a domain in the complex plane C. For the study of a class of domains
(called QED domains) introduced by Gehring and Martio in connection with qua-
siconformal mappings, the following so-called quasiextremal distance constant (or
QED constant) M(ft) was introduced in [Y ]:

(1.1)
mod(A, B; C)

M(ft) sup
A.B mod(A, B; ft)

where the supremum is taken over all pairs of disjoint nondegenerate continua A
and B in , and mod(A, B; ft) denotes the modulus of the family F(A, B; ft) of
curves that join A and B in ft. The modulus mod(A, B; ft) is also referred to as the

conformal module of the quadrilateral with ft as its domain and A, B as its one pair
of opposite sides (for definitions, see [LV, Chapter 1]).
A domain ft is a QED domain if its QED constant M(ft) is finite. QED domains

were introduced by Gehring and Martio [GM] as a useful class of domains in the study
of quasiconformal mappings. In this paper we will concentrate on Jordan domains
whose QED constants are finite. The QED constant is called a conformal invariant
because it is invariant under M6bius transformations (or conformal mappings of the
extended plane C). It is determined by the geometry of a domain and measures how
far a domain is from being a disk. For example, it was shown in [Y that for a Jordan
domain ft, M(ft) 2 if and only if it is a disk or half plane. Another closely related
conformal invariant which is also determined by the geometry of a domain is called
the quasiconformal reflection constant and defined as

(1.2) R(ft) inf K (f),
f

where the infimum is taken over all homeomorphic reflections f in the boundary Oft
and where K (f) denotes the maximal dilatation of f. A homeomorphic reflection in
a Jordan curve is a homeomorphism of ( that interchanges the two components of
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the complement of the curve taken with respect to the extended plane. For definitions
of the maximal dilatation K (f) and basic properties of quasiconformal mappings in
the plane, we refer the reader to [LV]. It is well known that R(f2) is finite if and only
if 02 is a quasicircle (or, equivalently, 0f2 admits a quasiconformal reflection). The
two invariants R(f2) and M(Fa) are closely related to one another. For example it
follows from [Y l, Theorem 5.1] that

(1.3) M(2) < R(2)+1

and it was conjectured in [GY] that the equality in (1.3) holds for all Jordan domains.
We refer the reader to [Y and [Y2] for more properties and estimates of the QED
constants and quasiconformal reflection constants of domains in the plane and in
space. The purpose of this paper is to show that the above conjecture is not true by
using ellipses.

On the basis of special examples and observations, a conjecture stronger than
the one mentioned above was offered in [Y3]. Let h be an orientation preserving
homeomorphism of the unit circle. The maximal dilatation of h is defined by

mod(h(A), h(B); D)
gh sup

mod(A, B; D)

where D is the unit disk and the supremum is taken over all pairs of disjoint nonde-
generate continua A and B on the unit circle. We say that h is quasiconformal if its
maximal dilatation is finite. One should notice that in literature a one-dimensional
quasiconformal homeomorphism is often referred to as being quasisymmetric. It is
clear that if h is the boundary function of a quasiconformal self-mapping f of D, then
h is quasiconformal. In this case f is said to be a quasiconformal extension of h. By
the well-known Beurling-Ahlfors extension theorem [BA] and the Riemann mapping
theorem, the converse is also true; that is, if h: D D is quasiconformal then
it has a quasiconformal extension. For such an h we define

K inf{K(f)" f is a quasiconformal extension of h},

where K(f) is the maximal dilatation of f. A quasiconformal extension f* of
h is said to be extremal if K (f*) K. The existence of f* follows from the
compactness of the family of all quasiconformal extensions of h. But in general such
a quasiconformal extension is not unique (see [S l). It was conjectured in [Y3] that
for any homeomorphism h,

(1.4) Kh

It is easy to see that this conjecture implies the conjecture that M(f2) R(f2) 4- 1.
In fact, a weaker version of (1.4) would also imply the same conjecture. We say that
a homeomorphism h of the unit circle is induced by f2 if h f o f2, where f and

f2 are the boundary maps induced by conformal maps of D onto fa and D* onto *



440 SHANSHUANG YANG

(the exterior of f2), respectively. One can show that if (1.4) holds for h induced by, then (1.3) holds with equality.
Recently Anderson and Hinkkanen [AH] showed that conjecture (1.4) is not true by

using affine maps and parallelograms. In this note we show that the weaker conjecture
that M(f2) R(f2) + is not true for ellipses. Hence conjecture (1.4) is not true
even for homeomorphisms induced by ellipses.

In Section 2 we find some extremal quasiconformal mappings associated with
ellipses that will help us to compute the reflection constant of ellipses. Section 3
is devoted to the estimate of the boundary QED constant of ellipses. This section
is largely influenced by the paper of Anderson and Hinkkanen [AH] and I would
like to thank them for making the preprint of their paper available to me at an early
stage. In Section 4 we study the relations among the above mentioned invariants of
conformal extension domains. As a corollary we show that the ellipse does provide
a counterexample to the Garnett-Yang conjecture [GY].

2. Extremal quasiconformal mappings for the ellipse

In this section we construct extremal quasiconformal reflections about ellipses and
extremal quasiconformal mappings of C that maps the unit circle onto ellipses. First
we fix some notation which will be used in the paper. For each a > let Ea denote
the interior domain of the ellipse defined by the equation

u2

a2

in the w-plane, where w u + iv. The unit disk will be denoted by D. For any
Jordan domain f2, the exterior domain\ is denoted by

2.1 THEOREM. The boundary of Ea admits a unique extremal quasiconformal
reflection and R Ea a.

Proof. Define a map w f (z) by

z s b
D*(2.2) f(z)-- 1/2[(a+l)z+(a- 1).], z

where Fa is the affine map determined by Fa(x + iy) ax + iy. One can ver-
ify that w f(z) is a homeomorphism of the extended plane ( which maps D
quasiconformally onto Ea and maps D* conformally onto E*. Thus the map

fr(W) f o J o f-l(w)

is a quasiconformal reflection about 0 Ea with maximal dilatation K (fr) a, where
J is the conformal reflection about the unit circle defined as J (z)
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We claim that fr (w) i.s the unique extremal quasiconformal reflection about i9 Ea.
Otherwise, the conformal map of D* onto Ea* defined in (2.2) has an extremal qua-
siconformal extension onto D other than the affine map. This contradicts the well
known fact that the affine map Fa is the unique extremal map of D onto Ea with
the given boundary values (see, for example, [$2]). This contradiction proves our
claim. Therefore fr (w) is the desired map and the quasiconformal reflection constant
is given by R(Ea) K(fr) a. I"3

It is a well-known fact that any Jordan curve F that admits quasiconformal re-
flections is a quasicircle, the image of the unit circle under a quasiconformal map of
C. By [LV, Theorem 5.1, p. 73], the collection of all K-quasiconformal maps of C
such that f- (F) is the unit circle form a normal family. Thus, by the convergence
theory of quasiconformal maps (see, for example, [LV, Theorem 5.3, p. 74]), the
minimum of the maximal dilatations of all such quasiconformal maps exists and is
called the quasicircle constant of the curve F. In particular, ellipses are quasicircles.
Their quasicircle constants and their extremal quasiconformal maps are given in the
following result.

2.4. THEOREM. There is an extremal quasiconformal homeomorphism ofC which
maps the ellipse Ea onto the unit circle, whose maximal dilatation is

Proof. Let g be a homeomorphism of/j onto/3 that is conformal on E,/-5.
Define a map ga(to) by

(2.5) ga(W)
Jg j-dO fr(to), wEE*a

where fr is the reflection defined in (2.3) and J, as before, is the reflection about the
unit circle. It is easy to see that z ga(to) is a homeomorphism of ( which maps
0 Ea onto the unit circle and that ga is K-quasiconformal in Ea with K V/-5. Simple
calculation reveals that

F- F-,/-5 o fr(W) jg f J f (w) Fj-d J o f-I(w)

when to Ea*, where f is the map defined in (2.2). Since f-1 is conformal in E,
it follows that in Ea* the maximal dilatation of ga is also /-5. Therefore, in light of
Theorem 2.1, ga is a desired extremal quasiconformal map with maximal dilatation
K’(ga) /. I"]

2.6. REMARKS. Since the affine map Fa maps the unit circle onto the ellipse 0 Ea
and affine maps are usually extremal maps with the given boundary values, one might
guess that the quasicircle constant of 0Ea is a. But, according to Theorem 2.4, it
is obviously not the case. It is the specific structure (not just the existence) of the
extremal map constructed in (2.5) that will be needed in the next section.
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3. Estimates for QED constants of Ea

In this section we work with a version of QED constant slightly different from the
one defined in (1.1) and prove one of our main results.

The boundary QED constant of a Jordan domain g2, denoted by Mb(g2), is obtained
by taking the supremum in (1.1) over all pairs of disjoint nondegenerate continua A
and B on the boundary 0f2. The success of finding the exact values for the QED
constants of some special domains is mainly based on the relation that Mb(2) <

M(f2) < R(f2) + (see [Y ], [GY]). In this section we show, with the help of the
extremal quasiconformal maps found in the previous section, that the simple relation
that Mb(2) R(g2) + suggested by those examples is not true for ellipses.

3.1. THEOREM. For any a > we have

(3.2) Mb(Ea) < a q- 1.

Proof. According to the definition,

(3.3)
mod(A, B; C)

Mb(Ea) sup
A,B mod(A, B; Ea)

where the supremum is taken over all pairs of disjoint nondegenerate continua A
and B on the ellipse 0 Ea. We shall consider two cases, namely, the case when the
supremum in (3.3) is attained for some nondegenerate continua and the case when
the supremum is not attained.

The attained supremum case. In this case there are disjoint nondegenerate continua
A, B C 8 Ea such that

Mb(Ea)
mod(A, B; C)
mod(A, B; Ea)

Let h be a conformal map of Ea onto D and let

/h(to), w i/a
fl (w) / J o h o fr(to), tO E E

where fr is the reflection defined in (2.3). Then fl is a homeomorphism of C that
maps Ea conformally onto D and maps Ea* quasiconformally onto D*. Let A’
f (A), B’ f (B). Since the modulus mod(A’, B’; C) is equal to the conformal
capacity of the ring domain \(A’ U B’) (see, for example, [Ge] or [Ah, Chapter 4]),
it follows that

mod(A’, B’; C) fc IVUl2dm 2 fo lVul2dm,
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where u is a real-valued continuous function on ( which is harmonic in C\(A’ tO B’)
with constant value 0 on A’ and constant value on B’. Thus

(3.4) mod(A, B; C) _< fc IV(u o fl)12dm.

Suppose (3.2) does not hold. Then

mod(A, B; C) (a + 1)mod(A, B; Ea).

Since f is conformal in Ea and K-quasiconformal in Ea* with K a, it follows
from (3.4) that

(a + l)mod(A, B; Ea) <_ fe. IV(u o fl)12dm + fF_. IV(u o fl)12dm

folVul2dm+ fe, lV(uo fl)[2dm

mod(A, B; Ea) + a IVul2dm.
.I D

This yields

mod(A, B; Ea) < fD IVul2dm mod(A, B; D) mod(A, B; Ea).

Therefore, all the equalities in the above inequalities hold. In particular the equality
in (3.4) holds. Hence, by the uniqueness of the minimizer for Dirichlet integrals, we
conclude that u o f is harmonic in Ea*.

By the definition of fr, we see that for w

f (w) J o h o Fa o J o f- (w),

where f is the conformal map of D onto Ea defined in (2.2). It is easy to verify that if
u is harmonic and if g is conformal, then both u o g and u o J are harmonic. Therefore,
the conclusion that u o f is harmonic in E,*, implies that U o Fa is harmonic in D,
where U u o J o h is harmonic itself in Ea. Thus, by comparing the Laplacians
of U and U o Fa, one can show that U must be a linear function, which contradicts
the fact that U takes constant values 0 and on two nondegenerate continua on 9 Ea
respectively. This proves that (3.2) holds in the attained supremum case.

The degenerate case. In this case, for each n >_ l, there are four distinct points
Z l,, z2,, z3,, z4, oriented counterclockwise on 9 Ea such that

mod(An, Bn; C)
Mr, (Ea) lim

n->oo mod(An, Bn; Ea)’

where An and Bn are disjoint subarcs on the ellipse 0 Ea joining z,,, to z2,n andjoining
z3,n to zn, respectively. We may assume, by passing to subsequences if necessary,
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that the limit points zj (j 1,2, 3, 4) of {zj,n exist as n oe. Since we are dealing
with the degenerate case, at least two of the limit points coincide.

Let ga be the quasiconformal map of C defined in (2.5). According to Theorem
2.4, g,, maps 0 Ea onto the unit circle and K(ga) /-fi. By the construction of ga, it
has the form

ga(W) g 0 F-1 (w)

for w a, where g is a conformal map of E4- onto D and F,/ is an affine map.
Let

F-I F-I , ,
An ,/-d(An), B ,/-(Bn), An =g(An), Bn =g(Bn).

Then, by the conformal invariance of modulus, it follows that

Itmod(An, Bn, C) < q/- mod(A, Bn C)
tt,2q/-d mod(A, Bn D) 2,v/- mod(Atn, Bn E,/-d).

Therefore,

t. E,/-)mod(An, Bn, C)
< 2_ffmod(An,, B,,,

mod(An, Bn; Ea) mod(An, Bn; Ea)

By the following lemma, the right hand side of the last inequality approaches 2,,/
as n --+ cxz. This yields

Mb(Ea) < 24r-d < a +
as desired. 121

It remains to prove the lemma which is used in the proof of Theorem 3.1. This
lemma is also interesting in its own right.

3.5. LEMMA. Let F be an affine map which maps the interior E of an ellipse
onto the interior E ofanother ellipse For each n > let z,n, Z2,n, Z3,n, Z4,n befour
distinct points oriented counterclockwise on the boundary of E. Suppose that the
limit points zj (j 1,2, 3, 4) of Zj,n exist as n --+ cx and that at least two of the
four limit points coincide Then

mod(An, Bn E)
(3.6) lim

n- mod(F(An), F(Bn); E’)

where A,, and Bn are disjoint subarcs on the ellipse 0 Ejoining z ,n to Z2,n andjoining
z3,,, to z4,,,, respectively.
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Proof. Without loss of generality we may assume that F is given by F(x + iy)
ax + iy with a > and that E is the unit disk D. Then E’ F(E) Ea, the ellipse
defined in Section 1. To prove (3.6) we first observe that

(3.7) mod(An, Bn; D)
log q ([z,,, Z2,n, Z3,n, Z4,n])

where [z,,, z:,,, z3,n, Z4,n] is the cross ratio determined by

[Zl,n, Z2,n, Z3,n, Z4,n]
IZ3,n Z2,n I" IZ4,n Z 1,n

IZ2,n Z l,n I" IZ4,n Z3,n I’
and q(t) is the so-called Teichmtiller function determined by the modulus of the
Teichmtiller ring on the plane which has the important property that

q(t)
(3.8) lim 16.

t--* cx

For more details about the Teichmiiller function and Teichmtiller ring, we refer the
reader to [LV, Chapter 2].

Next we fix a conformal map 4)(w) of Ea onto the upper half plane such that

’j q(wj) cxz, j 1,2,3,4,

where

tOj lim Wn,j, Wn,j F(Zn,j).
n--.(X)

By the Schwarz reflection principle for analytic functions, 4)(w) can be extended
analytically to a neighborhood of w. Thus, near w, we have

(3.9) " (])(W) (])(Wl) -I- (])t(1/)l)(W Wl) -" O((W Wl)2).

In order to establish (3.6) we need to consider the following four cases.
Case 1. z z2 and z2, z3, z4 are distinct.
Case 2. z z - z3 z4.
Case 3. z z2 z3 4: z4.
Case 4. Z z: z3 z4.

For Case it follows from (3.9) that

[’l,n, ’2,n, ’3,n, ’4,n]
I(ib(w3,n) (ib(W2,n)l. I(w4,,)
I@(W2,n) @(Wl,n)l" Iq(w4,.) q(w3,n)l

1’3 ’21" 1’4
Iqb’(Wl)(W2,n Wl,.)l 14

C

Iw2,n w|,n
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as n -+ cx, where C is a nonzero constant independent ofn. Here and in what follows
the notation A B means that A/B as n -- x. Therefore, by the conformal
invariance of modulus, it follows from (3.7), (3.8) and (3.10) that

mod(An, Bn; D) r/ log I([Zl,n, Z2,n, Z3,n, Za,n])
(3.)

mod(A,, B’; Ea) 7/’/log q/([’l,n, ’2,n, ’3,n, ’4,n])
clog q (Iw2,,,-w,,,
cllog q (Iz2,,,-z,,,I)

log W2,n W l,n

log IZ2,n Z l,n

as n -- cx, where C1 and C2 are nonzero constants independent of n. Since

11/32,n 1/31,-< <a
a Iz2,, zl,nl

and Iz2,n z l,nl --+ 0, we have

lim
log 11/32,n 1/31,

1.
n--x log IZ2,n Zl,nl

This together with (3.11) yields (3.6).
For Case 2, reasoning as in Case gives

mod(An, Bn" D) log(Iw2,n 1/31,nl" IWa,n l/)3,nl)
mod(A, Bn; Ea) 1og(lz2,n Zl,n[" [Za,n Z3,n[)

as n cx. This proves (3.6).
For the triple degeneracy case, namely z z2 z3 - z4, we need to consider

two subcases separately.
Subcase I. [zt,n, z2,n, z3,,, z4,n] or 0. We first note that, by considering

the complementary components of An t_J Bn on the unit circle if necessary, we may
assume that [Zl,n, Z2,n, Z3,n, Zn,n] O0 as n cx. Then as in Case we have

mod(An, Bn; D) Iog([Wl,n, W2,n, llO3,n, //)4,n])
mod(A, Bn; Ea) log([Zl,n, Z2,n, Z3,n, Za,n])

as n --+ cx as desired.
Subcase II. [z,n, z2,n, z3,n, z4,,] L # 0, cxz. In this case we have

lim [zl,n, z2,, z3,n, Za,n] lim
IZ3,n Z2,nl

L.
n--x n--+x Z2,n Z ,n

Since zj,n (j 1,2, 3, 4) are on the unit circle and wj, Fa(zi,), elementary
calculations yield

[W3,n W2,n[
lim [Wl,n, W2,n, l/)3,n, tOa,n] lim Z.
n--cx n---cx 11/32,n l/)l,nl
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Therefore it follows from (3.7) and (3.9) that

mod(An, Bn; D)

mod(An, Bn; Ea)
log kI/([’l,n, ’2,n, ’3,n, ’4,n])
log kI/([Zl,n, Z2,n, Z3,n, Z4,n])
1og([Wl,n, W2,n, W3,n, Wa,n])
log([Zl,n, Z2,n, Z3,n, Z4,n])

log q (,k)
log q(L)

as n --> x.
Finally, the quadruple degeneracy case (zl z2 z3 z4) can be treated as in

Case 3 by considering two subcases. The details are left to the reader. This completes
the proof of Lemma 3.5. [3

3.12. REMARK. Let h be any homeomorphism of the unit circle induced by con-
formal maps of D and D* onto Ea and Ea*, respectively. It follows from Theorem 2.1
that the extremal quasiconformal extension of h has maximal dilatation K a.
Since for any disjoint nondegenerate continua A and B on 0 Ea we have

mod(A, B; C) > mod(A, B; Ea) + mod(A, B; Ea*),

the relation K Kh would imply that Mb (Ea) a + which contradicts Theo-
rem 3.1. Therefore, conjecture (1.4) does not hold even for homeomorphisms induced
by Jordan domains bounded by ellipses. This phenomenon indicates that the maximal
dilatation of an extremal quasiconformal map can not be uniquely determined by the
dilatation of the corresponding boundary homeomorphism.

4. QED constants of conformal extension domains

Because it is not known whether the QED constant M(g2) defined in (1.1) and
the boundary QED constant Mb(f2) are the same for ellipses, Theorem 3.1 does
not immediately give a counter example to the Garnett-Yang conjecture [GY] that
M() R(2) + 1, where R(g2) is the QC reflection constant defined in (1.2). In
order to apply Theorem 3.1 to obtain such a counter example, we establish a general
result that will shed new light on the relations among these conformal invariants for
smooth domains. We say that a Jordan domain f2 is a conformal extension domain
if any conformal map between f2 and the unit disk D has a conformal extension to
a neighborhood of f2. By [Po, Proposition 3.1 ], a domain is a conformal extension
domain if and only if its boundary is an analytic curve. Another main result of this
paper is the following.

4.1. THEOREM. Let 2 be a conformal extension domain. Then M
or M(f2) < R(f2) + 1. In the first case, the supremum in (1.1) is attained by a pair
ofdisjoint nondegenerate continua on Of2.
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Proof. Observe that f2 is a quasidisk. Hence all the constants involved here are
finite. For each n > 1, fix disjoint nondegenerate continua An and Bn on such that

mod(An, Bn C)
(4.2) M()-- lim

n- mod(An, Bn;

and that An and Bn converge in the Hausdorffmetric to continua A and B, respectively.
Nondegenerate case. First we consider the nondegenerate case that A and B are

disjoint nondegenerate continua. In this case, by the continuity of moduli, we have

(4.3) M(f2)
mod(A, B; C)
mod(A, B; 2)

We will show that either A, B are on the boundary of fl (and hence Mb() M(f2))
or M(f2) < R(f2)+ 1.

Choose a homeomorphism f of C such that f: f2 D is conformal and that

f: f2* D* is K-quasiconformalwith K R(f2). Let E f(A)and F f(B),
and denote the reflection images of E, F about the unit circle by E*, F*, respectively.
Then, as in the attained supremum case in Theorem 3.1,

mod(E U E*, F F*; C)= fc [Vul2dm 2fD [Vu[2dm’

where u is a real-valued continuous function on which is harmonic in C\(E t2 E* tO
F t2 F*) with constant value 0 on E U E* and constant value on F U F*. Since f
is conformal in 2 and K-QC in 2" with K R(2), it follows that

(4.4) mod(A tO A*, B U B*; C) < fa lV(u o f)12dm + fa [V(u o

<- fo lVul2dm 4- R()

(1 + R(F2))mod(E, F; D)

(1 4- R())mod(A, B; 2).

If A or B are not on the boundary of f2, then A -: A t3 A* or B -: B tO B*. Using the
uniqueness of harmonic functions, one can show that

mod(A tO A*, B U B*; C) > mod(A, B; C).

Thus, it follows from (4.3) and (4.4) that

M(f2) < + R(f2).

This yields the desired conclusion in the nondegenerate case.
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Degenerate cases. Depending on the sizes and relative positions of A and B, there
are five degenerate cases to be considered:

Case 1. A is a single point, B is a nondegenerate continuum and A f3 B 0.
Case 2. A, B both are single points and A f3 B 0.
Case 3. A is a single point, B is nondegenerate and A fq B 0.
Case 4. A, B both are single points and A N B 5 0.
Case 5. A, B both are nondegenerate and A fq B - 0.
In all these cases we will show that M() < 2. But, by [Y1, Theorem 4.6], for

any Jordan domain f2 we have M() > 2. Thus the degenerate cases cannot occur
unless 2 is a disk. Since 2 is a conformal extension domain, we may choose R >
and a conformal map g of the disk DR {z Izl < R onto a Jordan domain ’ such
that g(D) . Let f g-i and let A’ f(An), Bn f(Bn), where An and Bn
are as in (4.2).

In Case 1, we have

Thus

mod(An, Bn, fl) mod(An, Bn, D) > - mod(An, Bn,

mod(An, Bn; C) 2mod(An,_ Bn;
(4.5)

mod(An, Bn; )
<

mod(A, Bn;
On the other hand, we shall show that

mod(An, Bn; C)
(4.6) lim < 1.

n--o mod(A’, B,; C)

To this end, choose an, bn E An and Cn, dn Bn such that

lb, Cnl d(An, Bn), Ibn anl max Ix bnl, Idn Cn[ max Ix cl.
x A x B,

Using some basic properties of the modulus, we obtain that

mod(An ’.Bn, C) >
27t"

log ([f (an), f (bn), f (Cn), f (dn)])’

27t"
mod(An, Bn; C) <

Ib,,-c,!log Ib,,-a,,I

Thus, by (3.8) and the fact that f is conformal in a domain containing A, it follows
that

mod(An, Bn; (2) log ([f(an), f (bn), f (Cn), f (dn)])
(4.7) <

mod(A, B" C) log Ib,,-c,,l
Ib,,-a,,

log If(b,,)-f(a,,)l

log Ib,,-a,,I
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as n approaches infinity. This yields (4.6). Hence, by (4.5), M() < 2 as desired.
Case 2 can be treated like Case 1. In this case, however, to establish (4.6) we need

the following estimates instead of (4.7):

mod(An, Bn; C)
mod(A,, B’; C)

log ([f (an), f(bn), f (Cn), f (dn) ])
Ibn-cnl lbn-cnllog Ib’a,l 4- log Id-c.

log If(bn) Y(a)l + log If(dn) f(c)l
log Ibn an + log Idn Cn

For Case 3, choose an, bn An and Cn, dn nn as in Case above. We divide
this case into two subcases. First we assume that

(4.8) lim [an, bn, cn, dn] 5/: cx.

In this subcase, we claim that

mod(An, Bn; C)
(4.9) lim 1.

n--->o mod(An, Bn;

Choose t > 0 such that An C D(bn, 8) C ’ for large n. Then, it follows that

mod(An, Bn; C_.,) < mod(An, Bn; ’) 4"
log Ib,,-a,,I

mod(An, Bn; C) >

This together with (4.8) yields

27/"

log ([an, bn, Cn, dn ])

mod(An, Bn; ’)
>

mod(An, Bn; C.)
mod(An, Bn, C) 2’/log Ib,,-a,,I

mod(An, Bn; ()

which proves claim (4.9). Finally, since

’" DR) < 2 mod(An Bn" )mod(An, Bn, if2’) mod(Atn, Bn

(4.9) yields M(f2) < 2 as desired.
Next we assume that the limit in (4.8) is infinity. In this subcase, (4.5) is valid. As

in Case one can show that (4.6) is also true. Thus it follows that M(f2) < 2. The
detail adjustment in verifying (4.6) is left to the reader.

To deal with Case 4, we consider the same two subcases as in Case 3. If (4.8)
holds, the argument in Case 3 is valid here as well. Thus M(fl) < 2.
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For the subcase where [an, bn, Cn, dn] oo as n cxz, we need a different ap-
proach to prove (4.6). Observe that, since f is conformal in the domain g2’ containing
A and B, there exist constants . > 0 and .2 > 0 such that

)11X Yl _< If(x) f(Y)l _< .21x Yl
for all x, y E An U B, and sufficiently large n. Therefore, using the discrete form of
an equivalent definition for capacity due to Bagby [Ba, Theorem 5], it is not difficult
to show that, for large n,

27r 2rr
< )g()gl’ )L2) "+"

mod(An, Bn, C)’(4.10)
mod(A, B;; C)

where ) is a constant depending only on .l and )2. Since [an, bn, c,, dn]
implies that mod(An, B,; C) -+ 0, (4.6) follows from (4.10). Thus we have M(Q) _<
2 by (4.5) and (4.6).

Finally, for Case 5, it follows that

(4.11) mod(An, B,,; C) < mod(A,, B,; f2’) + mod(0f2, 0", C)
< 2mod(A,,, B,; f2) + mod(0, 02’; C).

We observe in this case that mod(A,, Bn; C) --+ cx and that mod(0f2, 0’; C) is
finite. Thus (4. l) yields that M(f2) _< 2 as desired. This completes the proof of
Theorem 4.1. El

It is easy to see that the ellipse is an analytic curve. Thus, combining Theorems
3.1 and 4.1, we obtain the following counterexample for the Garnett-Yang conjecture
that M(2) R(f2) + 1.

4.12. COROLLARY. For any a > we have

M(Ea) < a + 1,

where Ea is the interior domain of the ellipse defined in Section 2.

4.13. REMARKS. In Theorem 4.1 we have actually shown that, for a conformal
extension domain , either

(4.14) M(f2) < 1+ R(f2)

or there exist disjoint nondegenerate continua A and B on 0f2 such that

(4.15) M(f2) Mb(f2)
mod(A, B; C)
mod(A, B; )

We believe that one should be able to prove (4.14) for some other smooth domains
by using this result together with the harmonic function technique used in Theorem
3.1. However, the question of whether M(g2) Mb (f2) still remains open, even for
ellipses. Theorem 4.1 may shed some light on this problem by reducing the number
of cases one needs to consider.
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