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GROUP ACTIONS AND THE TOPOLOGY OF
NONNEGATIVELY CURVED 4-MANIFOLDS

ANDREW HICKS

Abstract

We consider nonnegatively curved 4-manifolds that admit effective isometric
actions by finite groups and from that draw topological conclusions about the
manifold. Our first theorem shows that if the manifolds admits an isometric
Zp Zp for p large enough that the manifold has Euler characteristic less than or
equal to five. Our second theorem requires no hypothesis on the structure of the
group other then that it be large but it does require the manifold to be g-pinched,
in which case we can then again conclude that the Euler characteristic is less than
or equal to five.

1. Introduction

Little is known about the topology of compact positively or nonnegatively curved
4-manifolds. The only known simply-connected examples with positive curvature are
S4 and C p2. For nonnegative curvature we have in addition S2 S: and 4-CPe#C p2,
this last example due to Cheeger [Ch]. Also, few topological obstructions to having
positive or nonnegative sectional curvature are known (we will discuss this in more
detail later). Our starting point is a theorem of Hsiang and Kleiner, which states that
a positively curved 4-manifold admitting an effective isometric S action must be
homeomorphic to S4 or C Pe. In this paper we examine what could be said if there
is a finite group of isometries acting on a nonnegatively curved manifold, but not
necessarily an entire circle acting on the manifold.

THEOREM 1. Let M be a compact 4-dimensional manifold with nonnegative sec-
tional curvature. Then there exists a positive integer N such that ifp is a prime with
p > N and Zp x Zp acts on M isometrically and effectively, then ) (M) < 5.

The number N can in principle be calculated from the methods of the proof. For
the proof of this theorem to work the number p must be a prime, although the theorem
might be true without this assumption.

If we do not make any assumption about the structure of the group, we are able to
prove a general theorem under the assumption of a fixed pinching"
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THEOREM 2. Let M be a compact 4-dimensional manifold with nonnegative sec-
tional curvature. Thenfor every > 0 there exists a positive integer N N(6) such

if > sec(M) > 6 > O and llsom(M)l > N, then x(M) < 3.

Again, it is conceivable that the theorem is true in general for sec(M) >_ 0, i.e.,
that N does not depend on 3, but the methods of our proof do not work in that
situation. The main method in proving the above two theorems is to gain control over
the number of fixed points of the group action. These methods hold for groups and
manifolds more general than the ones above, but only have topological implications
in the above situations.

THEOREM 3. Let M be a 4-dimensional manifold with nonnegative sectional
curvature and let G be a finite abelian group acting isometrically and effectively on
M. Then there exists a positive integer N such that iffor every prime p that divides
the order ofG it is the case that p > N, then the fixed point set of G can contain at

most 5 isolatedfixed points.

THEOREM 4. Let M be a 4-dimensional manifold with nonnegative sectional
curvature and let G be afinite group acting isometrically and effectively on M. Then
there is a positive integer N such that ifn > N and G contains a subgroup isomorphic
to Zn Z,,, then G can act with at most 5 fixed points. In particular, all of the fixed
points must be isolated.

Notice that in Theorem 3 we control only the number of isolated fixed points and
say nothing about the non-isolated ones, which would have to be embedded S2’s or
R p2’s. The smallest number of fixed points of the actions in Theorems 3 and 4 maybe
4. One can easily construct an action of Z,, Zn on S2 S2 with 4 fixed points. No
examples are known with 5 fixed points.

Observe that it follows from the work of Friedman that if M is simply connected
and X (M) < 3 then we may conclude that M is homeomorphic to one of the five
manifolds

S4, S2 x S2, C p2, 4-Cp2#C p2,

and that if X (M) < 5 we must add to the list the two spaces

4-Cp2#cp2#cp2.

The proof makes use of a new metric invariant, the q-extent, introduced in [GM], and
an associated inequality. The motivation for this work comes from a long series of
results that relate the geometry and topology of nonnegatively and positively curved
manifolds. Recent activity began with the result of Hsiang and Kleiner [HK], which
is a statement about 4-manifolds. Let M be a compact positively curved 4-manifold.
Then if M admits an effective isometric S-action, M is homeomorphic to S4, R p4
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or C p2. Here it is important to notice that we are combining the assumptions about
dimension and the amount of symmetry. It is also interesting in light of the fact
that the only known examples of simply connected 4-dimensional compact positively
curved manifolds are S4 and C p2. In particular it is unknown whether S2 x S2 carries
a metric of positive curvature. An analogous theorem for nonnegative curvature does
exist and was proved independently by Kleiner [K], Yang and Searle [SY]: a compact
simply connected, nonnegatively curved 4-manifold admitting an effective isometric
Sl-action is homeomorphic to S4, Cp2, q"Cp2#cp2 or Se 82. These last two
results rely on the understanding of 4-manifolds due the the work of Friedman [F], so
the techniques do not work in higher dimensions. But a hypothesis common to both
theorems is that the 4-manifold has some continuous symmetry. A natural question to
ask at this point is what results if one assumes only that the symmetry group is finite.
Working in that direction and using an idea from [GM] the author proved Theorems 3
and 4. In the meantime Yang [Y] showed that if M is a compact, positively curved
4-manifold admitting an effective isometric Zp action for p sufficiently large, then
) (M) < 7. Finally, using a trick from [Y], the author showed Theorem to be true.

2. Background

To prove the theorems stated in the introduction we first need to develop some
foundations. If V, W are subsets of a metric space Z, then the Hausdorff distance
between them is defined as

d (V, W) inf{ V is contained in an -neighborhood of W and W is

contained in an -neighborhood of V }.

If X, Y are metric spaces we define the Gromov-Hausdorff distance between X and
Y as

d14(X, Y) inf{dZ (X, Y) X, Y are isometrically imbedded in Z}.

If G is a closed subgroup of O(n + 1) then G acts isometrically on Sn and
X S"/G may be viewed as a collection of orbits in S equipped with the orbital
distance metric, do, which is defined as

do(Gx, Gy) min{d(gx, hy) g, h G}.

for orbits Gx and Gy, where d denotes the usual spherical distance on Sn(l). It is
not hard to see that this distance is the same as the Hausdorff distance between the
orbits; i.e., do(Gx, Gy) dr_ (Gx, Gy). Let K(S") be the collection of all compact

Ssubsets of S". Then (K (S"), di_ is a metric space and there is a natural inclusion of
X into K (S"), since a point in X is an orbit in S, which is compact. Additionally, X
can be considered to be isometrically imbedded in K (S), because, as noted above,
these two metrics will be equal on any two orbits of the given group.
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In several places we will need to consider metric spaces which are quotients of
S by a finite group. In general these spaces will not be Riemannian manifolds but
nevertheless we will need to consider their geometry and to do that we need the
following definitions. Suppose that (X, d) is a metric space and let ,: [a, b] X
be a path in X. Then the arclength of ?’ is well defined (though it may be infinite).
We then say that X is a Length space if for any two points x, y in the same path
component the distance between x and y is equal to the infimum of the arclengths
of all paths connecting x and y. X is an Alexandrov space if it is a locally compact
length space and locally has curvature bounded below in the sense ofToponogov; i.e.,
there exists a number k such that X locally satisfies the conclusion of Toponogov’s
comparison theorem with k being the curvature of the comparison space.

The q-extent was introduced in [GM] and a number of applications to Alexandrov
and Riemannian geometry are given. One application is a necessary condition for G
to act isometrically and effectively on a positively curved n-dimensional Riemannian
manifold such that the action has q + fixed points.

If (X, d) is a compact metric space then we define Xtq: Xq R as

Xtq(Xl Xq) d(xi,xj)
i<j

The q-extent of X, Xtq(X), is then defined as the maximum of Xtq on Xq. It is
easy to see that

diam(X) --xt2(X) >_ xt3(X) >_... >_ diam(X).
Now we will consider a sample calculation which we will need later, namely,

we will compute the q-extent of the interval [a, b]. Suppose that we have q points
x Xq that actually achieve the q-extent of [a, b]. Then we claim that some pair
of these points must lie at opposite ends of [a, b]. If not then we could construct a
configuration that had a greater q-extent as follows. Without loss of generality we
may assume that for all xi 5 a. Then we can create a new configuration by replacing
the smallest xi with a point at a. Then clearly the q-extent of this new configuration
is larger then the q-extent of the original configuration, which is a contradiction.
Therefore let us assume that x a and xe b.
We next claim that x3 Xq achieves the (q 2)-extent of [a, b]. We have

() (n--2)XIq(Xl Xq) 2 Xtq-2(X3 Xq) + (n l)(b- a)

If x3 Xq did not achieve the (q 2)-extent we could replace it with q 2 points
But then Xtq-2(X3 Xq) < Xtq_Z(X3 X’q) and so itthat did, say x Xq

follows from the above equation that

Xtq(Xl, X2 Xq) < Xtq(Xl, X2, X Xtq)
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which is a contradiction since x Xq achieves the q-extent of [a, b]. Therefore
we conclude that x3 Xq achieves the (q 2)-extent of [a, b]. Continuing this
procedure of removing endpoints will eventually leave no points or a single point
placed at some point of the interval. Therefore we conclude that if q is even then
x Xq consists of pairs of points placed at the endpoints of the interval, and if q
is odd it consists of q points paired off at the endpoints of the interval plus one
other point, whose position is easily seen to be arbitrary. A simple calculation then
gives that

xt2,,([a,b])
2n-

(b a)

and

n+l
xt2,,+l ([a, b]) (b a).

(2n + 1)

Assume that G acts isometrically and effectively on an n-dimensional Riemannian
manifold M". If p is a fixed point of the action then we have the isotropy representa-
tion of G in the isometry group of the tangent space at p, G -- Isom(TpM), g - dgp.
Since this action is effective we may view G as acting isometrically on the unit sphere
in the tangent space at p, S. If p is an isolated fixed point, then G acts on S without
fixed points (otherwise G would fix an entire geodesic).

Next consider the situation where the fixed point set of G contains at least q +
fixed points po pq and M" has nonnegative curvature. MG is not necessar-
ily a Riemannian manifold but it is an Alexandrov space of curvature >_ 0. Let
/0 /q be the images of Po pq under the quotient map. Connect/5o /3q
with geodesics and consider the sum of all the angles, Y/, between the geodesics
at the points/30 /3q. We will estimate this sum in two ways to derive the desired

inequality. On one hand we have (q+l)3 triangles formed by the geodesics, each

with the sum of its angles > rr. Thus

/> (q+l)3
rr

On the other hand we may estimate the sum of the angles by estimating the sum
at each point/5i. At ]i we have a space of directions, S’t’,i/G which is an Alexandrov
space of curvature > 1. The angle between two geodesics at fii is equal to the distance
between their corresponding directions in the space of directions. Thus the sum of
the angles at /3i is the sum of all distances between q points in Sp,/G, which is

< (q2)xtq(Snpi/G). Therefore

Xtq(Spi/G) >_ Z
i=0
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Combining these two inequalities yields

()
q + i=0

Xtq (Spi/G) >_ -The above argument is due to K. Grove and S. Markvorsen (see [GM] for the
statement of the inequality) and is the main tool of this paper. Observe that if the
curvature of Mn is positive then the sum of the angles in any triangle is greater than
7r and so the above argument gives

(2)
q

_,Xtq(Snpi/G) >
q+l i=0

3

3. Lemmas

LEMMA 1. If X and Y are compact metric spaces with dGH(X, Y) < then
IXtq(X) Xtq(Y)l < 2e.

Proof. Assume that X and Y are isometrically embedded in a third space, Z, such
that dr4 (X, Y) < e and let dx and dr be their respective metrics. Choose q points in
X, x Xq, that achieve the q-extent of X. X and Y each lie in an e-neighborhood
of each other, so for each point xi in the chosen collection choose a point Yi in Y that
has distance less than e from xi. Then

(q2)xtq(X) (q2)xtq(X, Xq)-- dx(xi,xj,
i<j

<_ Zdy(yi, Yj)+25 < (q2) xtq(Y)+ (q2) 25"
i<j

Therefore Xtq(X) Xtq(Y) < 2e and so by symmetry the result follows.

In the next two lemmas we consider lsom(S") as a subset of R(n+1)2 and we measure
the distance between two isometries in Isom(S") with the usual Euclidean metric on
R(,,+ I)2"

LEMMA 2. IfG, H C Isom(S’) anaan then dGH (S" / G S /H)(G,H) < ,,
ARI"+I)2 thenProof. In [M] it is shown that if G H C Isom(S") and ’/4 (G, H) <

K,, Sn sndn /G, /H) < e But, as noted above, an n-dimensional spherical space form
lies isometrically in K (S").
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LEMMA 3. Suppose that K is a compact Lie group with a bi-invariant metric.
Thenfor every > 0 there is an N N(, K) such that ifL is a subgroup ofK with

ILl > N, then L has an element g =fie with d(g, e) < .
Vor) where B, is the metric ball of radius about theProof. Choose N > VoB,)

identity element, e, of G. If ILl > N then L must have two elements, g, h within of
each other, or else we could put an epsilon ball around every element of L such that
any two would be disjoint. Then the total volume of all the balls would be greater
than the volume of K, which is a contradiction. Therefore we have two elements g, h
within of each other, and so gh- will be within of e.

LEMMA 4. If S acts isometrically on S withoutfixed points then xts(S3/S)
3zr
10"

Proof Any isometric S action on S is orthogonally equivalent to the action

k,l: S C2 C2

eiO (z, w) (eilOz, eikO to).

where k, > 0, (k, l) 1. If the action has no fixed points then k, > 0. Ifk > then
the isotropy group at every point of the orbit z 0 will be Zk. Similarly if > then
the isotropy group of any point of the orbit w 0 is Zt. Let Xk,t denote the quotient
space. If k, > 0 then this space will be homeomorphic to a 2-sphere and have
diameter . Xk,t will not be smooth at the points corresponding to orbits with isotropy
(there will be at most 2). If k then we have the Hopf fibration and so X, is
isometric to a round sphere of diameter 2. In [HK] a distance non-decreasing map is

constructed from Xk,t to Xt,. This impliesthatxtq(Xk,t) <_ Xtq(Xl,l) Xtq(S2(1/2)).
3rrBut we know from [GM] thatxt2q+l(Sn(r)) r so thatxts(S3/S) <_ -f6" This

value can actually be attained by placing 3 points at one pole and 2 at the other.
Therefore equality holds.

LEMMA 5. Let G C O(k) C R be a group ofmatrices and let ) be the
usual inner product on R2, which we restrict to G. Then )k2 is bi-invariant
with respect to the multiplication of G; i.e.,

(d(LA)BX, d(LA)Y, )k (X, Y) (d(RA)X, d(Ra)tY,

where A, B G, LA(X) AX and RA(X) XA.

Proof. Since LA andRA arelinearonRwehaved(LA) LA andd(RA)B
RA Thus we need to show that (AX, AY)k (X, Y)k2 (XA, YA)k. To see
this write X (x x), Y (y yk) where the xi’s and yi’s are column vec-
tors. Then (AX, AY)k: ((Ax Axk), (Aye... Ayk))k: (Axe, Ay)k + +
(Axk, Ayk)k (x, Y)k + + (x, Yk) (X, Y)k:, where )k is the usual
inner product on Rr. The proof for right multiplication is similar.
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LEMMA 6. Let p: f( --+ X be a covering ofRiemannian manifolds. If A C X
then dXn(A, X) d(p-(A), YC):

Proof We will first show that d4(A, X) <_ dg(p-l(A), ;) and then show that

dg(A, X) > d(p-l(A), ).
For the first part it suffices to show that a neighborhood ofradiusd (p-I (A), ) of

A covers all of X. Fix x 6 X. We will exhibit an element a 6 A such that d(x, a) <
d4(p-l(A),;). Choose any Y 6 p-l(x). By the definition of d(p-(A),;)
there exists fi p-(A) such that d(Y, ) < d4(p-(A),f(). Then p(fi) 6 A and

d(x, p(fi)) < d4(p-1 (A), .) because p is a distance decreasing map. Therefore the
first part is proved.

Next pick 6 .. We need to show that there is an element fi of p- (A) such
that d(fi, ) < dl(A, X). Pick a path ?, in X from p() to a point a in A. Let
be a lift of y such that is one endpoint of and let fi be the other endpoint, which
lies in p-1 (A). Since p preserves arclenths, the length of y and are the same.
Consequently d(, Y) < dg(A, X), proving the lemma.

4. Proofs of Theorems 1, 3 and 4

ProofofTheorem 3. Suppose that the fixed point set of G contains 6 isolated
fixed points P0 ps. At each such point pi let G be the image of G under the
isotropy representation in Tp, M and let S3pi denote the unit sphere in Tp M. From (1)
it follows that

(3)
5

6
i-’-0

We will show that if G satisfies the hypothesis of the theorem with N sufficiently
large then xt5(S3p/Gi) < 5, for each i, causing the violation of (3). This leads us to
conclude that an action of the group described in the theorem cannot have 6 isolated
fixed points.

Since G is abelian it lies in a maximal torus of S 0(4). We then consider S 0(4)
as a group of 4 x 4 matrices lying in R 6. Equip SO (4) with the Riemannian metric
that it inherits from R 16 as a submanifold. By Lemma 5 this metric is bi-invariant.
Restricting this metric to the maximal torus containing G gives rise to a distance
metric dr2 on the torus. Observe that for x, y T2

dr2 (x, y) > dR,6 (x, y)

where dR,6 is the usual Euclidean metric on R 16.
zr zrApply Lemma 3 to T2 with (5" 0)() 3- and the bi-invariant metric

described above to obtain N. Therefore if G satisfies the hypothesis of the theorem
then there exists g G with g e and dr:(g, e) < . Consider the 1-parameter
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subgroup of T2, Sg), that contains g and whose length from e to g is dr2(g, e).
R’6 (Sg, (g)) < Now we consider twoObserve that dl (Sg>, (g)) < and so dr. .

cases; one where Sg is a circle that does not fix points and the other, where it is a
circle that does fix points.

If Sg acts without fixed points, then we know by Lemma4 thatxts(S3p,/Sgl) 3r
ig"

By Lemma 2 we have

dGH(S3p,/Sg}, S3,/{g}) <
120

and so, by Lemma 1,

Ixts(S3p’/Sg})- xts(S3p’/{g})l < 6--6"
Since xts(S3pi/Sg}) 0 it follows that xts(S3p,/ {g)) < - and so xts(S3p,/Gi) < -.
This violates the inequality (3). Therefore such an action cannot exist.

If Sg} acts with fixed points then we will use a similar idea. G cannot be con-

tained in Sg} because if it were it would have fixed points, which is impossible
because if it did then pi would no longer be an isolated fixed point. Therefore
H Gi f-) Sg) is not equal to all of Gi and so Gi/n is not trivial. Thus we
can write Gi/H {hH hrH} where r > N (recall that all of the prime di-
visors of Gi are > N, so r > N). Consider the open balls B(h) B(hr).
These neighborhoods cannot all be disjoint because by our choice of N in Lemma 3,
Vol(T2) < NVol(B,(e)). So suppose that B(ha) N B(hb) is not empty.. Then
dT2(ha, hb) < 2, so dr2(hah e) < 2. hah- does not lie in SIg because if it did

then hah- would lie in H Gi f-) Sg), which is impossible since ha and hb were
chosen as two distinct coset representatives and so cannot be congruent modulo H.
Let L (hah- g} and let p" R2 ---, T2 be the universal cover of T2 equipped with
the lifted metric of T2. Then p- (L) is a lattice in R2 with d (p (L), R2) < 620"

Then it follows from Lemma 6 that d (L T2) < l-W6" We then have

dt4(Spi/L, Sp,/T2) < 6---
so that by Lemma

Ixts(Sp,/L) xts(Sp,/T2)I < 3---"
But S3/T2 is isometric to [0, ] and xts([0, -]) 0"
It follows that xts(Sp, !Gi) < . Again, (3) is violated, so such an action cannot
exist.

Remarks. The hypothesis in Theorem concerning the primes dividing the order
of the group is necessary. If we assume only that the order of the group is large then
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the group may not be Hausdorff close to a circle that acts without fixed points and it
may not be Hausdorff close to the entire torus. To see this consider Z2 embedded as
a subgroup of a circle that wraps once around the torus in one direction and 2k times
in the other direction. The quotient of S by this group does not have small enough
5-extent to violate (1).
A variation on this, to show that difficulties arise for non-cyclic groups, is the

group Z2 Zk embedded in the torus in the obvious way. Again, the quotient of S
does not have small enough 5-extent to violate (1).

Proofof Theorem 4. As above, apply Lemma 3 to T2 with its natural bi-invariant
Assume that the fixed point set of G contains 6 fixed pointsmetric and take e 3240

p0 p. At each such point Pi let G be the image of G under the isotropy
representation in Tpi M. G is abelian and therefore lies in a maximal torus of SO (4).
Next, suppose that n > N. Thus Zn x Zn has an element g - e with d(g, e) < e.
Let Sg be defined as it was in the proof of Theorem 3. If Sg does not have any fixed
points, then we may argue as we did in the proof of Theorem 3 and we are done. So
suppose that Sg does have fixed points. Let H Gi A Sg). Then H is cyclic since
it is a finite subgroup of a circle group and also has order < n because the order of
every element of Zn x Z is at most n (it is precisely this which allows us to omit
the hypothesis that the fixed points be isolated). Therefore we have at least n distinct
coset representatives for Gi/H. Write Gi/H {hH hrH} where r > N and
conclude the proof exactly as in the end of the proof of Theorem 3. rl

Proofof Theorem 1. To bound the Euler characteristic we use the fact that x (M)
x(F) + x(M, F) where we take F to be the set of points of M that are fixed by G.
Then we just apply Theorem 2 to see that for sufficiently large p, F consists of no
more than 5 points, so that X (F) < 5. Next we show that X (M, F) X (M F).
By definition,

x(M, F) rankH(M, F)(-I)
k=l

But the rank of Hk(M, F) is equal to the rank of tTIk(M/F) where/ denotes the
augmented homology groups. Thus

x(M, F)- ranktk(M/F)(-l) x(M/F)- 1.
k=l

If a triangulation of M is chosen so that F is a set of vertices then it is easy to see that

X (M F) X (M/F) 1, so that X (M, F) X (M F).
Now we use an idea from [Y], that ((M) X (F) + x(M, F) <_ C4 where C4

is Gromov’s upper bound for the sum of the betti numbers of M. Thus if X (M, F)
is divisible by a prime greater than C4 it must be 0. To show this and complete the
proof we need the following lemma.
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LEMMA 7. If G is a p-group acting isometrically on an n-dimensional closed
Riemannian manifold N fixed pointfreely, then p x(N).

Proof Choose a triangulation T of M that is preserved by the action of G. Let
Tn be the collection of n-dimensional simplices of the triangulation. The action of
G on M induces an action of G on T which in turn induces an action on Tn. This
action decomposes Tn into equivalence classes, namely, the orbits of the action. Let
S {rl crk} be a set of representatives from this decomposition, consisting of
exactly one simplex for each equivalence class. Then we can write

k

n U Ugo"i
i=1 gEG

Thus

IT,,,I .= gi

Since G is a p-group UgEO gcril pa for some a > 0 and any given i. We claim
that a > 0. If a 0 for some then G would stabilize a simplex and since G is finite
this would imply that it fixed a point of the simplex, contradicting the hypothesis that
G acts fixed point freely. Therefore p divides each term in the above sum and so
divides the sum itself. Therefore, since )f(M) Yin__l ITI it follows that p x(M).

To complete the proof of Theorem it is tempting to let N X F in Lemma 7,
but then N would not be a closed manifold. To remedy this difficulty we choose N
to be the manifold that results from the removal of small open balls about the points
of F, that are stable under the action of G. Then N is closed and has the same
homotopy type as M F. Additionally, G acts fixed point freely on N, so we may
apply Lemma 7 to conclude that if p > Ca then p X (N) X (M F) X (M, F)
and so ) (M, F) 0. Therefore if p > max(N, C4) then

5. Proof of Theorem 2

In order to prove Theorem 2 we must introduce a few more definitions. Let X
and Y be metric spaces and suppose that f: X Y is a Lipschitz map. Then

dilf SUPxy
d(f(x)’f(y)) is called the dilatation of f.d(x,y)

dL(X, Y) inf{I ln(dilf)l + ln(dilf-l)ll f is a bi-Lipschitz homeomorphism}

is the Lipschitz distance between X and Y, if a bi-Lipschitz homeomorphism exists.
If one doesn’t exist we set dL(X, Y) . With this as a distance function the
collection of compact metric spaces becomes a metric space itself. But it is not
this space but a subspace that we are concerned with. Let C(n, d, A, V) be the



432 ANDREW HICKS

class of compact n-dimensional Riemannian manifolds M with diameter diam(M) <
d,volume vol(M) > V, and sectional curvature [KM[ < A2. Then the topology on
this space ihduced by the above distance function is known as the Lipschitz topology.
Note that the hypothesis that vol(M) > V may be replaced by i(M) > io, where
(M) denotes the injectivity radius of M [CE]. The important fact that we need is the
following theorem of Peters [P]:

THEOREM 5. Let 0 < ot < 1. Then any sequence in C (n, d, A, V) contains a
subsequence converging with respect to the Lipschitz topology to an n-dimensional

differentiable manifold M with metric g ofHolder class Cl+

A useful reformulation of the above theorem (also from [P]) is the following.

THEOREM 6. Let {(Mk, gk} be a sequence of manifolds in C(n, d, A, V) and
0 < < 1. There exists a subsequence {(Mr, gt)} with thefollowing properties:

(i) Each Mt is diffeomorphic to a single fixed manifold M.
(ii) There exist diffeomorphisms Ft" M --+ Mt such that {(Ft)*gt} converges in C

to a C+ metric g on M.
(iii) diam(Mt) converges to diam(M).
(iv) For the injectivity radii we have that lim sup (Mt) < (M).
(v) If exp denotes the exponential map of Mr, exp that of (M, g), and eYcp

(Ft)*expt, then eYp converges to expp uniformly on compact subsets of TpM
and expp is Lipschitz.

We now begin the proof the Theorem 2, which is by contradiction. If the theorem
were not true then there would exist a number such that for every N there would be
a manifold (MN, gN) with > sec(MN) > > O, Ilsom(gN)l > N and X (MN) > 3.
Therefore we have a sequence of manifolds {(Mi, gi)}. We claim that there exists
d, A, V such that (Mi, gi) C(n, d, A, V) for all i. It is clear that d and A can
be found because of the curvature bounds. Rather than find V we look for a lower
bound on the injectivity radius. For this we use the theorem, due to Klingenberg,
that if the sectional curvature of a compact orientable even dimensional Riemannian
manifold Mn satisfies > K > 0, then (M) > yr. Applying this theorem to the
orientable double cover ifnecessary, we obtain that (Mi) > under our assumptions.
Therefore we may apply Theorem 6 to extract a convergent subsequence of (Mi, gi)
converging to a manifold (M, g) which is C TM, has > sec(g) > > 0 and by
hypothesis X (M) > 3. By (ii) of Theorem 6 we may assume that we have a single
differentiable manifold M with a sequence of metrics on it {gi} converging to g. Our
plan is as follows" we will show that since the order of the isometry groups of the
{gi} are going to infinity, that the isometry group of g is actually infinite. This will
imply the existence of an isometric S-action on (M, g) and we will then use that
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action to show that , (M) < 3, a contradiction. Therefore the N in the statement of
the theorem must exist.

For a Riemannian manifold N with metric h denote the corresponding distance
metric by dh. We put a metric on Isom(h) by letting

dshup(f, g) SUPxxdh(f (x), g(x)).

Suppose fi 6 Isom(gi). As approaches infinity dfi approaches being an orthogonal
map with respect to the metric g. Thus for any v and/sufficiently large, Idj5 (v)l Ivl.
As a consequence Idf/I < L for some L 1. Next, choose a path , between two

points inM, pandq. The the length offi o?, f(fioy)’ f[dfio,’[ <

L f0 I"1 L. (length of y). Thus dg(fi(p), fi(q)) < Ldg(p, q), so the fi are
an equicontinous collection. Therefore we may extract a convergent subsequence.
Denote this subsequence by fi and say that it converges to f. By construction f
preserves distances. It follows that (see [KN], p. 169) that f is also C and preserves
the metric. Our next step is to show that there are infinitely many such isometries of
(M, g) and then we may conclude that the isometry group of (M, g) contains a circle.

LEMMA 8.
in)(g,) > r

For every fi lsom(gi) there exists n such that dp(fi", e) >_

Proof There are two cases to be considered: one where fi has a fixed point and
the other where it doesn’t. First consider the case where fi doesn’t have a fixed point.

Note that we saw above thatinj(gi) > 2" Choose p 6 M such thatdg’(p, fi(P))
is a minimum. If dgi(p, fi(p)) > in,jgi) then we are done. Otherwise choose
a geodesic, ,, connecting p to fi(p) and observe that because dU; (p, fi(p)) is a
minimum, f/(?,) C ?’. Therefore, since the effect of fi on ?’ is translation by a
distance equal to du’ (p, fi (p)), the distance between p and fi" (P) will increase with
n as long as fin (p) lies no further than p then the injectivity radius. Therefore for

r]gi e) > inj(gi)some n, dg’ (p fi" (P)) > i,,jW) and so ,supji2 2
If fi does have a fixed point, say p, consider dfip. Then drip is a rotation

of Sap(i’qsi)) C TpM and we can choose n so that drip moves some point v of

Spa (in)2(;)) into the hemisphere opposite to it. Then the normal ball about p of radius
inj(gi) is convex (see [CE]) and so we may apply Rauch’s theorem to show that2

dgi (expp(V), expp(fin(v)) >
inj(gi)

We have a hinge with both sides of length i,q(g,)2. > and an angle > 2" As
a comparison space we use a round sphere of radius 1. A calculation shows that
a hinge on this sphere with angle 2 and sides of length - has endpoints whose

(to see this convert the coordinates of the points intodistance from each other is .
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rectangular coordinates and calculate their dot product, which will be 1/2). Therefore

dgi(expp(V) expp(fin(v)) > and so again we have thatdso(f[ e) > in)(!)

LEMMA 9. Isom(g) is infinite.

Proof Consider the following claim (which is not necessarily true):

CLAIM 1. For every > 0 there exist infinitely many natural numbers such that

for each such there exists an element of lsom(gi), which is different from the
identity element e oflsom(gi) and has dgisup(f/, e) < .

If this statement were not true then there would exist an > 0 such that for all but
finitely many lsom(gi) has the property that dg;sup(f, h) > for f :/: h. Then for any
positive integer n we will construct n sequences {hi} {hT} that each converges
to a different element of Isom(g), showing that Isom(g) contains at least n elements.
Define the first n terms of the sequences {hi} {h’} to be any elements from
the groups lsom(gi), lsom(gi) has at least elements (recall that Ilsom(gi)l >
by hypothesis), so for > n we let h),..., hni be any n distinct elements of
Isom(gi). Then for any two sequences {h}, {h/} with ot - /3 we can extract two
convergent subsequences which do not converge to the same element of lsom(g)
as follows: first choose a convergent subsequence {hi of {h} that converges to

f Isom(g). Then consider the corresponding subsequence of {h/}, {h, }. This

subsequence may not converge but it has a convergent subsequence {h( (since it
In

is an equicontinous collection) that converges to an isometry g 6 Isom(g). The
sequence {hi,,, then converges to f, and f 7 g since for all but finitely many we

have that du’sup (h, h/) >_ . This implies that Isom(g) must have at least n elements
and since n was arbitrary it implies that Isom(g) is infinite. Therefore assume that
the claim is true.

Let n be a positive integer and take e 4-!ff. We are going to show that Isom(g)
contains at least n elements From the above statement there exists a sequence {i}
with .f/ elsom(gi) such that dgsup(jS, e) < e. We then decompose the isometry

"4g" e) < j} Wegroups into annuli let A} {f 6 Isom(gi)l(j- 1)e < usup,j,

know from lemma 8 that for each f/ there exists an integer r r(k) such that

d,gp(fi, e) _> i,,j(g2 -"> Therefore for some with le _> - we have that A’ - 4.
dg, fm+Thus > nzr, so in particular > 2n. This and the fact that ,sup(f/, i <

implies that Aj -7/: for j 1,..., 2n. We then may let h2ji be any element of
i /2 h.2’’ all of which are bounded away fromAZj, so that we have n sequences h ,,

each other since any two have at least one whole annuli between them. Arguing as
above, there is a subseqence of {i} for which the corresponding n subsequences all
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converge. Since these subsequences are all bounded away from each other they must
converge to n different elements of Isom(g). Since n was arbitrary this shows that
Isom(g) is an infinite group.

It follows from G being infinite that G must be a Lie group of dimension greater
than 0, since the isometry group of a compact Riemannian manifold is compact.
Therefore the limit manifold admits an isometric Sl-action, which is C by [KN],
p. 169. The Euler characteristic of M is therefore the Euler characteristic of F, the
fixed point set of the action, since on M F there is a free action of Zp for every p and
so every p divides the Euler characteristic of M F. F is a disjoint union of totally
geodesic submanifolds and since each component of F must have even codimension
we conclude that F is a union of a finite number of isolated points and surfaces. It
follows from [HK] or [GM] that the number of isolated points is at most three. (In
[GM] the hypothesis is that the manifold is smooth but the proof carries over to our
case anyway.) Next we claim that F has at most one 2-dimensional component. This
follows from a generalized version of Frankel’s theorem proved in [Pn]" if H and G
are two totally quasigeodesic subsets of an Alexandrov space E with curvature >
and dimH + dimG >_ dim E, then H fq G - 0. Therefore F can have at most one
two-dimensional component. If F has a two-dimensional component it is either an
R p2 or S2 since it is positively curved. Therefore the contribution to ) (F) from the
2-dimensional component is at most 2. The number of isolated fixed points is at most
three. We next argue that if the fixed point set contained a 2-dimensional component
that then the number of isolated fixed points could be only one. Our argument is
essentially that given in [HK], but we give it here for completeness.

Assume that there were two isolated fixed points, p and q. Let F be a distance
minimizing geodesic connecting p and q and let SF denote the image of under
the action. Let r/be a distance minimizing geodesic connecting N and SI,. With the
notation in Lemma 4, the isotropy represention at p (or q) is orthogonally equivalent
to the action of qk,t. But if k or were greater then then the circle would contain a
cyclic subgroup Zk (or Zt whose represention at p would be reducible implying that
p would not be an isolated fixed point of the Zk action. Therefore, since we know
the action is effective, the cyclic group would have a two-dimensional component
containing p. But it would also fix N, contradicting the generalized version of
Fraenkel’s theorem. Thus the representation at p or q is orthogonally equivalent to

tl, I, It then follows that S ?, is in fact a smooth submanifold which is totally geodesic
at p and q. Therefore if the endpoint of r/in y is p or q we may make a second
variation argument to arrive at a contradiction, again by the generalized version of
Frankel’s theorem proved in [Pn]. Therefore assume that the endpoint is at a point of

S other than p or q. Since the is action is orthogonally equivalent to 4, follows
that points nearby p or q lie in the principle orbit of the action, in particular, part of
the interior of , near p does. If the isotropy group along ?’ was non-trivial anywhere,
say at a point r then the action of that group would fix p and r and move the segment
of ?’ connecting them, and therefore there would be a broken geodesic connecting
r and p, which is a contradiction. Therefore all of ?,, hence all of S lies in the
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principle orbit. A similiar argument shows that r/lies in the principle orbit. Let X
denote the union of the principle orbit and N and when passing to the quotient space
X!S we will put a bar over the name of a set. In [HK] it is show that is a totally
geodesic component of the boundary of X/S. Additionally, since r/and Sl? are
perpendicular to orbits of the action, and t7 are geodesics in X/S and the endpoint
of is again a point on the interior of )5. A second variation argument then gives a
contradiction. Therefore if the fixed point set contains a 2-dimensional component it
must contain at most one isolated fixed point. Therefore X (M) X (F) < 3 and a
contradiction is achieved.
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