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LINEAR ISOMETRIES BETWEEN CERTAIN SUBSPACES OF
CONTINUOUS VECTOR-VALUED FUNCTIONS

JUAN J. FONT

Introduction

Throughout this note, X and Y will stand for locally compact Hausdorff spaces,
and E and F for Banach spaces. Let Co(X, E) and Co(Y, F) be the Banach spaces of
continuous E-valued and F-valued functions vanishing at infinity defined on X and
Y respectively and endowed with the supremum norm ||-||,,. Let K denote the field
of real or complex numbers. If E = F = K, then we will write Cyo(X) and Co(Y)
(C(X) and C(Y) if X, Y are compact).

The classical Banach-Stone theorem states that if there exists a linear isometry T
of C(X) onto C(Y), then there is a homeomorphism ¢ of Y onto X and a continuous
mapa: ¥ — K, |a| = 1, such that T can be written as a weighted composition map;
that is,

(THy)=a)f((y)) forall y € Y and all f € C(X).

An important generalization of the Banach-Stone theorem was given by W. Hol-
sztynski in [9] by considering non-surjective isometries. Namely, he proved that, in
this case, there is a closed subset Y, of ¥ where the isometry can still be represented
as a weighted composition map. Recently, in [1], the authors have widely general-
ized this result by studying linear isometries between certain subspaces of Cy(X) and
Co(Y).

In the context of continuous vector-valued functions similar results are available.
In [10], M. Jerison investigated the vector analogue of the Banach-Stone theorem:
If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space,
then every linear isometry T of C(X, E) onto C(Y, E) can be written as a weighted
composition map; namely, (Tf)(y) = o(y)(f(¥(y))), forall f € C(X, E) and
all y € Y, where w is a continuous map from Y into the space of linear isometries
from E onto E endowed with the strong operator topology. Furthermore, ¥ is a
homeomorphism of ¥ onto X. As in the scalar-valued case, Jerison’s results have
been extended in many directions (e.g., see [3] or [4]). Among them and in [6],
M. Cambern obtained a formulation of Holsztyriski’s theorem for spaces of continuous
vector-valued functions.
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In this paper we focus on such direction. In Section 1 we prove, assuming F strictly
convex, that a linear isometry T of a certain linear subspace A[A] (see Definition 2
and Theorem 1) of Cy(X, E) into Cy(Y, F) can be written as a weighted composition
map on a subspace Y, of Y for every function in A[A]. Furthermore X is shown to be
the continuous image of Y. In Section 2, after assuming that both E and F are strictly
convex, we prove that X and Y are homeomorphic if 7 is a linear isometry of A[A]
onto such a subspace B[B] of Cy(Y, F). Let us recall that there are counterexamples
(see [5] or [10]) which show that all the above results may not hold if the assumption
of strict convexity is not observed.

Preliminaries

For a Banach space E, we will denote by Sg := {e € E: |le]| = 1} its unit sphere
and by ||-|| its norm. Recall that a Banach space E is said to be strictly convex if every
element of Sg is an extreme point of the closed unit ball of E.

X U {oo} will stand for the Alexandroff compactification of the locally compact
space X. For a function f € Cy(X, E), we will write coz(f) to denote the cozero
set of f, thisis, coz(f) := {x € X: f(x) # 0}. If V is a subset of X, we will write
cl(V) to denote its closure in X.

Let A be a linear subspace of Cop(X). A point xo € X is said to be a strong
boundary point for A if for each neighborhood U of xy and € > 0, there is a function
&in Asuchthat 1 = &£(xp) = €]l and |E(x)| < € forall x € X \ U. We will write
o A to denote the set of strong boundary points for A (i.e., the strong boundary for A).

A subset V of X is said to be a boundary for a linear subspace A (resp. A) of
Co(X) (resp. Co(X, E)) if for every & € A (resp. f € A), there is x € V with
[Ex)] = 1€l (resp. | f) = I fllo)- A will denote the Shilov Boundary for A,
that is, the unique closed boundary for A. In [2], the authors show that the strong
boundary for a point-separating closed subalgebra A of Cy(X) is dense in 9 A.

Let us finally recall (e.g., see [8, p. 13]) that a linear subspace A of Cy(X) is
regular if for each closed subset W of X and each x € X \ W, there is £ € A such
that £(x) = 1 and £ = 0 on W. Indeed, a regular closed subalgebra A of Cy(X) can
be proved to be normal (e.g., see [8, p. 3]); that is, for any pair, U and V, of disjoint
compact subsets of X, there exists £ € Asuchthaté = lonU and€ =0on V. Itis
also well known that the Shilov boundary of a regular closed subalgebra of Cy(X) is
X (e.g., see [8, p. 23]).

1. Into case

Definition 1. Let . Abe alinear subspace of Co(X, E) and let T be alinearisometry
of Ainto Co(Y, F). If e € Sg and x € X such that there exists f € A with
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f ) = |l fllx - e, then we define

I(x,e) :={y € Y: I(THHWI = I fllo forall f € Asuchthat f(x) =Ifllo e}
LEMMA 1. With the same hypothesis as in Definition 1, I (x, e) is nonempty.

Proof. ltis clear that

I(x,e) C My = {y ev: ITHOI = ———”fz”w}

for any f € A such that f(x) = || fll - e. Since I(x,e) is closed and M is
compact (because Tf € Cy(Y, F)), it suffices to check that if f,..., f, satisfy
fi() = I filloo - e then (_\{y € Y: T = Il filloo) # 9

Let us define fo := ) i, fi and choose a point yy € Y where T f; attains its norm
(this point exists since T fy € Co(X, E)). Hence

Il folloo
ool

Do lfill e
i=1

n

e Ifillo

i=l

n

D fillo -
i=l

Consequently, since T is an isometry, we infer that

D ITHO)N = T fo) o)l
i=l

v

STITHG =D filleo -
i=1 i=1

Hence [(Tf)(yo)ll = I fillo foralli = 1,2,...,n. Thatis, yo € ()_,{y € ¥ :
ITHWI=fillo} O

Definition 2. Let A be a linear subspace of Cy(X). We will denote by A[A] any
linear subspace of Co(X, E) which contains the set {§ - e: £ € A, e € Sg}.

Definition 3. Let A be a regular linear subspace of Co(X) and let T’ be a linear
isometry of A[A] into Cy(Y, F). For any x € o A, we define I (x) := UeeSE I(x,e).
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In the remainder of this section we will assume that the Banach space F is strictly
convex.

LEMMA 2. Let A be a regular linear subspace of Co(X) and let T be a linear
isometry of A[A] into Cy(Y, F).

(1) Let y € I(x) for some x € o A. If we take f € A[A] such that f(x) = 0,
then (Tf)(y) = 0.
2) I(xy) N I(xy) =@ forxy,x, € 0A.

Proof. (1) Take xo € o0 A. From the definition of strong boundary point, we
know that there is £ € A with |1 = £(x¢) = ||£||,- As a consequence, by Lemma 1,
I (xo, €) is nonempty for every e € Sg.

Fix e € Sg and yp € I(xg,e). Let f € A[A] such that f vanishes on some
open neighbourhood U of xyg. We claim that (Tf)(yp) = 0. To this end, we can
assume, with no loss of generality, that || f|l,, < 1. Let us choose & as above such
that & < ||€lloo — I flloo on X \ U. Let us define the functions

gi=f+k-e
and
h l( +&-e)
== -e).
5 8
It is obvious that g(xo) = h(xg) = &(xo) - e. Furthermore, ||€ -ello, = |8l =

lhllo = &(x0) = 1. Hence, as yo € I (xo, e), we have [|T'(§ - e)(yo)ll = (T g)(yo)ll
= [(Th)(yo)|| = &(xo) = 1. Since F is strictly convex, and T (§ - €)(yo), (T g)(yo0)
and (T h)(yo) belong to S, we infer that T (€ - €)(yp) and (T g) (o) coincide (note that
(T h)(yo) is on the segment which joins T (& -e) (yo) and (T'g) (yo)). As a consequence,
(Tf)(yo) =0.

Let Tyy: A[A] — F and xy: A[A] —> E be the functionals defined by
the requirement that T)’)B(f) = (Tf)(yo) and %o(f) := f(xo), f € A[A]. Itis
straightforward to check that the functions in .A[A] that vanish on a neighbourhood
of xq are dense in ker(xp) since A is regular. Furthermore, ker(xp) is closed since the
functional Xy is continuous (e.g., see [7, p. 77]). Consequently, the above paragraph
yields the inclusion ker(xy) C ker(f"fo); this is, if f(x¢) = 0, then (T f)(y) =0, as
was to be proved.

(2) Suppose that there are xy,x; € cA and y € Y such that y € I(x;) N I (x7).
Choose & € A such that £(x;) = 1 and £(x;) = 0. Since (¢ - €)(x3) = 0 for every
e € E, we have, by (1), that T(¢ - e)(y) =Oforalle € E.

On the other hand, there is e} € Sg such that y € I(xy, e;) and, as x; is a strong
boundary point for A, there is a function 0 # f € A[A]suchthat f(x|) = || fll -e1-
By (1), wehave (T f)(y) = T(§- f(x1))(y) since T islinearand (f —&- f(x1))(x)) =
0. Besides, by the above paragraph, (T f)(y) = T(£ - f(x1))(y) = 0. But from the
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definition of the set I(x;, e;), we know that |[(Tf)())| = || flloc # O, which is a
contradiction. 0O

LEMMA 3. Let A be a regular linear subspace of Co(X) and let T be a linear
isometry of A[A] into Co(Y, F). Letx € cAande € Sg. If f(x) = efor f € A[A],
then |(THYWII = llell forall y € I(x, e).

Proof.  Since x is a strong boundary point, there is £ € A with 1 = £(x) = ||€|| -
Define a function g in A[A] by g := f — & - e. The clear fact that g(x) = 0 and
Lemma?2(1)yield (Tg)(y) = 0. By the linearity of T, we have (T f)(y) = T (§-e)(y).
Finally, from the definition of I(x, e), [(THXWMI = IITE )W = & - el =
llell. O

Definition 4. Let A be a regular closed subalgebra of Cy(X) and let T be a
linear isometry of A[A] into Co(Y, F). For x € X \ 0 A, we define I (x) := {y €
Y: (Tf)(y) =0 forall f e A[A] suchthat f(x) = 0}.

LEMMA 4. Let A be a regular closed subalgebra of Co(X) and let T be a linear
isometry of A[A] into Co(Y, F). Then

(1) Forany x € X, I(x) is nonempty.
(2) For any pair x;,xy € X, I(x)) N 1 (x3) = @.

Proof. (1) For x € oA, the result can be found in Lemma 1. On the other
hand, let us recall (see the Preliminaries) that o A is dense in dA = X. Hence, for
xo € X \ 0 A, there is a net {x,} in 0 A converging to xo. Fix e € Sg. For each
o, there is y, € I(x4, e). Since Y U {oo} is compact, we can assume, by taking a
subnet if necessary, that {y,} converges to yo € Y U {oo}. Let us take a function
f € A[A] such that f vanishes on some neighbourhood V of x. Then there is o
such that x, € V for « > 9. By Lemma 2(1), (Tf)(y,) = O for @ > o and,
consequently, (T f)(yo) = 0. Now, arguments like those in the last paragraph of the
proof of Lemma 2(1) show that yy € I (xo).

Finally, let us check that yo # oo. Since A is normal (see the Preliminaries),
we can choose £ € Asuchthat = lon V. Let g := & -e. Since g(x,) = e
for all ¢ > op, Lemma 3 entails that ||(Tg)(yo)ll = llell for all @ > «p. That is,
1(Tg)(yo)ll = llell # O, which shows that yy # oo.

(2) If either x; or x; is a strong boundary point for A, then the result follows from
the same arguments as in Lemma 2(2).

Assume that there exists y € I(x;) N I(xy) with x;,x, € X \ 0A. Let V| and
V, be open neighbourhoods of x; and x; respectively with disjoint closures. By (1),
there exist ej, e; € Sg, and two nets {x,} and {xg} in 0 A converging to x; and x,
respectively, such that both the nets {y,} C (x4, e;) and {yg} C I (xg, e2) converge
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toy. Choose £ € A suchthaté = 1 on V) and vanishes on V,. If we define g := & -¢),
then, as in (1), it is apparent that ||[(Tg)(y)]l = lle;ll # 0. But there is By such that
(Tg)(yp) = O for B > Bo. Hence (Tg)(y) = 0. This contradiction shows that
Ix)NIx) =0 0O

Remark 1. Let us now introduce a linear map of E into F which will allow us to
obtain a multiplicative representation of T. Note first thatif £ € A and e € E, then

£e=( el € AlAL

Definition. With the same hypothesis as in Lemma 2 (resp. Lemma 4), let y €
I(x) for some x € 0 A (resp. x € X) and let £ € A such that £(x) = 1. Then we
define a linear map w(y) of E into F as follows: w(y)(e) := T (& - e)(y) for all
ecE.

To see that w(y) is well defined, suppose that there is another function &’ € A
such that £'(x) = 1. Hence, since (§ - e — &' - e)(x) = O forall e € E, Lemma 2(1)
(resp. Definition 4) entails that T (& - ¢)(y) = T(£' - e)(y) foralle € E.

Definition 5. Let A be a regular linear subspace (resp. closed subalgebra) of
Co(X). For a linear isometry T of A[A] into Co(Y, F), we define the set ¥y :=
Ureon 1 (x) (resp. Yo 1= U,cx I(x)) and a mapping ¢ of Y, (resp. V) onto 0 A
(resp. X) by ¥ (y) := x, where y € I (x).

THEOREM 1. Let T be a linear isometry of A[A] into Cy(Y, F).

(1) If A is a regular linear subspace of Co(X) such that o A # @, then : Yy —>
oA is a well defined surjective continuous mapping and (Tf)(y) =
o((f (¥ () forall y € Yo and all f € A[A].

(2) If A is a closed regular subalgebra of Co(X), then ¥r: Yy —> X is a well
defined surjective continuous mapping and (Tf)(y) = o(Y)(f (¥ (¥))) for
ally € Yo and all f € A[A). Furthermore, w is a continuous mapping from
W into the space of bounded operators of E into F, when this latter space is
given its strong operator topology.

If, in addition, o A is a boundary for A[A), then Yy (resp. Yo) is a boundary for
T(A[A)).

Proof. (1) By Lemma 2(2), ¢ is a well defined mapping. To check the continuity
of ¥, let {y,} be a net convergent to y in Yy. Assume, contrary to what we claim,
that {y¥(y,)} does not converge to ¥ (y). By taking a subnet if necessary, we can
consider that {y(y,)} converges to an x in the compact space X U {oo}. Let U and
V be disjoint neighborhoods of x and ¥ (y) in X U {oo}, respectively. There exist an
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o such that ¥ (y,) € U, forall @ > «y, and, since A is regular, a function f € A[A]
such that coz(f) Cc V and ||(Tf)(y)ll # 0. For a > g, ¥ (yy) & coz(f). Hence,
by Lemma 2(1), (T f)(y) = 0, for all y, > ag. Consequently {(T f)(y«)} does not
converge to (T f)(y) # 0, which contradicts the continuity of 7' f.

Finally, to obtain the multiplicative representation of T, letx € cAand y € I(x).
Choose any function & € A such that £(x) = 1. For every f € A[A], the function
f — & - f(x) vanishes at x. Thus, by Lemma 2(1), we infer that (T f)(y) = T(§ -
f@E)) = o) (f(x)) forevery f € A[A].

(2) By Lemma 4(2), ¥ is a well defined mapping. The results now follows from
Lemma 4(1) and from the same arguments as in (1).

To prove the continuity of w, let {y,} be a net convergent to y in ). Fix e €
E and define a function f € A[A] by f := & - e, where £ = | on a certain
neighbourhood of ¥ (y). Since ¢ is continuous, there is a g such that, for all @ > «y,
lo(ya)e —wMell = o) f (¥ (Ya)) =0 () f(F DI = T F)(Ya) = (THD.
Since {(Tf)(y,)} converges to (T f)(y), the continuity of w is thus verified.

Assume now that o A is a boundary for A[A]. Take g € T(A[A]) and f € A[A]
such that Tf = g. Wecan find x € 0A and e € Sg with f(x) = || fll - e- By
Lemma 1, there exists y € I(x,e) € I(x) C Yy (resp. Vo) such that ||g(y)| =
ITHYDI = ITflloo = ligllo, thatis, Yo (resp. Vo) is a boundary for T(A[A]). O

Remark 2. Theorem | generalizes the main result of [6] by taking X compact
and A[A] = C(X).

2. Surjective case
In this section we will assume that both E and F are strictly convex Banach spaces.

THEOREM 2. Let T be a linear isometry of A[A] onto such a subspace B[B] of
Co(Y, F), where A and B are regular closed subalgebras of Cy(X) and Cy(Y) re-
spectively. Then  is a homeomorphism of Y onto X and (Tf)(y) = w(y)(f (¥ (¥)))
forally € Y and all f € A[A]. Furthermore, if y € I(x) for some x € o A, then
w(y) is a linear isometry of E into F.

Proof. Fix x € X and let y € I(x). We first claim that x € I(y). Suppose
that x ¢ I(y). Then, since T~': B[B] —> A[A] is a linear isometry, Lemma 4(1)
entails that there exists x’ € X, x’ # x, such that x’ € I(y). Choose f € A[A] such
that f(x) = 0. By Lemma 2(1) and Definition 4, we infer that both (Tf)(y) = 0
and T~'(Tf)(x') = f(x’) = 0. This means that x and x’ cannot be separated with
functions of LA[A], which contradicts the regularity of A.

Let us now suppose that I(x) contains two elements, y and y’. By the above
paragraph, x € I(y) N I(y"). Since T (A[A]) separates the points of Y, there is a
function f € A[A] such that (Tf)(y) = 1 and (Tf)(y’) = 0. From Lemma 2(1)
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and Definition 4, we have T~!(Tf)(x) = f(x) = 0 and, hence, (Tf)(y) = 0. This
contradiction shows that I (x) is a singleton.

As a straightforward consequence of the above two paragraphs and Theorem 1, we
infer that )y = Y and that ¥: ¥ — X is a continuous bijection. Furthermore (see
Definition 5) T~ induces a continuous bijection of X onto Y which can be easily
checked to be the inverse of ¥, which is to say that X and ¥ are homeomorphic.

Finally, take yy € Y such yy = I(x¢) for some xo € 0 A. To see that w(y) is a
linear isometry of E into F, choose ¢y € Sg and & € A suchthat 1 = £(xg) = [|£ ]| -
It suffices to check that ||w(yo)(ep)ll = 1. Let us first note that, by Lemma 1, it
is apparent (see also the proof of Lemma 2(1)) that /(xg,e) # ¥ for all e € Sg.
Hence, since I (xp) is a singleton, yp = [ I(xg, €). In particular, yog € I(xg, ep).
Consequently,

e€SE

lw(yo)(ep)ll == IT (& - e0)(Yo)ll = lI§ - eolloo = 1. o

Remark 3. Theorems 1 and 2 generalize the main result of [10] by taking X, Y
compact, and A[A] = C(X) and B[B] = C(Y).

Definition 6. Let A be linear subspace of Co(X, E). We say that xo € X is a
strong boundary point for A if for each neighborhood U of xo, there is a function
f € Asuch that || f(xo)|| = | flloo and | f(x)|| < | fllo forall x € X \ U. We
define the strong boundary for .4, o A, to be the set of all strong boundary points for
A.

It is a routine matter to verify that 0 A C o A[A] for any linear subspace A of
Co(X).

THEOREM 3. Let T be a linear isometry of A[A] onto such a subspace B[B]
of Co(Y, F), where A and B are regular closed subalgebras of Co(X) and Cy(Y)
respectively. If we assume that 0 A[A] = o A and o B[B] = o B, then the strong
boundaries for A[ A] and for B[ B] are homeomorphic.

Proof. Let xo € 0 A[A] = o0A. By Theorem 2, I(x() is a singleton. Let
yo = I (xp).

Next we claim that 7 (xg) € o B[B]. Fix e¢9 € Sg and let V be a neighbourhood of
¥o- Recall, as in the proof of Theorem 2, that y; = ﬂeeSE I(xg,e). If y ¢ V, then,
from the definition of I (xo), there is a function f, € A[A] such that

|0 = £l - e0
and

"(va)(_)’)" < "f\’"oo :
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For each y € (Y U {oo}) \ V, we may take an open neighborhood V, of y such
that |[(Tf,) () < |l fyllo for all y' € V,. Since (Y U {oo}) \ V is compact, there
exist {y1, ..., ya} C (¥ U{oo}) \ V such that (Y U {oo}) \ V C U, V,,. Now, let
us define the map

8= Zf_v,-'

i=1

It is clear that

g(xo) = Z I £, ||oo - eg,

i=1

which implies that [|g(xo)|| = ligll- Hence, since yo = I(xp), we infer that
KT g)(yo)ll = llgllso- Moreover, for every y € Y \ V we have

T < D NTLIOD] < D 1 fullg = lglloo = 1Tl -

i=l i=1

As a consequence, yy € o B[B].

In like manner we prove that, if yo € 0 B[B] = o B, then I(yy) € o A[A]. That
is, ¥, which is a homeomorphism of Y onto X (see Theorem 2), sends o B[ B] onto
g A[A]. O
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