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INTERPOLATION OF HERZ-TYPE HARDY SPACES

EUGENIO HERNANDEZ AND DACHUN YANG

1. Introduction

To study convolution algebras, Beurling in [4] first introduced some spaces of
functions which are now called the Beurling algebras. Later Herz in [19] generalized
these function spaces to further study the properties of functions. These generalized
spaces of functions are just the prototype of Herz spaces. Since then, the theory
of Herz spaces has been significantly developed and these spaces have turned out
to be very useful in analysis. An interesting account with many applications for
the generalized Herz spaces in some particular cases is given in [2]. In particular,
in [18] the authors of this paper characterized the intermediate spaces obtained by
the complex method of interpolation for the families of Herz spaces and gave many
interesting applications.

On the other hand, in recent years, a theory of Herz-type Hardy spaces has been
developed (see [7], [14], [15], [22]-[25]). These new Hardy spaces are a sort of local
version of the ordinary Hardy spaces and are good substitutes for the latter when
considering, for example, the boundedness of non-translation invariant singular inte-
gral operators (see [26]). In this paper, we are going to characterize the intermediate
spaces obtained by applying the complex method of interpolation to the families of
Herz-type Hardy spaces and to the mixed couples of Herz spaces and Herz-type Hardy
spaces.

Let us first introduce some notation. Let B, = {x € R": |x] < 2¥} and C; =
By \ By fork € Z. Let xx = x,, fork € Z, i = xx if k € Nand Xo = x,, , where
Xc, is the characteristic function of the set Cy.

Definition 1.1 [19]. Leta e R,0 < p <occand 0 < g < oo.
(a) The homogeneous Herz space K" (R") is defined by

K7 (RY) = {f € Lio (R" \ {O): || fllxerqny < 00},
where

1/p

[ ¢]
k
ke =14 D 2571 Xell g,

k=—o00
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(b) The non-homogeneous Herz space K" (R") is defined by

KPR = {f € L{  (R"): || fll gy < 00},

where

0o 1/p
k > P
I lger @y =3 D 25PN Tl ooy -
k=0

(Here the usual modifications are made when p = 0o or g = 00.)

Obviously, K,(,)"’(R") = LP(R") = K;,)"’(]R”) for any p € (0, oo). The spaces
Kg"(R") and K" (R") are quasi-Banach spaces and if p,q > 1, K;""(R") and
K" (R") are Banach spaces.

The spaces K,;'“"l/")'l(R") = AY(R") with | < g < oo are called Beurling
algebras and were introduced by Beurling in [4] with different, but equivalent norms.
The equivalence of the norms was proved by Feichtingerin [12]. The spaces K,‘,’ P(R™)
and K;"”(R") were introduced by Herz in [19] also with different norms. Flett in
[13] gave a characterization of these spaces which is easily seen to be equivalent to
Definition 1.1 (see also [2]).

Let ¢*(f) be the vertical maximal function of f defined by

¢*(f)(x) = sup |(f * ¢)(x)],

t>0

where ¢;(x) = ,%d)(f) fort > 0, ¢ € Cg°(R"), supp ¢ € B(0, 1) and

¢ (x)dx #0.

R

In the following, we will use S'(R") to denote the class of tempered distributions
on R”,

Definition 1.2. Let0 < p < 00,1 < g < 00, & € Rand ¢ be as above.
(a) The homogeneous Herz-type Hardy space H K" (R") is defined by

HKSP(R") = {f € S'(R"): ¢*(f) € KIP(RM)}.

Moreover, we define ||_f||H,g:-n(R,.) = ||¢*(f)||k5-n(R,.).
(b) The non-homogeneous Herz-type Hardy space H K;""(R") is defined by

HKJPRY) ={f € S'(R"): ¢*(f) € K P(RM}).

Moreover, we define || f1l yker g = 116" ()l ke @y
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Clearly, HK,?"’(R") = HK,(,)"’(R”) = HPR") for p € (0, 00), the standard
Hardy spaces (see [11]). The spaces HK; " (R") and HK " (R") are quasi-Banach
spaces and if p, g > 1, HK{'"(R") and H K" (R") are Banach spaces.

The space HK:,'“"'/")"(R") with | < g < 2 and n = 1 was introduced by
Chen and Lau in [7] and Garcia-Cuerva in [14] generalized it to all ¢ € (1, co0) and
n-dimensions. Then Garcfa-Cuerva and Herrero [15] and Lu and Yang [22] further
generalized this theory to the spaces HK,"/?~"/"? Ry and HK"/P~"97 (Rm)
with0 < p <1 < g < oo independently. Lu and Yang in [23]-[25] also studied the
spaces HK;'"(R") and HK;""(R") with0 < @ < 00,0 < p < ocand | < g < oo.

By the results in [22]-[25] (see also [15]), we know that the definitions of the
spaces HK;"(R") and HK;""(R") with | < g < 00, @ > —n/gand 0 < p < o
are independent of the choice of ¢. In addition, the Herz spaces and the Herz-type
Hardy spaces have the following well-known relationship (see [21] and [22]-[23]):

= K;"(R"), ifl <g<oo,—n/g <a<n(l—1/q)
) and0 < p < o0
S Kg"(RY), ifl <g <o00,—00 <a <-—n/q
orn(l —1/g) <a <00,0 < p <o0,

HKJ"(R" (1.1

and

=K{P@RY), ifl <q <00, —n/q <a <n(l—1/q)
and0 < p < o0

#KgP(RY), ifl <q <o0,—00 <a<-n/q
orn(l —1/q) <a <00,0 < p <oo.

HK;""’ (R™) (1.2)

Moreover, if 0 <o < 00,1 < g <ocoand0 < p < oo, then

KgP(@R") = LY®RY N KSR, S llger g ~ ILf logn + I ke ey
andifl <g <oo,n(l —1/g) <a <ocand0 < p < oo, then
HEZP (R = LIR") N HKST R, | f gz ~ 1 leoen + 1 e eo-

It is well known that Coifman, Cwikel, Rochberg, Sagher and Weiss in [8] and
[9] developed a theory of complex interpolation for the families of Banach spaces.
Herndndez in [16] and [17] introduced a theory of complex interpolation for the
families of Banach lattices and used it to identify the intermediate spaces of many
classical spaces, and Tabacco Vignati in [27]-[31] considered the case of quasi-
Banach spaces.

In Section 2 of this paper, we first establish an interpolation theorem for the log-
subharmonic operators, which generalizes Theorem 2.3 of Tabacco Vignati in [29].
Using this theorem and a method that is different from Tabacco Vignati in [30] (or
see [27]), we characterize the intermediate spaces obtained by the complex method
of interpolation for the families of Herz-type Hardy spaces. As a corollary of this,
we deduce the results obtained by Garcfa-Cuerva and Herrero in [15].
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In Section 3 of this paper, along the lines of the method introduced by Calderdn and
Torchinsky [6] (also see [3], [20], [15]), we treat the complex interpolation of some
mixed couples of Herz spaces and Herz-type Hardy spaces which are not covered by
the theorems obtained in Section 2.

Finally, we like to remark that for non-homogeneous spaces, we have also obtained
similar results to all of the theorems on homogeneous spaces. To limit the length of
this paper, we only state our results for homogeneous spaces.

2. Interpolation for families of Herz-type Hardy spaces

In this section, we will characterize the intermediate spaces obtained by applying
the complex method of interpolation to the families of Herz-type Hardy spaces. Let
us first introduce some notation (see [27]-[31] for more details).

Let A denote the open unit disc in C, the set of complex numbers, and T the
boundary of A. For each 6 € T, we consider a quasi-Banach space (B(9), || - [|z@)),
and denote by ¢(6) the constants in the quasi-triangle inequalities. We say that the
family {B(0)}scr is an interpolation family of quasi-Banach spaces if each B(9)
is continuously embedded in a Hausdorff topological vector space U, the function
6 — ||bllp@) is measurable for each b € Nyer B(B), and log ¢(0) € LY(T); U is
called the containing space of the given family {B(0)}per. We define

B = {b € Nyer B(B) l / 10g+”b"3(9)d9 < OOH s
T

called the log-intersection space of the given family {B(0)}ycr. Let G = G(A, B(-))
be the space of all the 8-valued analytic functions of the form

m

g(2) = ij(z)bj
j=I

for which |Iglle = supyer 18Oy < oo, where m € N, ¢; € Nt(A), the
positive Nevalinna class for A (see [10], Chapter 2) and b; € 8, j =1, ..., m. For
everya € B and z € A, we define

llall, = inf{llgllec: & € G, g(z) = al.

If N, denotes the set of functions of 8 such that |la||; = 0, the completion B(z) of
(B/ N, || - lI.) will be called the interpolation space at z of the family { B(6)}pcr. We
also denote B(z) by [B(8)]..

In order to characterize the intermediate spaces obtained by the complex method
of interpolation for the families of Herz-type Hardy spaces, we need an interpolation
theorem for log-subharmonic operators. Let us first introduce the definition of log-
subharmonic operator (see [29] or [27]). Let M be the set of measurable complex-
valued functions on some measure space (Y, v). An operator M mapping M into the
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class A/ of non-negative-valued measurable functions on some other measure space
(X, p) is said to be of maximal-type provided it satisfies

M(ha) = |\|Ma, for allA € Candalla € M; 2.1
M(a) = M(la]), for alla € M; (2.2)
M(a)(x) = M(b)(x), ifla(y)] < |b()|,a,be M, (23)
M UT fe, 9)d6] (x) = /T M(f(,0))(x)db. 24

If {B(6)}oer is an interpolation family with containing space U, we say that an
operator M: U — N is a log-subharmonic operator associated with the family
{B(0)}ger if it can be expressed as the composition M - L of a linear operator L
mapping U into M and a maximal-type operator M.

To establish the interpolation theorem for log-subharmonic operators, we need the
following lemma.

LEMMA 2.1. Leta(z) €e R,0 < £(2),y(z) < l.Let f(x) = Z;V:l Bj X, (x) with

NeN B >0,j=1,...,N,and {E,};V=I pairwise disjoint sets of finite measure.
Define

g0, = 3 29 (0" oL el ™

keN,

where Ny = {tk € Z | || fxkllo ey > O}. Let S(z) be the set of all the g(x,z)
corresponding to all the above different functions f(x). Then S(z) is dense in the
Herz spaces K )Y@ wny.

1/¢(z)
Proof. Let fi(x) = Y/_ Bjxe,(x) with N € N, g; > 0, E; € Ci, j =
I,...,N,and {E; }jN:, pairwise disjoint sets. For such an fj, we define

N

(2)/¢(z)—1

g, 2) = Zlﬂjxf, COILfll 07
Jj=

Let Si(z) be the set of all the g;(x, z). To prove the lemma, by the definitions, it
suffices to prove that S (z) is dense in L' (Cy). To do this, let g (x) = Z,"V=| d; e, (x);
we only need to show that there exist {B; ;V:l, such that g, (x, z) = gx(x). In other
words, we need to prove that there exist {8; };"zl such that

Iy (2)/¢(z)
pro=di (S BIEL)
: (2.5)

’ 1=y (2)/€()
By =dn () BiIE)) :
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From (2.5), we easily deduce that 3" | 8| E;| = (-, d;| E;)!®/7®_ Hence,

N Uz2)/y ()1
Bj =d; (Zdleﬂ)
=

This finishes the proof of Lemma 2.1. O

THEOREM 2.1. Let M be a log-subharmonic operator associated with an inter-

polation family of quasi-Banach spaces { B(0)}gcr. Suppose that

||Ma||,¢::::-nw(R,.) <n@®llallpe), foraep,

where a(6) € R,0 < p(0), q(0) < oo, a(8), 1/p(®) and 1/q(0) € L'(T).
Iflog n € L\(T), then forall a € B,

| #all oo, < 0D llale
qiz

where a(z) = [, a(8) P,(9) d6,
1 1 1 1
——=/ P,(0) d6, —:/ ——P,(0)do,
r@  Jr p®) q@)  Jrq®)
n(z) = exp fT log n(8) P,(0) d6 and P,(0) is the Poisson kernel for evaluation at 7.

Remark?2.1. If a(8) = 0and 0 < p(0) = g(0) < oo, Theorem 2.1 is just
Theorem 2.3 in [29].
Proof of Theorem 2.1. Leta € B and zp € A. For any given € > 0, there exists
f@) = Y7L, 9j(2)a; € G(A, B()) such that f(z0) = a and || fllee < llall;, + &,
where m € N, ¢; € N*(A)and a; € B, j = 1,..., m. To prove the theorem, we
claim that it is enough to show that the function z — ]ogllM(f(z))( )||Km Lot »(R,,

subharmonic in the unit disk. If this is true, we have

VS oDl g gy < exp / g1 (£ O) Ol g o, Pey (6) d6.

Therefore,

”Ma||ku(rm-m:m(Rn) = “M(f(zo))(’)“kw:m.m:m(Rn)
q(z) q(zq)

exp f log (n@O)I1 £ )l soy) Pz, (0) dO
T
Nz flloo < nzo)(lallz, + &).

IA

IA
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Thus, letting ¢ — 0, we obtain
“ Ma ” ka{:“)Am:m(]R”) S TI(Z()) “(1 ”Zn*
q(z)

which is the desired result.
To verify our claim, we notice that since the functions p(z), g(z) are strictly
positive and continuous on A, for any p > 0 such that

B,(z0) = {z: |z — 20l < p} C A,

we can find r > 0 such that 0 < r < p(z), ¢(z) when z € B‘,,(z()). Moreover, since
subharmonicity is a local property, it suffices to show that

1oglI M (f (20)) ()l g g
IN

2

i0
< — ]Og“M( f(Z() + Pel ))( )” Ko atpet ). pizg4pelt '(]R") de
2 0 /( 0+pet?)

for any such p > 0.

Define 1/€(z) = (q(z)/r)', 1/y(z) = (p(z)/r), where we denote the conjugate
index of p by p’; thatis, I/p+1/p’ = 1. Let f| be a simple and positive function on
R" of the form given in Lemma 2.1. Thatis, f)(x) = Zfl:, Bjxe, (x), where N € N,

Bi>0,j=1,...,Nand {E; }jN:, are pairwise disjoint sets of finite measure. Define

g(x.2) = Y 2 [0 @y O frxell) o s
k€N|

where Ny = {k € Z | || fi xx|lL'rry > O}. Then we have

1(2)

I

f g(x, 2)(M(f(2))) (x)dx

33 2 [ diey s

kGN] j | E,’ﬂ(;\

Z Zﬁj «(2).

keN, j=

i

As in [29] (pp. 328, 329) (also see [27]), we can prove that 8;,(z) is log-
subharmonic and therefore so is 7 (z). Thus

log f g(x, 20) (M (£ (20))) (x) dx

2 o de
= logl(zp) < / logl (zo + pe'’) —
0 2
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b3 o . do
= /0 log{ f g(x,zo+pe'”>(M<f(zO+pe"’)>)'(x)dx} >

IA

2n
1
/ log { llg(:, zo + pe' )l Frecatnd vty o
) (R

|/(( ot+pet?)

do
X ”(M(f(Z() + ,Oele))) ( )“ K 0+t pg et (R”}} A

q( sg+pet ) 2

do

2
¥y (zo+pe') i0
- / tog { 1AL SGaer 1 (f 20+ PE N O yspitspgsnis o | 5
0 f/' (;+m’“> (®R") 2

where we use the fact that

s razotpe”y, pzotoe®)r o Y —razot+pe) 1 /v (zo+pe”) mon
(Kpeorne: ®M) = K, (R")

(see Corollary 2.1 in [18]) and

0
”g( 20 + pe' )“ —llx( atpet?) 1y (,+p(”)

I/M 0+pet?)

(R")

o0
— § : p—kra(zotpe”) [y @otpe”) gkratzotpe'”) [y (zo+pe’”)

k=—o00

¢
X [Lfi() e

o
")

” 1/y(zo+pe')
Xk L]/V1:4)+/)«“')(Rrr)
y(zo+pe”)

(v (zo+pe)—tzo+pe')) [y (zot+pe”)
X ” fl Xk”LI(]Rn

Y (zo+pe')

I

o0
D il

=—00
= LA,
Here and in what follows, (B)* denotes the dual space of the space B. Using the fact

that (K;‘(’Zf;‘/);" @ (Rryy* = ]—/’Z(yz(:;') /r@) Ry and Lemma 2.1, we obtain

log|| M (f (20))( )Il’ i

(R")

= log sup f g(x, 20) (M (f(20))) (x) dx

2
< N / log”M(f(ZO + pele))( )” a( 0+/’t"’) P (;+/u'”) de,

]Ru
w 0+pe'?) ®"

where the supremum is taken over all the simple and positive functions f| of the
above form such that || fi ||, gy < 1.
This finishes the proof of Theorem 2.1. O



572 EUGENIO HERNANDEZ AND DACHUN YANG

We now turn to the interpolation of Herz-type Hardy spaces.

THEOREM 2.2. Let B(®) = HKG " (R"). If there exist py, p1 € (0, 00),
qo > 1 and oy, @9 > O such that

max{p;, 1} > p@) = py >0

q(0) > qo > 1

ap > a@) =n(l —1/q(6))

Int{ee(0) +n/q@)} + 1 — (x(6) +n/q(6)) = g > O,

(2.6)

then

where Int{x} denotes the maximum integer < x, a(z) = fT a(0)P,(0)do,

L / ! ——P,(0)do and _1_=/ : —P,(0) db.
p(2) p(©) q(2) q(0)

Proof. Let g € S(R") and ¢(0) # 0. We define

M(x, f) = sup |+ /()]

for every tempered distribution f. By Definition 1.2, f € H K ¢ " (R™) if and only if
M(., f) € K" (R") and Wl koo ey = M, Pllger @ It is easy to see that M
is a log- subharmomc operator associated with the famlly {B(6)}oer and obviously
satisfies the conditions of Theorem 2.1. Thus, by Theorem 2.1, we obtain

£, K0 @y = M, f )||,g;<:r’»m:)(R,,) =cllfll

for every f € B. Thus, N, = {0} and in order to prove Theorem 2.2, we only need to
show that

HEKZZ PO (R NSR") € B(zo),

for every zg € A, since the left-hand side is dense in the Herz-type Hardy spaces
considered here (see [23]).

Leth € HK)"™ (R") N S(R") and m € Z, such that

m > Int{a) +n(1/qo — 1)}.

Then using the atomic decomposition proved in [23], we can write

h() =Y Ma() + Y pbi(x),

k=—00 k=—00
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where [p, a(x)x? dx =0 = [p, ay(x)xP dx, fory, B € Z, |y|, 1Bl < m,
suppax C ac = {x: 2k71 = 2ke < |x] < 2K 4 2Kg)

with & small enough, suppb; C (Cy U Cri1), lall oo gy < |B(O, 2k y[=Go)/n,
“bk ”L"““’(R”) < |B(0, 2k+2)|~a(Zn)/n’

k+1
0 < A < 2k Z 1S xa W oo oy
j=k—1
and
k+2
0 <t < 2 S NG xull oo oy
j=k—1

Here G (f) is the grand maximal function of f in Fefferman and Stein’s sense (see
[11]), defined by

G(f)(x) = sup sup I(f * @) DI,

peAy {0<t<o0, |x—y|<t}
and

Ay ={p e SR": sup |x’DPpx)| <1}
1. 1BI<N

with N € Nand N > oy + n + 1. Moreover, using | f (x) xx(x)| < cG(f)(x)xx(x)
and the results in [25], we obtain

00 1/p(z0)
Z (A,f(z(>)+ug(z(>))}
k=—00

ka( (z0) r(zo)
l Z 2 @(20}p(zo "fX ” 41(:)D(Rn

k=—o00

00 1/p(z0)
§ : k r(z0)
+ 2 Ol(Z(,)P(Zn) “G(f)Xk " L‘”‘:))(R" }

k=—00

1/p(z0)
. (z0)
el S R Gl l

=—00
= C"f”Hk"(f())-l"fm(R,,)»
4z)
where c is a constant independent of f.

Let Q,(0) be the conjugate Poisson kernel and define H,(8) = P,(6) +iQ.(0),
that is, the Herglotz kernel for the unit disk. Let &(z) = fT a(0)YH, (0)do,

1 1 1 1
_—= ——H,(0)do d — H,(9)do,
5 f gy (40 and =5 /m(e) )
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so that &(z), 1/p(z) and 1/g(z) are analytic in the unit disk and their real parts are
a(z), 1/p(z) and 1/q(z) respectively. We can also require that &(zo) = a(zo),

1/p(z0) = 1/p(20) and 1/q(z0) = 1/4(z0).
We then consider

0 ~ ~ ~
F(x,7) = Z (M) P@P@| B(Q, 28+ Ty |#Goa @)/ (ng @) —at@)/n

k=—00
4z0)/q(2)
X Nakllp uio g, 1 all = oo ag(x)

w ~ ~ ~
+ Z (Mk)p(z(»)/P(z)lB(O 2k+2)|a(za)q(20)/(nq(z))—u(z)/n
k=—00

q(z”)/q(z) —1
X bl e 2L b,
Some comments are necessary regarding the definition of F(x, z). We have to show
that this function is a limit of functions in G. With the given definitions, this is quite
obvious, except, perhaps, for the terms ||ak]| and || by II_J« g which we have

4 (RM)
to show are analytic functions. We only do thls for ||ay 7. Lt Ry For ||bk |7 Lo (R this
can be done similarly. We can suppose that a, is not a.e. zero on Ck Then [lag |l Lao grry
means

l ~
laxll ~. = = exp {:——103 ﬁ - lag (x)|9® dX} ,
La® R q(z) CenlreCr: lax (x)]5£0)

where log refers to the principal branch of the logarithm function. That the logarithm
of the integral exists is a consequence of the fact that the integral is never zero for
every z belonging to the convex set A (see Theorem 2.16 in [1]). Thus, except for
the terms a; (x) and by (x), all the functions involved in the definition of F(x, z) are

analytic. Obviously F(zo) = h(x). Now, we estimate || F (-, 0)|l, KEOP0 (- Let
q0)
ar(x,z) = |BO 2k+l)|a(zu)q(m)/(n;(z))~;(z)/"
9 9
q(Zn)/tl(Z) -1
<Nl ol 4 )
and
bi(x,z) = |B(O 2k+2)|0t(Z())q(Z())/(";(Z))“’t;(z)/"
q(z, )/q(z) -1
< BLSmIblL  beo).
R"
Then

llax (-, ) Langeny < €| B(O, 24|« g =e®ny g 4Eoeh

L4t ())(]Ru
| IB(O, 2k+l)|—a(9)/n.

A

IA
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Similarly, we can show
15k, )|l Laneny < €1]B(O, 28|~ @/n,

Thus {c;} 'ax(x, 8) and {c;} ™' b (x, 0) are central (x(6), q(9))-atoms (see the defi-
nition in [23]). Moreover, by a similar computation to the proof of Theorem 1 in [23]
(pp. 664—666) (or see the proof of Theorem 2.1 in [22]), we have

” F(v 0)”Hk;’::;”’“%lkw = ”M('v F)l'kl’;“:;~/"”)(R:l)
00 1/p(®)
< ¢() Z (()Lk)P(Zo) + (Mk)P(Z()))}
k=—o00

IA

. p(z0)/p(6)
6(0) ”f”HI'(()M‘-“)""‘-”)(R")’
UINY

see [23] for the details. From (2.6), we can deduce that logtc(6) € L'(T) and
therefore, h € B(zg).
This finishes the proof of Theorem 2.2. O

Remark 2.2. 1t is well known that if | < g(@) < oo, —n/q(0) < a(@) <
n(l —1/qg(6)) and 0 < p(f) < oo, then

>a(0), p(0) ony __ 1-@(0),p(0) mony.
HK gy (RY) = K" (RY);

see [21] and [23].

Using this and the computational technique in the proof of Theorem 2.1 in [21], a
similar proof to that of Theorem 2.2 gives us:

THEOREM 2.3. Let B(f) = HK“;’(‘;’)"”“”(R"). If there exist py, p1 € (0, 00),

qo > 1,0; >0,i =0, 1, 2, 3 such that when a(0) € [n(1 — 1/q(0)), 00), (2.6)
holds and when a(0) € (—n/q (), n(1 — 1/q(6)),

max{p, 1} > p(©) = py > 0,
q0) = qo> 1,
n>o3>aB@)+n/qg) >a; >0,

then
B@) = HK;x((zZ))'I’(Z)(R"),
where a(z) = [, a(6)P,(9) d6,

== [ @0 and —— = [ —p.@)a0.
p@  Jr p®) q@  Jrq®)
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As asimple corollary of Theorem 2.3, we can characterize the intermediate spaces
obtained by the complex interpolation method for the couples of Herz-type Hardy
spaces as follows. See [15] (pp. 619-623) or [3] (pp. 87-88) for the definition of the
spaces [, -]o.

THEOREM 2.4. Let 0 < pg, p; < 00,1 < qp,q1 < 00,0 € (0, 1),

1 1 -6 0 1 1-6 6
= +— and — = + —.
Po P1 q q90 q1

Then

[HKZ(:I/””_IMO)"’"(R"), HK";I(I/PI“I/‘]I)»PI (R'l)]g — HK;“/”_I/(’)’”(R").

Remark 2.3. When 0 < pg, p; < 1, Theorem 2.4 has been obtained by Garcfia-
Cuerva and Herrero in [15]. When |1 < pyp = p;y < ooand |1 < g9 = q1 < 0o, we
obtain the result in [3], that is

[L7@®R"), LP(R")], = L"(R"),

where 1/p=(1—0)/py+0/p:.

3. Interpolation for mixed couples of Herz spaces and Herz-type Hardy spaces

In this section, we treat the complex interpolation of some mixed couples of Herz
spaces and Herz-type Hardy spaces, which are not covered by the above theorems.
Our main theorem in this section is as follows.

THEOREM 3.1. Letl < qo,q) < 00,6 € (0, 1),a0 = (1 =0)n(1—1/g9)—6n/qy,
I/p=1—0and1/q =1 —06)/q0+ 6/q:. Then

[HI'(ZU(I—I/qo),l(Rn), K‘;n/qhoo(Rn)]o = K;(l/p—l/q).p(Rn)
— [K;'O(l—l/q")’l(R"), Kq—l'l/qlvoo(R")]e .
Proof. We first prove the first equality. To do this, let us first prove that
KoP @Y € [HK! Vel @™, K" RY)], 3.

where we write @ = n(1/p — 1/q). If f € K'"(R"), by the proof of Theorem 1 in
[23] (see also the proof of Theorem 2.1 in [22]), we can decompose f into

fx)= Z Aiar(x) + Z Mibi(x),

k=—00 k=—o00
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where [p, ax(x)dx =0 = [, bi(x) dx,

suppay C Cr = {x: 2871 = 2%e < |x| < 2K + 2%¢)
with & small enough, supp by C (CUCiy1), llaxllLorny < 1B(O, 258~/ [1bg |l poqeny <
| B0, 2k+2)|~e/n,

k+1

0< M <2 Y I xelloeny
Jj=k—1

and 0 < p; < 2k Zf:,?_, NG (f)xkllLoqrry. Here G(f) is the grand maximal
function of f in Fefferman and Stein’s sense (see the proof of Theorem 2.2 and also
[11]). Moreover

s I/p
S +u£’)}

k=—00

IA

o0
c{ D 2PN f il g

k=—00

0 1/p
+ > 2*“”||G(f)xkuiq(R,.)l

k=—00

IA

00 1/p
cl > zk“"||G(f)xk||£q(R,,)}

=—00

IA

cNGH N kermny = clf llger @
becausea = n(l/p—1/g)and 1 < p, g < oo; in the last step, we used Theorem 2.1
in [21] (see also Theorem 5.1 in [18]).

Seta(z) = (1 — 2)n(1 — 1/q0) — zn/qy, 1/p(z) = 1 —z and 1/q(z) = (1 —
2)/q0 + z/q,. We define

(e
F(r,2) = 3 ()79 B(0, 24|/ gt/

k=—o00

x [lar ()17 g (x) = Pe(x, 2)]

o0
+ Z (ux)"'7 9| B(O, 2k+2) |aq/(ng (@) =a(@)/n

k=—o00
x 1k () |74@ bi(x) — Qx(x, 2)],
where
1
Pi(x,2) = = [ lax(x)|799 7 ay (x) dx
ICil J&,
and

Oi(x,2) = by ()77 D~ by (x) dx.

—_—~
|Ck U Cra1] JC T
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Obviously F(-,6) = f(x). Next, we need to verify that F (-, it) € HK ' ~"/%"! (")
and F(-, 1 +it) K(;"/q"oo(R"). For the former, let

ap(x,z) = |B(0, 2+ |«/ @@/ [lg, (x)|7/10~ g (x) — Pe(x, 2)]
and
bi(x, 2) = | B(0, 254%) |1/ [y () |19~ by (x) — Que(x, )]
Notice that [p, ax(x,it)dx =0 = [p, b(x,it)dx, suppai(-,it) C By and
supp by (-, it) € Byyo.
Moreover,

¢|B(O 2k+|)'aq/(nqn)—(l—l/qn) ”a;(l/q”
c|B(O, 2k+l)'—(l—l/¢lo)

lax (-, i)l Lo mery Il 9o ()

IAIA

and
bg G, it) | Lao ey < | B(O, 2K+1y| == 10,

Thus, ai(-,it) and b (-, it) are central (n(1 — 1/qo), 1)-atoms up to an absolute
constant. Moreover

”F("it)||ij,’“,'_'/”""'(R") <c (|Ak‘ﬂ/n('r)+mklﬁ/ﬁ(:r))

Mz [0

=c (1417 + 1el”) < el fllger gy

k=—00

by [23] and [25). Thus, F(-,it) € HK,' """ (R"). Similarly we can prove that
F(,14it) e f(,;"/q"m(R"). This proves (3.1).

Next, we turn to the proof of the reverse inclusion of (3.1). Notice that by the
hypotheses, all relative spaces considered here are Banach spaces. Let

fe [HK;’U(I_I/‘]")‘I (R"), K‘;”/qn.w(Rn)]e )
Then, by the definition of the space [, -4, there is an analytic function
geF [HK;)“—IM")’](R”), K‘;n/q"w(Rn)]a

such that g(8) = f(x); see [3] (pp. 87-88) and [15]. Write hx(x,0) = g(0) xx(x)
and take 0 < r < 1; using Lemma 2.21 in [15] (see also [5] and [16]), we obtain

I (x, )" < (ax(x))' 0 (br (x))?,
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where

1
ai(x) = ﬁ/ [hiCx, i) po(0, 1) dt
-0 Jr

and
1
be(x) = 5/ e (x, L+i0)|" (0, 1) dt.
R

Here po(6, t) and (0, t) are positive measurable functions and

1 1
—_— 0,)dt =1=— 0,t)dt.
l_efRMo( ) eme( )

Therefore,
kGO @y < @)= @)’ Il Lo gy
1 . 1-6
< (———/ IIhk(-,lt)II’Lqu(Rn,Mo(G,t)dt)
1 -6 Jr
1 0
X (—/ ”hk(s 1 +it)”2‘l](]Ru)> .
0 Jr
Thus
00 I/p
I lgergen = 1 D 2“"ug<e>xknz(,m,.)}
k=—00

N I/p
_ Z2kap“|h,((-,9)|’||’L)£/rf<R")}

k=—00
= 1 (1=0)p/r
<122 (ﬁ f ||hk(-,it)llzw.(R,.,uo(e,t)dr)
k=—00 - R
1 posr) /P
X ('9—\/‘;”hk(, | +it)”2q|(]Rn)H«|(9, t)dt) }
= I a-op/r) V7
< ¢ Z kap+knp0/q, (1____9/"&||hk(.,it)||2t1¢)(Rr:)M0(9,t)dt)
k=—00
e 1 , 1/r 1/p
= ¢ Z [l 9/(2kn(l—|/qn)“hk(.,it)“Lfm(]Rn)) o (6, t)dt]
k=—00 - R
1 1/p
= ¢ mA"gm)”k,',"‘)"'/"o'«‘(Rn)Mo(e,t)dt}

. 1-6
csu inl - =
,enlg) ”g( )"HK,';(()I l/lm'-‘(Rn) —

IA

¢ < OQ.
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That is, f € K;'”(R") which completes the proof of the first equality.
For the proof of the second equality, notice that

on(l1—1/qp).1 n cn(l—1/qo).1 ny.
HK‘I() ¢ (R ) - Kt]() ® (R )’
by (3.1), we immediately obtain
I'(;X.p(Rn) C [k‘l;“(l_l/q“)'l(R"), Kq—l"/(h.OO(Rn)]e )

The reverse inclusion can be proved by a similar procedure to the one used in proving
the reverse inclusion in (3.1). We omit the details.
This finishes the proof of Theorem 3.1. O

Remark 3.1.  Observe that the proof of the first part of this theorem can also be
done in a way similar to the proof of Theorem 2.2. We preferred to give a more
elementary proof here in the case of couples of spaces.

A more general theorem can be proved, using a method similar to the one used to
prove Theorem 3.1.

THEOREM 3.2. Let 1 < go,q) < 00,0 < pg, p1 < 00, —n/q, < o < n(l —
1/g1),0 € (0, 1), & = (1 —0)n(l — 1/q0) + 6ay, 1/p = (1 —0)/po+0/p) and
/g =0 —0)/q0+0/q. Then

[chllltfl—l/qn).pn(Rn)’ K;z]..p] (R”)]g — K:.])(Rn)
— [k;:l—l/qu).[’n(R”)’ K(tlxll-l?l (R")]H .
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