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INTERPOLATION OF HERZ-TYPE HARDY SPACES

EUGENIO HERN/NDEZ AND DACHUN YANG

1. Introduction

To study convolution algebras, Beurling in [4] first introduced some spaces of
functions which are now called the Beurling algebras. Later Herz in 19] generalized
these function spaces to further study the properties of functions. These generalized
spaces of functions are just the prototype of Herz spaces. Since then, the theory
of Herz spaces has been significantly developed and these spaces have turned out
to be very useful in analysis. An interesting account with many applications for
the generalized Herz spaces in some particular cases is given in [2]. In particular,
in [18] the authors of this paper characterized the intermediate spaces obtained by
the complex method of interpolation for the families of Herz spaces and gave many
interesting applications.

On the other hand, in recent years, a theory of Herz-type Hardy spaces has been
developed (see [7], 14], 15], [22]-[25]). These new Hardy spaces are a sort of local
version of the ordinary Hardy spaces and are good substitutes for the latter when
considering, for example, the boundedness of non-translation invariant singular inte-
gral operators (see [26]). In this paper, we are going to characterize the intermediate
spaces obtained by applying the complex method of interpolation to the families of
Herz-type Hardy spaces and to the mixed couples of Herz spaces and Herz-type Hardy
spaces.

Let us first introduce some notation. Let Bk {x n. Ix[ < 2k} and Ck
Bk \ B_ for k Z. Let X X. for k Z, ’ X if k 1 and 0 X,,, where

Xck is the characteristic function of the set Ck.

where

Definitionl.l [19]. Letot 6,0< p<xzand0<q <

(a) The homogeneous Herz space Kq (n) is defined by

"’e(I") {f 6 LToc(I" \ {0})" Ilfllcy.,’(u,,) <Kq

2kap Pf K"(R’,) fx;, q(,,)
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(b) The non-homogeneous Herz space Kq (It{n) is defined by

’P (R"Kq {f toc(") IlfllKg"n,,) <

where

(Here the usual modifications are made when p

0.p (R"Obviously, 1p’P(Itn) LP(]t{") Kp for any p E (0 cxz) The spaces
’ P (R" ’ p "’ p (R"Kq and Kq (n) are quasi-Banach spaces and if p, q > 1, Kq and

Kq are Banach spaces.
The spaces Kq (1 l/q),l (It{") Aq(") with < q < oc are called Beurling

algebras and were introduced by Beurling in [4] with different, but equivalent norms.
or,/)The equivalence ofthe norms was proved by Feichtinger in 12]. The spaces Kq (]t{n)

ot, pand Kq (n) were introduced by Herz in [19] also with different norms. Flett in
[13] gave a characterization of these spaces which is easily seen to be equivalent to
Definition 1.1 (see also [2]).

Let 4* (f) be the vertical maximal function of f defined by

4)* (f)(x) sup I(f * bt)(x)],
>0

where qO, (x) ,,4() fort > O, 4 e C(Nn), supp 4

___
B(O, 1) and

4)(x) dx O.

In the following, we will use $’(R") to denote the class of tempered distributions

Definition 1.2. Let 0 < p < cxz, < q < oc, ot 6 IR and 4) be as above.
’P (R"(a) The homogeneous Herz-type Hardy space HKq is defined by

,p(R" S’(R" 4)*HKq )-{f ) (f) Kq

Moreover, we define II.fllx,7.,,(,, --IIb*(f)lle,7.,,(n,, ).

(b) The non-homogeneous Herz-type Hardy space HK"p (IR") is defined by

"’P(R" S’(R" 4)* ’P(R"HKq {f )" (.f) G Kq )}

Moreover, we define II.fllu,7.,,(na,, 114*(.f)ll c,7.,,(n,, ).
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0. p (R" 0. p (,, (R"Clearly, HKp HKp Hp for p E (0, x) the standard
’ P (R" ’ pHardy spaces (see [11]). The spaces HKq and HKq are quasi-Banach

’ P (R" ’ ’spaces and if p, q > 1, HKq and HKq are Banach spaces.
The space HK(l-I/q)’l (") with < q < 2 and n was introduced by

Chen and Lau in [7] and Garcfa-Cuerva in [14] generalized it to all q E (1, oc) and
n-dimensions. Then Garcfa-Cuerva and Herrero [15] and Lu and Yang [22] further

n(l/p-l/q), 1, (]1 n(l/p-I/q),pgeneralized this theory to the spaces HKq and HKq
with 0 < p < < q < o independently. Lu and Yang in [23]-[25] also studied the

.p .pspaces HKq (]") and HKq with 0 < o < o, 0 < p < cxz and < q < o.
By the results in [22]-[25] (see also [15]), we know that the definitions of the

spaces HI’P(R") and HK’P(") with < q < o, ot > -n/q and 0 < p < o
are independent of the choice of 4. In addition, the Herz spaces and the Herz-type
Hardy spaces have the following well-known relationship (see [21] and [22]-[23]):

---Kq (Rn), ifl <q <o,-n/q <or <n(l- l/q)
and0< p<o
ifl <q <o,-o <or <-n/q
orn(1- l/q) < ot < cx, 0 < p <

and

Kq" o,1, (Rn

’ P (R" ’ P (R"HKq 7E Kq ),

ifl < q < o,-n/q <or < n(l l/q)
and0 < p < x
ifl <q <o,-o <or <-n/q
orn(l /q <_ ot < o,0 < p < o.

Moreover, if0 < ot < o, < q < o and 0 < p _< o, then

"’ P (R" Lq (R or, p (RnKq n Kq II.fll,7.,’(,,) II.fll,,(,,) /

and ifl <q <o,n(1- l/q) <or <oand0< p <o,then

(1.2)

It is well known that Coifman, Cwikel, Rochberg, Sagher and Weiss in [8] and
[9] developed a theory of complex interpolation for the families of Banach spaces.
Hernindez in [16] and [17] introduced a theory of complex interpolation for the
families of Banach lattices and used it to identify the intermediate spaces of many
classical spaces, and Tabacco Vignati in [27]-[31] considered the case of quasi-
Banach spaces.

In Section 2 of this paper, we first establish an interpolation theorem for the log-
subharmonic operators, which generalizes Theorem 2.3 of Tabacco Vignati in [29].
Using this theorem and a method that is different from Tabacco Vignati in [30] (or
see [27]), we characterize the intermediate spaces obtained by the complex method
of interpolation for the families of Herz-type Hardy spaces. As a corollary of this,
we deduce the results obtained by Garcfa-Cuerva and Herrero in [15].
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In Section 3 of this paper, along the lines of the method introduced by Calder6n and
Torchinsky [6] (also see [3], [20], [15]), we treat the complex interpolation of some
mixed couples of Herz spaces and Herz-type Hardy spaces which are not covered by
the theorems obtained in Section 2.

Finally, we like to remark that for non-homogeneous spaces, we have also obtained
similar results to all of the theorems on homogeneous spaces. To limit the length of
this paper, we only state our results for homogeneous spaces.

2. Interpolation for families of Herz-type Hardy spaces

In this section, we will characterize the intermediate spaces obtained by applying
the complex method of interpolation to the families of Herz-type Hardy spaces. Let
us first introduce some notation (see [27]-[31] for more details).

Let A denote the open unit disc in C, the set of complex numbers, and T the
boundary of A. For each 0 E T, we consider a quasi-Banach space (B(0), [[. (0)),
and denote by c(O) the constants in the quasi-triangle inequalities. We say that the
family {B(O)}oer is an interpolation family of quasi-Banach spaces if each B(O)
is continuously embedded in a Hausdorff topological vector space H, the function
0 -- ]]bl](0) is measurable for each b oerB(O), and log c(O) L(T); H is
called the containing space of the given family {B(0)}0er. We define

called the log-intersection space of the given family lB(O)loer. Let (A, B(.))
be the space of all the -valued analytic functions of the form

g(z) Oj(z)bj
j=l

for which Ilgll sup0er []g(O)[[n(o) < , where m 6 N, j N+(A), the
positive Nevalinna class for A (see [10], Chapter 2) and bi 6 fl, J m. For
every a 6 and z A, we define

[[al[z inf{l[g[[: g , g(z) a}.

If Nz denotes the set of functions of such that I]allz 0, the completion B(z) of
(/N, I1 II) will be called the inteolation space at z of the family {B(O)}oer. We
also denote B(z) by [B(0)]z.

In order to characterize the intermediate spaces obtained by the complex method
of inteolation for the families of Herz-type Hardy spaces, we need an inteolation
theorem for log-subharmonic operators. Let us first introduce the definition of log-
subharmonic operator (see [29] or [27]). Let be the set of measurable complex-
valued functions on some measure space (Y, v). An operator M mapping into the
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class A/" of non-negative-valued measurable functions on some other measure space
(X, #) is said to be of maximal-type provided it satisfies

M(,ka) I,klMa, for all ) 6 C and all a (2.1)

M(a) M(lal), for alla (2.2)

M(a)(x) < M(b)(x), if la(y)l Ib(y)l, a, b 6 A//" (2.3)

M [t) .f (., O) aO] (x) <_ f M(.f (., O))(x) O. (2.4)

If {B(O)}OT is an interpolation family with containing space/g, we say that an
operator M: -- A/" is a log-subharmonic operator associated with the family
{B(O)}oT if it can be expressed as the composition M L of a linear operator L
mapping b/into .A/[ and a maximal-type operator M.

To establish the interpolation theorem for log-subharmonic operators, we need the
following lemma.

LEMMA 2.1. Letot(z) e , 0 < g(z), V(z) < 1.Let f(x) -= fljXe,(x) with

N N, flj > O, j N, and {Ej }jU__ pairwise disjoint sets qffinite measure.

Define
g(x, z) 2).f(x)e)xk(x)ll.f xkllc,t,,)

kN

where N {k Z IlfxkllL’,,) > 0}. Let S(z) be the set qf all the g(x, z)
corresponding to all the above dfferent functions f (x). Then S(z) is dense in the
Herz spaces -z). /:) (,,le(z)

Proof. Let f(x) -v=,/4jXe,(x) with N 6 N, flj > 0, Ej c_ Ck, j

N, and {Ej }j pairwise disjoint sets. For such an fk, we define

N
,(z)/e(z)-g:(x, Z) -.i,(x)ll.f,ll,c,)

j=l

Let &(z) be the set of all the g,(x, z). To prove the lemma, by the definitions, it
suffices to prove that & (z) is dense in L (Ck). To do this, let ’ (x) Yv= dj X, (x);
we only need to show that there exist {flj }jN__, such that g,(x, z) ,(x). In other

words, we need to prove that there exist {flj }.N such thatj=l

(2.5)
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NFrom (2.5), we easily deduce that -jv=/#lE# #_ dilE#l) Hence,

f(z)/y(z)-!

This finishes the proof of Lemma 2.1. I-1

THEOREM 2.1. Let M be a log-subharmonic operator associated with an inter-
polation family ofquasi-Banach spaces B(O) }OT. Suppose that

IIMall ..,o,.,,,o, < o(O)llalln(o) [or a [3Kqlo) (R")

where or(O) I, 0 < p(O), q(O) <_ oo, or(O), lip(O) and /q(O) L(T).
If log r/ L (T), thenfor all a [3,

where c(z) fT ot(O)Pz(O) dO,

p(z.) b- t’()’ q(z) -Pz(O)dO,
r/(z) exp fv log o(O)Pr.(O) dO and Pz.(O) is the Poisson kernelfor evaluation at z.

Remark 2.1. If or(0) 0 and 0 < p(O) q(O) < oo, Theorem 2.1 is just
Theorem 2.3 in [29].

Proof of Theorem 2.1. Let a 6 fl and zo 6 A. For any given s > 0, there exists

f(z) --=, p(z)ay (A, B(-)) such that f(zo) a and II.f]l _< ]lallz,, + e,
where m 6 1, pj 6 N+(A) and aj 6 fl, j m. To prove the theorem, we
claim that it is enough to show that the function z --+ logllM(f(z))(.)ll ,:,.,,,:, is

gq(r) (

subharmonic in the unit disk. If this is true, we have

(.f (z0))(.)II ,,,,.,,,,,,,,,, (,,) < exp log II-(f (0))(’)II -,,,,,"’"""’’ (,,)e.,, (0) dO.

Therefore,

Ma K,,I::]I: .,,,:,,,,,) IIM(.f(zo))(’)ll K,:,,,’:"""’:"’
< exp./ log (o(O)ll.f(O)llB(o)) Pr.,,(0) dO

_< r(zo)llfll _< rl(zo)(llallz,, /
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Thus, letting e -- 0, we obtain

which is the desired result.
To verify our claim, we notice that since the functions p(z), q(z) are strictly

positive and continuous on A, for any p > 0 such that

Dp(z0) {z" Iz- z01 _</9/ C A,

we can find r > 0 such that 0 < r < p(z), q(z) when z 6 /,(z0). Moreover, since
subharmonicity is a local property, it suffices to show that

dO

for any such p > 0.
Define /e(z) (q(z)/r)’, 1/v(z) (p(z)/r)’, where we denote the conjugate

index of p by p’; that is, 1/p + 1/p’ 1. Let fi be a simple and positive function on
]E" of the form given in Lemma 2.1. That is, .[’ (x) y,.v= j XE, (x), where N 1%1,

i > 0, j N and {Ej}.uj= are pairwise disjoint sets of finite measure. Define

g(x, Z) Z 2k(:)r’f
kEN

L (,,)

where N {k 6 Z II.hxkll/.,(,,) > 0}. Then we have

l(z) ,,g(x,z)(M(.f(z)))"(x)dx
N

k_Ni j=l iC

N

kN j--

(M(.f (z))) (x) dx

As in [29] (pp. 328, 329) (also see [27]), we can prove that j.k(Z) is log-
subharmonic and therefore so is I (z). Thus

log f,, g(x, zo)(l(.f (zo))) (x) dx

Z cliO
log/(zo) _< log/(zo + ,oei)
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log g(x ZO + pei)(I(f(zo + pei))) (x) dx
2zr

< log Ilg(’, zo /
/f(Z()+pe

x II(M(f(zo + pei))) (’)11 ,.,=,,+,.....,,,,,,=,,+,,,,,o,/,.(,, 2qIzo+Pe

g (zo+Pei peiO
dOog IIfllc,,, IIfZo + ))’)11,:,,+,,,,.,,,:,,+,,,,,, 2’--q(zo+petO

where we use the fact that

(r(zo+Pe’O),P(zo+Pe’)/r )* -r(zo+pei),l/v(zo+Pei)(n)Xq(zo+pet)/r

(see Corollary 2.1 in 18]) and

IIg(’, zo + pei)l[
I/f(SoWPe

2-kr(zo+pe’)/g(zo+pe 2kr(zo+pei )/g (zo+pei)

(y (zo+pe )-e(z)Wpei ))/ (zo+pei ] (zWpei)

x f , ,,)

,f Xk c,

V(zo+pe’)

Here and in what follows. (B)* denotes the dual space of the space B. Using the fact
that (.q<z,,)/.Pr<")’P<)/" (.)). -.-,,). /ez,,)()/e<z,,) and Lemma 2.1 we obtain

logllM(f (zo))(’)II :,.,,,:,,,
log sup .,, g(x, zo)((.f(zo)))" (x) dx

< logllM(f (zo +

where the supremum is taken over all the simple and positive functions f of the
above form such that f , <,,) 1.

This finishes the proof of Theorem 2.1.
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We now turn to the interpolation of Herz-type Hardy spaces.

p(O).p(O)(,). If there exist Po, P e (0, cx),THEOREM 2.2. Let B(O) H.q(O)
qo > and ot, oto > 0 such that

max{pl, 1} > p(O) > Po >0
q(O) > qo >
Otl> or(0) > n(l 1/q(O))
Int{ot(0) + n/q(O)} + (or(O) + n/q(O)) > co > O,

(2.6)

then

kz,p.()B(Z)- H..q(z)
where Int{x} denotes the maximum integer <_ x, c(z) fT ot(O)Pz(O) dO,

f,p(z) -Pz(O) dO and
q(z)

Proof Let 0 6 S(’) and ’(0) -7- 0. We define

M(x, f) sup If * q)t(x)l
t>O

four every tempered distribution f. By Definition 1.2, f 6 H/’P(’) if and only if
m(-, f) 6 /’P(’) and IlfllHg.,’(w,) IIm(., f)ll/.,’,,). It is easy to see that m
is a log-subharmonic operator associated with the family {B(O)}ozT and obviously
satisfies the conditions of Theorem 2.1. Thus, by Theorem 2.1, we obtain

Ilfll z4 gq()a’(-) /,(-). ,,) -II M(-, f)ll,,.,,,,,,)q(z) < cllfllz

for every f /3. Thus, Nz {0} and in order to prove Theorem 2.2, we only need to
show that

H .;,(zo),p(zo) (n) N S(n) c B(zo),Kq(zo
for every zo 6 A, since the left-hand side is dense in the Herz-type Hardy spaces
considered here (see [23]).

k,(zo),p(z.o) (n) S(’) and m Z+ such thatLet h H.q(zo

m > Int{otl + n(l/qo- 1)}.

Then using the atomic decomposition proved in [23], we can write

h(x)- Z ),a,(x) + #kbk(x),
k=-cxz k-’-oo
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where f,, ak(x)x dx 0 f,, a,(x)xl dx, for V,/3 E Z_, I1, I1 m,

suppa C {x" 2-- 2e Ix] 5 2 + 2e}

with g small enough, suppb C (k U k+), Ilakll,,,,(,,) IB(0, 2k+)l-(z")/"

k+l

0 c2(z’’)

j=k-

and
k+2

0 _< # < c2(z’’)

Here G(f) is the grand maximal function of f in Fefferman and Stein’s sense (see
[11]), defined by

G(f)(x) sup sup I(f * ,)(Y)I,
{0<t<, Ix-yl<t}

and

.,,AN {(/9 E q,(n): sup xDqg(x)l _< 1}
I’l, Il_<g

with N 6 Il and N > 0 + n + 1. Moreover, using If(x)k(X)l cG(f)(x)xk(x)
and the results in [25], we obtain

(zo) p(zo)

k

p(zo)

c f H x"’:"""’:"’ <R,,)’
q(zo)

where c is a constant independent of f.
Let Qz(O) be the conjugate Poisson kernel and define Hz(O) Pz(O) + Qz(O),

that is, the Herglotz kernel for the unit disk. Let (z) fr (O)Hz(O) dO,

(z) p(O)
Hz(O) dO and

(z)
Hz(O) dO,
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so that if(z), 1/’(z) and 1/’(z) are analytic in the unit disk and their real parts are
or(z), lip(z) and 1/q(z) respectively. We can also require that (z0) or(z0),
1/’(z0) 1/p(zo) and 1/’(z0) 1/q(zo).
We then consider

F(x,z)

Some comments are necessary regarding the definition of F (x, z). We have to show
that this function is a limit of functions in . With the given definitions, this is quite
obvious, except, perhaps, for the terms Ila -Z and IIb % which we have

Lq(:) (" Lq(r) (")

to show are analytic functions We only do this for Ila - For Ilb - thisL:) (") L:(,,)

can be done similarly. We can suppose that ak is not a.e. zero on Ck. Then Ilak ,,,,
means

IlakllL%,(,,) exp ---log la,(x)l q’z) dx
n{xG,: lak (x)l:0}

where log refers to the principal branch of the logarithm function That the logarithm
of the integral exists is a consequence of the fact that the integral is never zero for
every z belonging to the convex set A (see Theorem 2.16 in [1 ]). Thus, except for
the terms a,(x) and b,(x), all the functions involved in the definition of F(x, z) are
analytic Obviously F(zo) h(x). Now, we estimate liE(" O)lln,,,,.,,,,,,,,, Let

qW)
)"

and

Then

q(z)/q(O)Ilak(" 0)11,,,,,) < clB(0,

_< c IB(0, 2k+)l-()/’.
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Similarly, we can show

Ilbk(., 0)ll,,,(,,) _< c IB(0, 2k+)l-()/".

Thus {c}-a(x, O) and {c}-b(x, O) are central (o(0), q(0))-atoms (see the defi-
nition in [23]). Moreover, by a similar computation to the proof of Theorem in [23]
(pp. 664-666) (or see the proof of Theorem 2.1 in [22]), we have

liE(. O)IIHi.,",.,,,",,,),,,,,, IIM(’, F)IIK,,,,,)
l/p(O)

see [23] for the details. From (2.6), we can deduce that log+c(0) E L I(T) and
therefore, h E B(z0).

This finishes the proof of Theorem 2.2. I-I

Remark 2.2. It is well known that if < q(O) < x, -n/q(O) < c(O) <
n(l- l/q(O))and 0 < p(O) < cx, then

H I-((O),p(O) (n) o<(O),p(O) (n).

see [21] and [23].

Using this and the computational technique in the proof of Theorem 2.1 in [21 ], a
similar proof to that of Theorem 2.2 gives us:

p(O),p(O)(n). If there exist Po P (0, x),THEOREM 2.3. Let B(O) H..q(0)
qo > 1, i > O, O, 1, 2, 3 such that when or(0) 6 [n(l 1/q(O)), cx), (2.6)
holds and when or(O) (-n/q(O), n(l 1/q(O)),

1}>_p(0) >_po>O,
q(O) > qo > 1,
n > 3 > (0) + n/q(O) > Ot2 > O,

then

B(z) 14 lq(z)

where or(z) fv ot(O)Pz(O) dO,

p(z) p(O)
Pz(O) dO and

q(z)
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As a simple corollary of Theorem 2.3, we can characterize the intermediate spaces
obtained by the complex interpolation method for the couples of Herz-type Hardy
spaces as follows. See [15] (pp. 619-623) or [3] (pp. 87-88) for the definition of the
spaces [.,-]0.

THEOREM 2.4. Let 0 < P0, Pl < cx, < q0, q < cx, 0 E (0, 1),

--0 0 --0 0
and

P Po Pl q qo q

Then

[Hk#(ll/po-I/qo),Po(In), HkI/p,-I/q,),pl (]n)]0 Hk(I/p-I/q),p(]In).

Remark 2.3. When 0 < P0, Pl < 1, Theorem 2.4 has been obtained by Garcfa-
Cuerva and Herrero in [15]. When < P0- P < cx and < q0- q < c, we
obtain the result in [3], that is

[LP"(n), Lp’ (In)]0 LP("),

where 1/p (1 O)/po + O/p.

3. Interpolation for mixed couples of Herz spaces and Herz-type Hardy spaces

In this section, we treat the complex interpolation of some mixed couples of Herz
spaces and Herz-type Hardy spaces, which are not covered by the above theorems.
Our main theorem in this section is as follows.

THEOREM 3.1. Let < q0, ql < cxz, 0 E (0, l),c (l--0)n(1-- 1/qo)--On/q,
1/p -0 and 1/q (1 -O)/qo + O/q. Then

Proof. We first prove the first equality. To do this, let us first prove that

Kq" ot, p(n)__C [O k(ll-1/q)’l (]In), kn/q,,cxz (]I")]0
where we write ot- n(1/p- 1/q). If f 6/’P(II"), by the proof of Theorem in
[23] (see also the proof of Theorem 2.1 in [22]), we can decompose f into

f(x)--

_
kkak(x)+ Z lzkbk(x),

k=-: k:-cx
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where fI,, a, (x) dx 0 f,, bk (x) dx,

supp ak C C {x" 2’- 2’e < Ix 2k + 2ke}

with e small enough, supp b, C (CUC+), Ila II,(") IB(0, 2+)1-/, IIb IIL,(n,,)
IB(0, 2k+2) I-=/n,

k+l

0<)k <_c2’
j=k-1

and 0 < #k < c2k --,k+2
/--.j=k-! IIG(f))kllLq"). Here G(f) is the grand maximal

function of f in Fefferman and Stein’s sense (see the proof of Theorem 2.2 and also
[11]). Moreover

because ot n(1/p 1/q) and < p, q < cx; in the last step, we used Theorem 2.1
in [21] (see also Theorem 5.1 in [18]).

Set or(z) (1 z)n(1 1/qo) zn/q, 1/p(z) z and 1/q(z) (1
z)/qo + z/ql. We define

F(x, z) Z (k)P/P(Z)lO(O’ 2k+)lq/(nqz))-(z)/n

[lak(x)]q/q(r)-lak(x) Pk(x, z)]

-+- Z (#k)P/P(Z)lO(O’ 2k+2)lq/(nq(z))-a(z)/n
k--o

[Ib(xtl/u-b(xt Q(x, zl],
where

and

Pk(x, z) lak(x)lq/q(z)-lak(x) dx
ICl

Q(x,z)
IC u C+l uc%+,

Ibk(x)lq/q(z)- bk(x) dx.
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Obviously F(., O) f (x). Next, we need to verify that F(., it) E nlgl I-I/q’’)’l (Rn)
and F(., + it) li2n/q"(lR’). For the former, let

ak(x, z) [B(O, 2+)1aq/(nq(z))-a(z)/n [lak(x)lq/qz)-lak(x) Pk(x, z)]
and

bk(x, z) IB(O, 2k+2)laq/(nq(z’))-a(z)/n [Ibk(x)lq/q(z)-lbk(x) Qk(x, z)].
Notice that f,, ak(x, it) dx 0 f,, bk(x, it) dx, suppak(., it) Bk+ and

suppbk(., it)

_
Bk+2.

Moreover,

Ilak(’, it)llLqo,,) < clB(0, 2k+)lq/nq")--/q")llaqk/qllLqo,,
_< clB(0, 2k+)] --/q’’)

and

Ilbk(’, it)ll/,,,,) < clB(0, 2k+l)l--l/q").

Thus, ak(.,it) and bk(.,it) are central (n(l l/q0), 1)-atoms up to an absolute
constant. Moreover

IIF(’, i’)llz4..q,,]’n(l-l/q)’l(]ln < c (IZklP/Pi’)+ I#kl p/pi’))

n(I-l/qo)by [23] and [25]. Thus, F(., it) HKeo (n). Similarly we can prove that

F(., + it) /,/e,,oo(). This proves (3.1).
Next, we turn to the proof of the reverse inclusion of (3.1). Notice that by the

hypotheses, all relative spaces considered here are Banach spaces. Let

f [nI n(I-1/q)’l (]1n) ln/q"(]txn)]0qo

Then, by the definition of the space [-, "]0, there is an analytic function

g f’[ Hkn(-’/q)’(n)qo
such that g(O) f(x); see [3] (pp. 87-88) and [15]. Write hk(x, O) g(O)xk(x)
and take 0 < r < 1; using Lemma 2.21 in [15] (see also [5] and [16]), we obtain

]hk(x, 0)1 <_ (ak(x))l-O(bk(X)),
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where

and

ak(x) f Ih,(x, it)[o(0 t) dt

bk(x) - [hk(x, + it)lr# (0, t) dt.

Here #o(0, t) and #(0, t) are positive measurable functions and

0
/zo(0, t) dt - # (0, t) dt.

Therefore,

Thus

2kPllg(O)xkllP

2p Ih(. 0)It p/r
Lq/’

IS )2p IIh(. it)ll,,,(,,)o(O t)dt
=_ 0

X (RIIhk(., i,)llq,(R,,)l(O,)dt)P/rl
I/p

c 2p+npO/q’ h(. it)l,,,(,,o(O t)dt
=_ -0

{ [ f(2k,i(l_l/qo )r ]l/r]
lip

c IIh(. it)ll,,,,) o(0 t)dt
:_ 1-0

.,,,-,,,,,., o(0 ) dt< c
-0 IIg(i)llGo (N"

< csuplg(it)ll- <c <n(l-I/q0).l
R H Kqo (R")
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That is, f E Kq which completes the proof of the first equality.
For the proof of the second equality, notice that

n(I-I/qo),l (]ln

by (3.1), we immediately obtain

,!,(,, ",,(I ), gq,,,/q,,oogq C [gq,, /q,,),l (,, (")]0
The reverse inclusion can be proved by a similar procedure to the one used in proving
the reverse inclusion in (3.1). We omit the details.

This finishes the proof of Theorem 3.1. I-I

Remark 3.1. Observe that the proof of the first part of this theorem can also be
done in a way similar to the proof of Theorem 2.2. We preferred to give a more
elementary proof here in the case of couples of spaces.
A more general theorem can be proved, using a method similar to the one used to

prove Theorem 3.1.

THEOREM 3.2. Let < qo, q < oo, 0 < Po, P < oo,--n/q < ot < n(l
1/q), 0 E (0, 1), ot (1 0)n(l l/qo) + 0ot, lip (1 O)/po + O/p and
l/q (1 O)/qo + O/q. Then

H/qon qo ), I’o (]n) Kq," ,, I’, (" )]0 Kq" " I’ ("

[gq,," "(I-I/q")’l"’(" ), gq," *"l" "(")]"
JO
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