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This paper tells an old story in a more modern setting. One of the more
striking results in global differential geometry is the theorem of Chern (Theo-
rem 11 in [1]) relating the characteristic classes of a vector bundle to the
curvature of this bundle. A special case of this result is the Gauss-Bonnet
theorem for almost complex manifolds.
There are two approaches to characteristic classes which will be discussed

here. The first is by using the obstruction theory of fibre bundles as in [1]
and [2]. It is here that the differential geometry of the fibre bundle enters
essentially, and, although there is a very simple underlying principle, the
computations tend to be lengthy and obscure the geometry. Our approach
has been first to utilize the geometric principle for simple types of bundles
(Proposition 2), where it is hoped that the computations have significant geo-
metric content. Having done this, we pass to more complicated bundles by
algebraic means; the geometric interpretation remains the same. The second
approach is that introduced by Kodaira and Spencer in applying the theory of
Chern classes to algebraic geometry. Again, we try to illustrate in a simple
but meaningful way how the curvature enters (Proposition 3) and is useful
for the theory of complex manifolds. Again we pass from this result to more
complicated bundles by using what might be called the "induction principle in
fibre bundle theory" due to Chern [2].

This paper is expository in nature, and the expert will find little that is new.
In particular, we have reproduced a proof (Proposition 5) which seems to exist
only in lecture notes. The point of view adopted is differential-geometric,
and we have freely used results here (reference [4]). On the other hand, we
have tried to utilize only general techniques in topology, avoiding specific
results. As a single exception, we have used some homology properties of the
Grassmann variety in 4 and 5.

1. Preliminaries

We shall work within the framework of compact almost complex manifolds
(abbreviated a.c. manifolds) if X is one such, the a.c. structure tensor is
denoted by Jx. An almost complex mapping is one whose differential
commutes with the a.c. structure tensors. We define an a.c. principal bundle
GL(r, C)--. P X (where GL(r, C)-- P is injection of the fibre, and
is the bundle projection) such that (i) Jp is invariant under GL(r, C) acting
on the right, (ii) Jet restricted to a fibre gives the a.c. structure of the fibre,
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and (iii) , JPt Jx r, where , is the differential of (such a mapping
is called an a.c. mapping). Relative to a suitable covering {lli} of X, P
will be given by transition functions fij" lIn 1I GL(r, C) where the
f. are a.c. mappings. Associated with P, there is an a.c. vector bundle
V X with fibre C; V is obtained from P by the usual action of GL(r, C)
on C. We may find an Hermitian metric ( } in the fibres of V relative
to {}, (,) will be given by functions h’ H(r) where H(r) is
the manifold of positive definite Hermitian forms on C. We write (h) for
the matrix form of h and sometimes denote ( } by h. The transition rule
for h in is

(1.1) h t] hf,
and if y (y y), z (z, z) are sections of V over ,
(1.2) (y, z} tyh :.= h), y,

We now define a connexion in P X; it is desirable to have formulae
which are useful for calculation. Let 6I(r, C) be the Lie algebra of r X r
complex matrices with the usual commutation rule" [A, B] AB BA.

DEFiNiTION. A connexion in P X is a I(r,C)-valued form () on

P such that
(i) restricted to a fibre -(x0) x0 X GL(r,C) is given by $(x0, g)

Y(g)dX(g), where X(g) are the matrix coordinates of g and (Y)
(X)-. In shorthand, -(Xo) g-dg. (This says that gives the
Maurer-Cartan form on each fibre.)

(ii) In -() X GL(r,C) with coordinates (u, g),

(u, g’g) g-(u, g’)g (Ad g-)(u, g’).

If we write locally

Z (u, g) Y(g) dX (g) + AS (u, g),

it follows from (ii) that A(u, g) g-A(u, e)g where A(u, e) O(u) is a local
I(r, C)-valued form on X. We write

(1.3) (u, g) g- dg + (Ad g-) 0;

a connexion is given either by on P (global) or by 0 onX (local). As usual,
(or 8) allows us to define the covariant derivative D in tensor bundles associ-

ated with P for example, if y V is a local section, then Dy dy + Oy;
y is parallel Dy O.

PROPOSITION 1. With the Hermitian metric h, we may uniquely associate a
connexion such that

(i) 0 is of type (1, O) ( will be also of type (1, O) ),
(ii) parallel translation preserves ( .
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Let y be a local parallel cross section of V; then d(y, y) O.

h0 d( y) tdhy .+. tdhy -t- hdy,
and since dy -Oy, d -, we have

(-h -b dh hO) y O,
and hence, by (i)

Oh hO, h h
(0 and are the type components of d). By setting h-Oh,

t t- h h- (since t h),
and we are done.
We let End(V) with fibre 6I(r, C) be the bundle of endomorphisms of V.

If A, are End(V)-valued forms, we may define A E by roofing entries;
if A, E are of degrees p, q respectively, we define

[A, ] A A + (--1)Pq+l A A.

The curvature form on X of is given by

(1.4) 0 dO + (Cartan structure equation);

the curvature of on P is given by

(1.4)’ e=D =d+ n .
Using (1.3), one checks easily that in -I(H) GL(r,C), (u,g)
Ad g-O(u, e), which shows that 0 is a global End(V)-valued 2-form on X.
Thus in H n H,

(1.5) O (AHf) 0.
Now if h-Oh is a metric connexion, then

O d(h-lOh) + h-lOh h-Oh

O(h-*oh) + h-oh h-loh + a(h-Oh),

and since 0h- -h-Ohh-,
(1.6) o e a(h-loh).

This section will be terminated by discussing few classical identities. By
definition,

DO dO+[O,O] dO+O n O-- O n

=dO - dO+O n d+O n 0-d0 n 0-0 n n ;
i.e.,

(1.7) DO 0 (Bianchi identity).



ON A THEOREM OF CHERN 471

If A is an End(V)-valued 1-form, then

(1.8) DA dh+ [t,h] dh+ t ^ h+ h ^ t,

and by the same calculation as above (1.7),

(1.9) DA-- 0 ^ A- A ^ 0 [0, A] (Ricci identity).

2. Statement of the theorem

Let P be a symmetric multilinear form on l(r, ) which is Ad-invariant;
i.e., P is a polynomial on I(r, C) such that

P(Ad gA1, Ad gAs) P(AI As)
(2.1)

(g eGL(r,C), Aj e I(r,C)).

Now if B e l(r, C), e is a one-parameter subgroup of GL(r, C), and

d etB l d et,Ae_t, 1d- (Ad )(A) BA AB.
t-o dt to

Thus in (2.1), if we let g vary along a one-parameter subgroup and differenti-
ate at 0, we have

(2.2) P(A1, [B, A], A,) O.

The set of all such P’s forms a ring (usual multiplication of symmetric forms)
which we denote by I. Given a curvature form 0 and P e I, we assert that
the expression P(O) P(O, 0) makes sense and is a closed global
scalar form on X. First, since 0 is an End(V) -valued 2-form, P(0) makes
sense in lli and therefore in lli n llj by (1.5) and (2.1); secondly, by (1.7),

dR(O) P(O, ,DO, O) O.

We may thus define a homomorphism W I H*(X, C) called the Weil
homomorphism by W(P) P(O).

J
For 0 <- j _-< r, we define Pj(B) Pj(B,... B) by

(2.3) det(I + B) ;_-0(-1)P.(B)-" (B eI(r,C)).

The theorem of Chern is the following.

TIEOREM. Let V -- X be an a.c. bundle as defined in 1, and let 0 be a
curvature as constructed in 1. Then, if c(V) is the jt characteristic class of
V and if (2i)-10, under the de Rham isomorphism

(2.4) c(V) P(),

where P is given by (2.3).

There are several extant definitions of cj(V) we shall show that (2.4) is
valid where c is defined by obstruction theory [1] or by axioms [3].
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3. Line bundles
A line bundle is by definition an a.c. bundle V --* X where r 1; the princi-

ipal bundle P has fibre C* C 0. An Hermitian metric ( ) is given
(relative to {1I}) by positive real functions a defined in 1I such that

(3.1) a fla- 1 (see (1.1)).

If 1I c X is an open set such that -1(1I) is a product 1I C* with coordinates
(u, z), then

ou z-dz z-lOu z d log z(3.2)

Now
Du du + u ^ u 2u Ad z-(u) ((1.4), (1.4)’),

and since u ^ u 0,

(3.3) d v*().
The geometry of Chern classes as obstruction classes is essentially given by

the following proposition.

PROPOSo 2. The first Chern class q the principal line bundle in the sense

of obstrion theory is reesented under the de Rham isomphism by
(2vi)-@.

Proof. We firs recall the obstruction definition. Let X be triangulated
as a finite complex K, and denote the/-skeleton by K. Subdividing if neces-
sary, we may suppose, for each 2-simplex s, that (s) is a product s X C*.
Letting k homotopy group, since 0(C*) 0, we may get a smooth

Kcross section p P} over the 1-skeleton. Thus if s is a 2-simplex, we
have defined a mapping p" O(s) P}]O(s) (0 boundary), and since
v-’(s) is a product, we have a mapping p 0 (s) C*. This mapping defines
an element of (C*) Z, and since P} is an oriented fibre bundle, we have
assigned to each s an integer, the degree of p 0(s) C*. The obstruction
cocycle -f assigns to each s this integer; as a cocycle, -f is independent of p.

Let s, ..., s be the 2-simplices of K; we must show that if a cs
and 0 (a) 0, then

c, f(s) (2vi)- O.(3.)

We set f(s), and we may assume that for some/c, ti 0 for j > k.
For j > k, p may be extended to s, and for 1

_
j =< /c, p may be defined on

s. with the exception of a single point p e s let D. be a small disc around p.
The following notations will be used in the calculation below: the symbol
"’-" means "approximately equal to", 1 {z z 1I, and * is the induced
mapping on forms.
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o c. 0
cf O+_

j _k i--D

c f p*r*O +
s D

cf p*+

c p o + cz p
l<_j_k (si--Di) k<l_m ()

((3.3))

’ cf (since0(a2) 0).
1s sk (O(.D1)

Now by (3.2), the definition of 5, and since D is negatively oriented,

f 0 + c f d log z + eO (esmall)

’ (2,ri)c.

By shrinking D to p, the becomes =, and (3.4) is proved.

In [3, page 61], the Chern classes were given axiomatically; we shall see that,
if c.(V) denotes the jth Chern class defined axiomatically,

(3.5) c.(V) Pj().

For the moment we work on line bundles; it is assumed that X is a complex

manifold (Jx is integrable) and that P - X is a holomorphic line bundle.
Over X there is the exact sheaf sequence

0 Z-e ex-P e* -0

[3, page 27] where e.g., e is the sheaf of holomorphic functions on X. The
holomorphic line bundles are given by H (X, @*) [3, page 42], and in the exact
cohomology sequence

--> Hi(X, e*) ;H(X,Z)--*...,
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ife Hi(X, e*) gives P then c’l(V) c1()’ () according to [3, Satz
4.3.1].

HPROPOSITION 3. If } e (X, *) is provided with a metric curvature O, then
under the de Rham isomorphism

(3.6) (2ri)-lO ().

Proof. Let 1I} be a sufficiently fine covering relative to which is given by
a holomorphic cocycle 1I n II.--*C*. Then, by the definition of , ()
is given by the integral cocycle ck where

(3.7) ck (2i)-1(log }. log + log ).

Letting N(II)= nerve of {1I}, we shall trace the (ech cocycle

c Z(N(tt), z) Z(N(II), C)

through the de Rham isomorphism as given in [3, pp. 38-40] and find that it
is represented by (2ri)-O.

(a) The de Rham isomorphism goes as follows" given a cocycle

Z{.} ((u),c),

there exist C functions a. in 1I n llj such that

i’ a + o’ ’k (in 11 n 1I n 1I).

Then da + da. do, and there exist 1-forms v in 11 such that

r- r da (in 1I n lI).

However, in 11 n 1I., dr dry, and thus there is a global closed 2-form r

such that r 1I dri r is the de Rham class corresponding to ,.
(b) Let ., c. be as above, and let a be an Hermitian metric in P.

By (3.7), we may choose the a. of (a) to be (2i) -1 log ., and then da
(2ri)-0 log . (since . is holomorphic). By (3.1),

log a -[- log . W log log a. 0
and thus

0 log a 0 log a. -0 log . (in 1I llj).

Thus we may take r (2ri)-O log a and

r {dry} {-(2ri)-50 log a} -(2ri)-50 log a.

Taking into account (1.6), we are done.

4. Sum of line bundles
If V is an r-dimensional a.c. vector bundle, one may define the Chern

classes co(V}) 1, c,(V}), c,.(V}) by obstruction theory as in the case
r 1. In particular, if V} V} V} is a Whitney sum of r line
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bundles, we would like to write c(V) in terms of the cl(V). The answer
is given by the duality theorem (Theorem 7 in [1]).

THEOREM. If V VI @ V,, we write

c( V) 1 + c V) + + c(V)

c(V) 1 -b cl V) (to 1, r)
Then we have

(4.1) c(V) c(Vl) c(Vr).
The formula (4.1) is taken as an axiom in [3] and, as mentioned above,

is given an obstruction-theoretic proof in [1]. The fact that the forms
given in (2.4) satisfy (4.1) is made clear by the following remark" If
V V @ Vr, then cj(V) cj(cl(V), c(V,)) where ; is
the jth elementary symmetric function of its variables. Thus, in view of
Proposition 2, we may state

PaOPOmTO 4. Let V V Vr ;then (2.4) holds for Ve where
cj(V) is defined either by the axioms or by obstruction theory. In fact,

(4.2) c(V) (-1)a(1, ,),

where (2ri)-O and 0 is a curvature in P
5. Completion of the proof

There are two more steps in the proof" first we discuss the contravariant na-
ture of I under mappings; then we use a mapping to split a vector bundle
into a sum of line bundles and use 4.

Let V- X be an a.c. vector bundle, and let X -- X be an a.c. mapping.
Then a induces an a.c. vector bundle *(V) over X’ as follows"

X(V) X V consists of those points (x’, v) such that (x) r(v)
r’ *(V) ---> X’ is defined by r’ (x’, v) x’. If {f} are the transition func-
tions of V relative to 1I}, then {fj o } are the transition functions of a*(V)
relative to {-1(1I)}. Let (,) be an Hermitian metric in V; for
v, w e r (x), we have defined (v, w). There is an induced metric ( in
a (V0 where if (x’, v)(x’, w) e (r’)-(x’), ((x, v), (x, w)) (v, w). In
--1
a (1I), the Hermitian metric h is given by h h a. The following equa-
tions are easily checked"

* 0(i) ,
*0 O’(5.1) (ii)

*p(iii) (r (O) P(O’)

(0, 0’ defined as in 1),

(P I).

For example, ’ (h’)-O(h’) (h o o.)-O(h o ) a*(h-Oh) o’*.
Now we discuss what it "means" to split a vector bundle. The general
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principle is this: Let G be a Lie group, H c G a closed subgroup, and sup-
pose that G -- P --* X is a principal bundle. Then G acts on the right on

P as does H, and we have a diagram

HP .- P/H

" //G/HG\\

X

where every map is a fibering map and the appropriate fibres are written in
The bundle a*(P) --> P/H is a priori a principal bundle with group G;
however the structure group in this case may always be reduced to H. If
G, H are complex Lie groups, P is a.c., then this reduction will be an a.c.
reduction.

Returning to the situation of 1, we let A C GL(r, C) be the subgroup con-
sisting of matrices of the form

apply the above reduction where G GL(r, C), H A, and conclude that..
(r*(P) -. p/A is an a.c. bundle with group A and therewith splits topologi-
cally. More specifically, let ( ) be an Hermitian metric in

/ __. * P) P//

given by an Hermitian form h. We may suppose that h gives a reduction of
the structure of a*(V) --> p/A to T c A, where T consists of matrices of
he form

0

this is a splitting into a sum of line bundles.
Now if h is a metric in V --. X, then we have a metric h

in a*(V) --. p/h as constructed above. Thus for P e I, we have two dis--
tinguished elements in H*(P/A,C);namely P(O) and
The theorem will be proved if we can show the following two propositions:

PnOPOSTON 5. As elements of H*(P/A, C),

(5.2) p(o) P(O’).
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PROPOSITION 6. In the diagram

p p/A
\ /
\

X

the cohomology mapping (r*" H*(X,C) --+ H*(P/A,C) is injective.

These results are due to Well and Borel respectively.

Proof of Proposition 6. For any manifold Y, we denote H*(Y, C) by
H*( Y); it will suffice to show that H*(P/A) has the same additive structure
as H*(G/A) (R) H*(X). By working in the classifying space, and since
Gh is differentiably isomorphic to 11(r)/T F(r), we may show that, in
the fibering

(5.3) F(r) ---, lI(r -t- N) /T X It(N) z_ U(r, N)
(ll(r)/Tr-’-> U(r - )/T ) !I(N) -- lI(r - N)/lI(r) X II(N)),

a is injective. This is done in two steps.
(a) All elements in H*(F(r)) are of even degree; more precisely, there

alexist elements x, .,x_ e H(F(r)) such that the elements x,
x-_ (0 <= a

_
r- i) form an additive basis for F(r).

Proof. We proceed by induction using the spectral sequence of the fiber-
ing F(r 1) -+ F(r) --, P_(C). By the induction hypothesis, E’q 0
unless p 2a, q 2b, and E"’ _--’ H(P_(C)) (R) H(F(r 1)). If we
take a basis of H*(F(r 1) of the form a2 ’ar--1x,"’,_ (0<a.<r--j-- 1)
and let x be the generator of H*(P_(C)), the conclusion follows since all
differentials in the spectral sequence are zero.

(b) In the fibering (5.3), all cohomology of the base and fibre is in even
dimensions, and (by a spectral sequence again) H*(ll(r -b N)/T X II(N))
is additively isomorphic to H* F r) (R) H* H r, N) ).

Proof of Proposition 5 (Weil). Consider the situation of 1, and let , be
two connexions in P --, X; then 0 is a global End(V)-valued form.
By (1.4),

0 d+ ^ dO-dn+ (0- ) ^ (0- )

and by (1.8),

(5.4)

O-dn- [O,v]+v ^ ,
0-0= -Dv+n ^ n.

We set
8

P(A) PA, A and Q(A, B) (A, B, ..., B)
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for A, B e fiI(r,C). Define F(t) P(A tB tC) P(A), so that

P(A B-- C) P(A) Jo F’(t) dt,

where, since P is symmetric, F’(t) -sQ(B - 2tC, A tB tC).
Now take A (R),B DT, C -7 ^ 7sothatby (5.4) we have

(5.5) P(O) P(O) --s jo Q(DT 2t7 ^ 7,0 tDT - t27 ^ 7) dt.

On the other hand, by (1.8) and (1.9),

dQ( 7, 0 tD7 + t7 ^ 7)

Q(D,, 0 tD7 - t7 ^ 7)-- (s 1)P(7,--t[O, 7] -- t2[DT, 7], 0 tD7 + t7 ^ 7, "")

Q(DT, 0 tD7 + t27 ^ 7)

+ (s- 1)P(7, t[7,-tDT+ 0],0- tDT+ t27 ^ 7,’").

By (2.2), and since [7, 7 ^ 7] 0,

dQ(7, 0 tD7 + t7 ^ 7) Q(DT, 0 tD7 +
Q(2t7 ^

Q(D7 2t7 ^ 7, 0 tD7 + t7 ^ 7).
Then by (5.5),

( )P(O) P(O) d -s Q(7,0 tD7 -- t7 ^ 7) dt Q.E.D.

6. Concluding remarks
(i) The Chern classes c.(V) were defined axiomatically in [3]; by setting

e.(V) P.(), the classes . verify the axioms. Axiom I is trivial, Axiom
II follows from 5, and Axiom III from 4. Finally, Axiom IV follows from
Proposition 3 by taking X Pn(C) and P to be the line bundle of a hyper-
plane section (whence the 1) sign in defining P

(ii) In 2, the obstruction class of an a.c. line bundle P - X was dis-
cussed. The proof of Proposition 2 shows that the following is true"

PROPOSITION. The form (2i)-10 representing cl(V) has the follow-
ing property" there exists a global form w (= (2vi)-10) on P such that do
r*() and fibre gives the fundamental class of the fibre. Briefly stated, in the
fibering C* --> P ---> X, cl (V) is the transgression of the generator of Hi(C*, Z).

This statement (suitably interpreted) is true for r > 1 and cj(V); this is
Theorem 8 in [1]. The proof follows from the above proposition coupled with
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the fact that transgression behaves under direct sum and mappings in the
same way as the Chern classes.
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