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BY
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1. Introduction

The results in this paper were announced in [1]. Let X and X™ be time
homogeneous Markov processes taking values in a locally compact space E
with a countable base. Suppose both processes satisfy Hunt’s condition (A)
[6, pp. 48-50]. We are interested in knowing when there exists a continuous
random time change 7(¢) in the sense of [10, p. 104] such that X (=(¢)) and
X™*(¢) have the same transition function. An obvious necessary condition, at
least if 7(t) — <« ast — o, is that the two processes have the same hitting
distributions. Our main theorem is that this condition is also sufficient.

In order to make this paper more nearly self-contained we will state some
facts and reproduce some proofs which appear elsewhere in the literature.
Most of the preliminary material is in Section 2, while Section 8 contains a
remark on the hypotheses. The rest of the paper is devoted primarily to the
construction of the time change. This paper is closely related to [9], which
contains a more explicit form of our theorem in case X is Brownian motion
and X* is a diffusion process in Euclidean space. The construction in [9]
makes use of potential-theoretic facts which are available for transition func-
tions having a sort of symmetry, but not for those as general as the ones we
consider here.

In case the state space is the real line and X and X™ are regular diffusions
with the same canonical scale, and hence the same hitting distributions, the
additive functional whose inverse is the desired time change is given explicitly
in [7] as an integral of the local time for X with respect to the speed measure
of X* relative to X. The existence of such a time change in this case, but not
of the integral representation, was also proved by Volkonskii [13].

2. Preliminaries

Let A be a point adjoined to £ as the point at infinity if £ is not compact
and as an isolated point if F is compact. Let £ = Eu A. Let ® denote the
topological Borel field of E and ® the Borel sets of £. A real valued function
f defined on E will always be regarded as extended to E via the convention
f(a) = 0.

We will take as sample space for our processes a set W of functions w from
[0, ©) to E. For any such function w and any positive r define the shift
transformation 6, by 6, w.(t) = w(t + r). We assume that W is closed under
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the shift and that every function in W is everywhere right continuous, has
left-hand limits, and satisfies w(f) = A whenever w(r) = A and ¢ is greater
than r. Set X(¢) = X (¢, w) = w(f). Let F(¢) denote the o-field of subsets
of W generated by the sets {X(s) ¢ B} with s < ¢t and B in &, and let & be the
o-field generated by the union of the F(¢).

We suppose given for each 2 in E a probability measure P, on F satisfying:
(py) for each A in &, P,(A) is ®-measurable, and (p;) for each z in E,
P,(X(0) = z) = 1. For A a subset of E define the hstting time T 4(w) as the
infimum of the strictly positive ¢ for which X (¢, w) is in A4, so that T, (w) = «
if there are no such t. We set ¢ = T4 and call ¢(w) the terminal time of the
path w. Clearly ¢ is F-measurable. The collection (W, P, , o), usually de-
noted just by X, is called a simple Markov process if for each z in E, ¢ = 0, A
in ¥(¢), and bounded F-measurable f we have

(ps) E(f(6:w); A) = Eo(Exw f; A),

that is, Ex f is one version of E,(f(6; w) | F(f)). The expression E,(g; I')
denotes the integral with respect to P, of the F-measurable function g over
the F-set I'. Clearly (p:) implies the B-measurability of this as a function of x.

The statements in the following five paragraphs are familiar and easy to
prove. Elaboration can be found in [4] and Sections 1 through 3 of [6].

The mapping (¢, w) — X (¢, w) is measurable with respect to 3 X ¥ and &,
where 3 denotes the Borel subsets of [0, ). Also if f is a bounded ®-meas-
urable function, then E,f(X(¢)) is 3X®-measurable in (¢, ). If for B in
® we set P(t, x, B) = P,(X(t) ¢eB), then P(t, x, B) is a sub-Markovian
transition function called the transition function of X. For each B it is meas-
urable in (¢, x), and of course P(t, x, E) = P,(a > 1).

Let u be a finite measure on ®, and let B(x) be the completion of ® with
respect to u. The intersection of the B(u) as u ranges over all such measures
is a o-field @ containing at least the analytic sets of E. Let @ consist of those
sets in E whose trace on E isin @. For x as above and A in § we set

P8) = [ Pu(a)u(dm).

Let G, (G(t)), be the o-field of subsets of W which are in the completion of &,
(F(¢)), with respect to each P,. The measures P, naturally extend to G, and
with this extension P,(A) is @-measurable in z for each A in G. The mapping
(¢, w) — X (¢, w) is measurable with respect to 3 X G and @, and the simple
Markov property (ps;) remains valid if we assume merely that f is G-measur-
able and A is in G(¢).

A nonnegative function T on W, possibly taking on the value «, is called a
stopping time if {T < t} is in G(¢) for each positive {. For example, o is a
stopping time, even satisfying the stronger condition {¢ < & in F(¢). The
maximum, minimum, and sum of two stopping times is again one, and so is
the pointwise limit of a sequence of stopping times. If R is a positive function
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on W, we define the shift §z on {R < «} by 6z w.(t) = w(t + R). If Rand
S are both stopping times and we set T'(w) = R(w) + S(8zw), taking T to
be infinite if R is, then T is a stopping time. Given a stopping time 7 we
denote by G(T+) the o-field consisting of all A in G such that A n {T < ¢ is
in G(¢) for each positive {. Note that if 7' = ¢, then §(¢+) is the intersection
of the fields G(s) with s > ¢. If T and 8§ are stopping times, then {T < S}
isin §(T+) and also in G(S+). The stopping time 7T is §(T+)-measurable,
and the mapping w — X (T (w), w) defined on {T < «} is measurable relative
to §(T+) and G.

A simple Markov process X = (W, P, , o) is called a strong Markov process
if for each z in E, stopping time T, A in §(T+), and bounded G-measurable f
we have

(pa) B, (f(brw); A, T < @) = E(Bxen f; A, T < ).

Such processes have a zero-one law; namely that if A is in G(0+), then for
each z, P,(A) isOor 1. If (p.) is satisfied, and we are going to assume it is,
then one sees rather easily that §(s+) = G(s) for each positive s. Thus we
may drop the plus sign in the notation of this and the preceding paragraph.

A process X is called a Hunt process if it is a strong Markov process and if
whenever {T,} is an increasing sequence of stopping times with limit 7', then
for each 2, X(T,) — X (T) almost everywhere P, on {T < «}. (Henceforth
we will use the phrase almost everywhere as an abbreviation for the phrase
for each z almost everywhere P,.) These conditions together with the right
continuity of the paths are referred to in [6] as hypothesis (4). A conse-
quence of the right continuity of the pathsis that P,(¢ > 0) = 1forallzin E.

From now on X is assumed to be a Hunt process. The material in the rest
of this section is taken from [6]. The hitting time 7', of an analytic set 4 in E
is a stopping time. Moreover for each finite measure u on ® there is an in-
creasing sequence {K,} of compact subsets of A such that Tk, decreases to T,
almost everywhere P,. In addition if u(A) = 0, there is a decreasing se-
quence {G,} of open sets containing A such that T, increases to T, almost
everywhere P, . Note that if A is contained in E, then {T, < «} = {T, < o}.
By the zero-one law P,(T4 = 0) = O or 1, and in the latter case we say that =
is regular for A. The set of points regular for 4 is in G.

If A is analytic, we define the hitting distribution of A starting from x by

HA(x’ B) = Px<X(TA) eB: T, < °°)

for Bin @. If A is contained in E, then clearly the support of this measure
is contained in the closure in E of A. In any event this measure attributes
no mass to the points of A complement which are not regular for A.

Given such an A contained in E, let S be the minimum of 7’4 and ¢, so that
S is the hitting time of A u {A}. Given a number A = 0, a nonnegative
@-measurable function f on E is called A-excessive (or just excessive when



PROCESSES WITH IDENTICAL HITTING DISTRIBUTIONS 405

A = 0) relative to (X, S) if
e E(f(X(8);t < 8) S f(a)

forall £ = 0 and z in E, and if also the left side of the inequality increases to
the right side as ¢ decreases to 0. The transition function and potential
kernel for (X, S) are

Q(t’ Ly B) = Pz(X(t) eB,t < S);
Va(z, B) = f: ¢ 'Q(t, z, B) dt.

For a bounded function f we write Q(¢, z, f) for [ Q(¢, z, dy)f(y), and Vi f.(x)
for f Va(z, dy)f(y). TFor example if f is nonnegative and ®@-measurable, its
potential Vy f is A-excessive relative to (X, S). An important fact [6, Theorem
11.3] is that if f is A-excessive relative to (X, S), then for each z with P,
probability one the function ¢t — f(X(¢)) is right continuous throughout
[0, S). We will also use the fact that if f is excessive, and if T and R are
stopping times with T < R, then E.(f(X(T)); T < 8) is no smaller than
E.(f(X(R)); R < 8).

We wish to be rather specific about the realization of a process X ter-
minated in the above manner. Let T be any stopping time such that 7' < o
and 7(6, w) = T(w) — ¢ whenever T(w) = t. Set

Yt w) = X(¢w), t < T(w),
= A, t = T(w):

The mapping X — Y gives rise to a new space of paths W’ having the same
characteristics as W, and to induced measures P, on it. We will not phrase the
properties of Y in terms of these, but will merely observe that if 3¢(¢) is the
o-field in W generated by the sets { Y (s) ¢ B} with s < ¢ and B in ®, and if 3¢
is generated by the union of the 3¢(¢), then for each z in E, ¢t = 0, A in 3¢(¢),
and bounded 3C-measurable f, we have

Ez(f(ot w) 5 A) = Ex(EY(t) f) A) )

so that Y is a simple Markov process, terminated at time 7, which we denote
by (X, T). Indeed, (X, T) is a strong Markov process. The validity of this
assertion in a more general situation is proved in [10, Part 1, Section 4].
Finally, if {T,} is an increasing sequence of stopping times (for (X, T) and
hence for X) with limit R, then Y (7T,) — Y(R) almost everywhere on
{R < T} since X and Y agree there. Strictly speaking ¥ need not be a Hunt
process, for this convergence may fail on {R = T < «}. However we can
say that on the set {T, < T < «, T, — T} we have Y(T,) — X(T) almost
everywhere because of the corresponding properties of X.
We will use the material in this section without special mention.
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3. Processes with identical hitting distributions

Let X = (W, P,,0) and X* = (W, P¥ , o) be two Hunt processes with the
same enlarged state space £. Observe that our notation refers to two differ-
ent families of measures on the same sample space. Quantities analogous to
the E, , P, , ete. of Section 2, but defined relative to X*, will be denoted by
EX¥  P¥ ete. Forexample Hx(z, B) = Py (X(Tx) ¢B, Tx < ©). We say
that X and X have identical hitting distributions if Hx(z, B) = Hx(z, B) for
all z in E, compact K, and Bin &. From now on we will assume that X and
X™ have identical hitting distributions. From the fact that the time of
hitting an analytic set can be approximated by the time of hitting compact
sets contained in it, and the fact that the paths are right continuous, it follows
easily that H,(x, B) = Hi(xz, B) for all analytic 4, z in E, and B in G.

ProrositioN 3.1.  If A s analytic and x is not in A, then x is regular for A
relative to X if and only if x is regular for A relative to X*.

Proof. It is easy to see that such an x is regular for A relative to X if and
only if H,(z, {x}) = 1. The same thing is true relative to X, so the identity
of the hitting distributions gives the result.

A Borel subset B of E is said to be nearly open relative to X if

Px(TBc > 0) =1

for all z in B. The superscript ¢ always denotes complement in £. Proposi-
tion 3.1 implies that a set is nearly open relative to X if and only if it is so
relative to X*, so the phrase nearly open needs no further qualification.

Let K be a Borel subset of £ whose complement is nearly open, and let
T = Tx.. Foreach x and ¢t we have

Py (T <t) = P;(U{X(r) ¢K}),

the union being over the rational » < ¢. Thus P; (T < t) is Borel-measurable
in z. Suppose now that K is compact and contained in E, and let B be the
set of points not regular for K°. Clearly B is a Borel set and is contained in K.
Also B is nearly open, and if § = T, then P,(T = 8) = Pi(T = 8) =1
for all z. The set B is the proper state space for either process terminated
when it leaves K. The next proposition states that the property of having
identical hitting distributions is preserved when the processes are suitably
terminated.

Prorosition 3.2. If K, T, and B are as above, and if D in ® vs a subset of
B, then for each bounded Q-measurable f and x in E we have

E(f(X(T5)); To < T) = E;(f(X(T5)); To < T)

= Hof (@) = [ Huouole, d)Ho 10).



PROCESSES WITH IDENTICAL HITTING DISTRIBUTIONS 407

Proof. We may assume that f is B-measurable and, by the usual approxi-
mation of hitting times, that D is compact. Then P, (T = Tp < ) =0
since X(Tp) is in D and X(T) is in B° almost everywhere P, on the sets
{Tpr < o} and {T' < =} respectively. Thus we have

E(f(X(T»)); To < )
= E(f(X(T0)); T < Tp < @) + E(f(X(T0)); To <T).

The first term on the right may be calculated by using the facts that Th(w) =
T(w) + Tp(0rw) on {T < Tp} and that Pxx(Tpr = 0) = 0 together with
the strong Markov property. One obtains

E(Exny(f(X(Tp));0 < Tp < 0); T <Tp < »)

- fB Hieun(3, dy)Ho 1.(y).

The same calculation using X™ and the identity of the hitting distributions
gives the desired result.
One should note that

E(f(X(Tp)); To < T) = E(f(X(T»)); Tpo < min (T, 0)),

and that the same statement holds relative to X™.

4. A particular excessive function and a theorem of Dynkin

Let C be an open set with compact closure K contained in E, and suppose
that foreach zin K, Py (Txe < ) = 1. Let T be the hitting time of £ — K,
and as before, B = {z:P,(T = 0) = 0}, so that B is the state space for
(X* T). For \ strictly positive, set

H@) = Ei(1 —e™) and g(z) =1 — fi(2).
Clearly f, vanishes on B°, while the computation
EX(AX@);t<T) = EX(1— ™6 < 1)

for z in B shows that fy is excessive relative to (X*, T).

We wish to show that f) is also excessive relative to (X, T'), and this follows
from a theorem of Dynkin announced in [5]. Professor Dynkin was kind
enough to send us a proof of his announcement, and we shall give it now.

TaeorEM 4.1. Let f be a bounded ®-measurable function such that for each
compact subset D of B and each x we have

and E.(f(X(1));t < T) —f(x) ast—0. Thenf is excessive relative to (X, T).
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Proof. As in Section 2 we denote the transition function of (X, T') by @,
and the potential operators by V.. Let A and 5 be strictly positive, and let
h = Vi f, F = M — f. An application of the resolvent equation shows that
for u > 0 we have

b=V + (—XN—mnhl = Vi[(u —n)h — Fl

Let A = {y:F(y) = 0}, and let {D,} be a sequence of compact subsets of 4
such that Tp, decreases to T4, P, almost everywhere, x now being a fixed
point of B. Now letting S, = min (Tp,, T) and S = min (74, T) and
applying Dynkin’s lemma, (see 41.1 B of [8]) we have for each strictly positive u

E (e (X (84)); 8n < T) — h(z)

= B [ EIPEW) + (0 — WAEO)] i

Consequently
Ez(e—“S”F(X(Sn)); Sn < T) - F((I))

B [T EFEO) + (0 — WX d

— E(¢f(X(84)); 8n < T) + f(2).

In this last displayed equality we take u < 5 and apply the inequality of the
hypotheses to the right side. As a result the left side is no smaller than

Spn
A\E, f FHF(X(2)) dt,
0

and since F(X(t)) = 0fort < S, we have
lim inf,.e B.(e " F(X(8,)); 8, < T) — F(z) = 0.

Now if S, < T, then F(X(S,)) < 0, and so F(x) £ 0, x being an arbitrary
point of B. We have shown that AV, f = ffor all » > 0 and hence also for
7 =0. If wenowsetk = V)fand g = At — f and apply Dynkin’s lemma
again, taking the stopping time as the constant ¢, we obtain

Q2 1) — k() = [ Q,2,0) du 50,

and so k(z) = Q(t, z, k). By the second hypothesis AV, f approaches f
boundedly as A — «, and so the assertion of the theorem follows immediately.
Perhaps we should note explicitly that a function excessive for (X, T') vanishes
off B.

To apply this theorem to f, we observe that fy is (X*, T)-excessive, and so
for each compact D in B we have E; (A (X(Tp)); To < T) < fai(z). Thus
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by Proposition 3.2 it satisfies the first hypothesis of Theorem 4.1. Also for
any « and ¢ > 0 the point z is not regular relative to (X*, T) for the set
{y:|A(y) — A(z) | > €. By Proposition 3.1 the same assertion holds rela-
tive to (X, T'), and the second hypothesis follows easily. Consequently, fy is
excessive relative to (X, T').

5. Construction of an additive functional

The sets K and B and the function f, are those of the previous section. In
this section we will show that fy is the potential of an additive functional ¢
and will investigate properties of the functionals corresponding to different
values of A. We rely heavily on the definitions and results of [10]. The con-
struction itself makes use of the fundamental lemma in [11]. We have in-
cluded some technical improvements on the rest of Sur’s construction and have
treated a measurability difficulty which he left aside. For a while the A will
be fixed, and we will suppress it in the notation.

Let

1/n
fulz) = [O Qt, z, f) dt,

and note that f, is excessive and that f, increases to fasn — .

ProposiTioN 5.1. For a fixed strictly positive € let

By = {y:f(y) — fa(y) 2 ¢
and T, = Tp,. If R = limysew Tn , then
E(f(X(Tw)); Ta < T) = E:(f(X(R)); R < T)

for each x, as n — .

Proof. Let

pn(A) = Po(X(Tw) €A, Tn <T) and u(4) = P.(X(R) e4,R<T)

for a fixed z in B, and let u} and u* be the same measures defined relative to
X*. The asserted convergence with E, replaced by Ej is an immediate con-
sequence of the strong Markov property, that is,

ff(y)M: (dy) — ff(y)u* (dy) asm — ©

Of course uj is equal to u, by Proposition 3.2. Next let {@;} be a decreasing
sequence of open sets containing £ — B and such that if S; = T, , then S;
increases to T almost everywhere relative to P, and Py . Such a sequence
exists according to Proposition 2.2 of [6]. Let D, consist of G; and the points
regular for it, so that 7»; = §; almost everywhere. Now for a fixed j and n



410 R. M. BLUMENTHAL, R. K. GETOOR, H. P. MCKEAN, JR.

we have

BX(1 — ¢ X(T.) eBnDy) 2 EX1— ¢ ™™ ™; X(T.) e Bn D))
E;(f(X(T%)); X(T.) e B n D)

= eP;(X(T.) eBnDj).

Thus im sup,.. Py (X(T,) eBn D;) — 0 as j — «, and by the equality of
the hitting distributions the same thing holds with P} replaced by P,. We
know that on the set {T, < T for all n, T, — T} we have lim,., X(T,) ¢ B
almost everywhere, and consequently we have just shown that the event
{T. < T foralln, T, — T} has P, and P} probability 0. Now almost every-
where we have X(T,) — X(R) on {R< T}, and by the previous sentence
almost everywhere { T, < T} decreases to {R < T}. Thus u and u* are equal,
so the proof is complete. We point out, for use in Proposition 5.6, that the
only important property of the B, used here, aside from the fact that they
are decreasing, is the fact that f(X(T,)) is bounded away from 0 on {T, < T}.
In the remainder of this section and throughout the next one, X and X™ will

denote the original processes terminated at time 7. The next proposition is
the basic lemma, from [11].

ProrosiTioN 5.2. If B, and T, are as in the previous proposition, then for
each x, P,(T, = ) > 1lasn— «,

Proof. Clearly it suffices to replace T, by its minimum with 7, making a
corresponding change in the proposition to be proved. We then have

&P, (T, < T for all n)
< E.(lim infi, o (X (Th)) — fi(X(T%)); T < T for all n)
< lim infine (B f(X(T2)) — E-f(X(TW))),

where j is any positive integer. Because f; is excessive, we may, in the expres-
sion B, f;(X(T4)), replace T, by R = lim T, without destroying the inequality.
Applying Proposition 5.1 we then find that the first line in the display is no
greater than E,f(X(R)) — E,f;(X(R)). This last expression approaches
0 as j — «, so the proof is complete.

We begin the construction of the desired additive functional as follows: let

gu(z) = n(f(z) — Q(1/n, 2, 1)) and ¢.(t, w) = f gu(X (r, ) dr.

Clearly for each n, ¢, is a continuous additive functional relative to (X, T)
with ¢,(t) = ¢.(T) if t = T. An easy calculation shows that E,¢,(®) =
fa(x). Furthermore E.(¢.(*) | G(t)) is equal to ¢.(t) + f.(X(¢)), so rela-
tive to the measure P, this latter family of random variables is a martingale.
It is separable since f, composed with the process is right continuous, and so,
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setting e,(t) = ¢n(¢) + f.(X(¢)) and applying the martingale inequality of
Doob [2, p. 353], we have for § > 0

P,(sup: | ea(t) — en(t) | = 8) = B (en( ) — em(0))>

We may calculate this last expectation as is done in [11] or [12]. Using the
facts that E,¢.(») = f,(x) and that f, increases to f we have form = n

Ez(en( @© ) - em( °°))2

= 28, [ (X)) ~ 0K dr [ [ga(X(5)) — gn(X())] ds
=28, [ [gu(X()) — gulX()] dr Bxos [ 0a(X()) — gu(X(s))] ds

<2, [ " G X)X ) — Fu(X ()] dr
< om, (sup,mX(t)) — X [ (X)) dr)

1/2

< z{E( [ 0n(X(0) ar) Butoupis(x(@) ~ fm<X<t>>1>2}

< 2P { B (sup f(X(8)) — Fu(X ()},

where k is an upper bound for f. By Proposition 5.2 the last term approaches
0 asm — . This estimate and another application of Proposition 5.2 shows
that for each x and strictly positive 9,

P.(sup: | ¢.(t) — om(t) | = 8) — 0, m,n — ©,

TaBOREM 5.3. There is a continuous additive functional ¢ of (X, T) with
o(t) = ¢(T) for allt = T such that E.(¢()) = E,¢(T) = f().

Proof. We make use of the theory in the first part of [10]. Form the mul-
tiplicative functionals M,(f) = exp(—¢.(t)) and the corresponding semi-
groups Q.(¢, z, f) = E.(f(X(8)) -M.(t);t < T) all of which are subordinate
to Q. If |f| £ 1, then

| Qu(t, 2, f) — Qu(t, 2, f) | = Bu(| Ma(t) — Mn(?) |58 < T),

so by the calculations of the previous paragraph, for each z, Q.(¢, z, f) is a
Cauchy sequence, uniformly in ¢ positive, and | f | 1. If we set Qo(¢, 2, f) =
limyoew Qu(t, z, ), then the uniformity of the convergence implies that Qo is a
semigroup, and that Q.(¢, x, 1) is continuous in ¢ at the point ¢ = 0. It is
subordinate to @, obviously, and so by Theorem 2.2 of [10, first part] there is
a multiplicative functional M (¢) such that

Q(t, z,f) = B(f(X(@) -M(8);¢t < T)
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for each ¢,  and bounded f. For each x and ¢ the sequence {M,(¢)} is a
Cauchy sequence in P, measure. Hence it has a limit ¥ in measure. But
by a standard iteration of conditional expectations and the uniform con-
vergence of the semigroups one easily establishes E.(M(t);t < T, 4) =
E,(Y;t < T, A) for all A in $(¢), and so the limit in P, measure of M,(t)
is M(¢). Let¢(t)= — log M(t). Then ¢ is an additive functional, and for
each ¢ and z, ¢,.(¢) converges to ¢(f) in P, measure as n — . The bound
E.[¢.(»)])* < 2k shows that the ¢,() are uniformly integrable, and so
E,¢p(o)= liMy.e B ¢s(©) = f(x). To prove that ¢ is continuous, fix an
z and choose a sequence {n;} such that P,(sup; | ¢.(£) — ¢m(t) | > 27F) < 27*
if n and m exceed n; . Then ¢,,(f) converges uniformly as k — % to a con-
tinuous function agreeing with ¢(¢) for all rational values of ¢, these state-
ments holding with P, probability one. But ¢ is by definition right continu-
ous, so it agrees with the continuous limit for all values of ¢.

Now we reintroduce the subscript A and refer to the functional we have
just constructed, using f , as ¢ .

ProrosiTioN 5.4. Let A in ® be a subset of B, and let S be the minimum of
Tiand T. Then E,n(S) = EX(e™e™ — 1)).

Proof. By the strong Markov property for additive functionals [10, first
part; Theorem 4.2] we have ¢\(T, w) = (S, w) + (T — S, 6sw). But
T(w) — S(w) = T(8sw) almost everywhere P, , so the proposition follows
by a routine calculation using the equality of the hitting distributions and
the definition of f .

Prorosrtion 5.5. For each x with P, probability one, $r(t) s strictly in-
creasing in [0, T).

Proof. Let R = inf{t = 0:¢\(t) > 0}. For each z, P,(R = 0) is 0 or
1, and we let A be the set on which it is 1. It is easy to see that A is in
® and that B — A is nearly open, or more precisely, that P,(R = T4) = 1.
If zisin B — A and 8 is the minimum of 7', and R, then by Proposition 5.4

E.n(8) = EX ("™ — 1)),

But the left side of this expression is 0 because ¢, is continuous, while the
right side is strictly positive because S is. Thus B — 4 is empty, and, be-
cause ¢, is additive, this implies the proposition.

ProPOSITION 5.6. Let B, = {z:fi(x) = 1 — 1/n},and let T, = Ts,. Then
P,(T, < T for all n) = 0 for all x.

Proof. Let 6 denote the probability in question, and let R denote the limit
of the T,,. By Proposition 5.1 and the remark following its proof we have

E.(AX(Th); To < T) = E.(AX(R)); R < T), n— .
The n'*® term of the sequence is no smaller thans(1 — 1/n) because fA(X(t))
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is right continuous, while the limit is no larger than P,(R < T). Thus
P, (R < T) =3, and it then follows that § = 0 since f) is everywhere strictly
less than 1.

An obvious consequence of this proposition is that with P, probability 1
the function ¢ — g\ (X (¢)) is bounded away from 0 on [0, T'.

The next theorem contains the fundamental calculation of this section.

THEOREM 5.7. If f is a bounded ®-measurable function, then
(51) B[ fX®) dan(0) = B [ (X)X (D) de.

Proof. We note that replacing the upper limit 7 by « has no effect on
the integrals since the processes move to A at time 7. Also if f is identically
1, a simple calculation shows the two sides of (5.1) have the common value
Alx), so the expressions in question are finite. Obviously it is enough to
establish the equality whenever f is continuous and bounded in absolute
value by 1. Assuming it is, and fixing a strictly positive ¢ we define as follows

81 = inf{t > 0:| f(X (1)) — f(X(0)) | = ¢},
S; = min(8;, T),
Sn+1 = Sn -+ Sl(0,g,,w), n 1.

The {S,} form an increasing sequence of stopping times. If S,41 < T, then
| F(X(8.)) — f(X(Su41)) | = ¢, and since f is continuous and, almost every-
where P, , X(S,) approaches a limit on {S, < T for all n}, it follows that
almost everywhere P,, S, = T for large enough n. Now fix . Since in
the interval [S, , S.41), f(X(¢)) differs from f(X(S,)) by less than ¢, the left
side of (5.1) differs by less than e-fi(z) from

(5.2) =0 Bz F(X (8,)) [$7(Sna) — & (8a)],
while the right side differs by less than ¢-fi(z) from

(53) SE [ (X)) dfx(S)).

Here we are taking S, = 0. But (5.2) and (5.3) are equal, as the following
argument shows. Set G(y) = Ej (e "[e™* — 1]). We have seen in Propo-
sition 5.4 that G(y) also equals E, \(S:), while an easy calculation shows it
to be also equal to

a? [ o (x) at

Now ¢\ (Snpa(w), w) — ¢ (8Sn(w), w) is equal, by the strong Markov property
for additive functionals and the definition of the S, , to ¢x(S:(0s, w), 05, w),
and so the general term of (5.2) is equal to [ f(y)G(y)pa(dy), u. being the
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distribution under P, of X(S,). Similarly

81 (68, w)

M ex @) @ = [ axt,0,0a,

and so the general term of (5.3) is [ f(y) G(y) »(dy), where », is the distribu-
tion under P; of X(S,). One sees by induction, using the identity of the
hitting distributions, that u, = », for all n, and so (5.2) and (5.3) are indeed
the same. Thus for each ¢ > 0 the two sides of (5.1) differ by less than
2 £ fi(z), and the proof is complete.

TuaeoREM 5.8. The expression

fo I (X ()] den (1)

is tndependent of N and defines a continuous additive functional ¢ which s strictly
increasing i [0, T) and for which ¢(T) is finite, the assertions holding almost
everywhere.

Proof. Clearly for each A the integral defines an additive functional, which
is strictly increasing in [0, 7] since ¢, is, and gy is bounded. By Proposition
5.6, g2 (X (¢)) is bounded away from 0 in [0, 7] with P, probability 1. This
together with the facts that ¢, is continuous and that ¢\ (T') is finite establish
the continuity and finiteness assertions. By Theorem 5.7 for each A > 0,
u > 0, z, and bounded f, the expression

B [ wi(X(0)0(X©) dr(0)

is symmetric in A and . Thus by the uniqueness theorem of [10] (second
part, Theorem 4.4) the additive functional

b [ 0u(X(w) don(w)

is invariant under permutation of x and A. This proves the assertion.

Note that g, increases to 1 as A decreases to 0. Consequently for each x
with P, probability 1, A"'¢x(¢) increases to ¢(¢) for all . Also with P} prob-
ability 1 the continuous additive functional

fo' (X (u)) du

increases to ¢ for all ¢ as A decreases to 0. We will need these remarks in
the next section.
6. The time change in a neighborhood

We will continue to work within the framework of Sections 4 and 5. Let
¥(t) be any continuous strictly increasing additive functional relative to
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(X, T) with ¢(T) finite, and let = denote the functional inverse to ¢, that is,
(6) =s i Y(s) =14, t = ¥(7),
=T, t> (7).

The functional 7 is a time change in the sense of [10, second part, Section 7],
and the process X (7(¢)) is a simple Markov process terminated at time y(7')
relative to the measures P, and to the o-fields G(7(¢)) induced by the stopping
times 7(¢). Indeed this process is actually a strong Markov process, and it
is of course obvious that for each x with P, probability 1, =(¢) is strictly in-
creasing in [0, ¢(T)] and is continuous. These matters are discussed fully
in the part of [10] just referred to, and proofs are given in [13] with some
amplification in [12].

Referring back to the functionals of Section 5, let 7(¢) be the functional
inverse to ¢(t), and let 7, (¢) be the one inverse to N '¢\(¢). Let

n® = [ (X)) du

be regarded as an additive functional of (X*, T, and let s(¢) be the functional
inverse to it. From the last paragraph of Section 5 it follows that for each
& with P, probability 1, r\(#) decreases to 7(f), and with P; probability 1,
sy(t) decreases to t as A decreases to 0.

THEOREM 6.1. The process (X*, T) has the same transition function as the
process (Y, ¢(T)), where Y(t) = X(7(¢)).

Proof. We need to show that for each z, ¢ and bounded continuous f
(6.1) E.(f(X(r(1));t < ¢(T)) = EZ(f(X(1);t < T).

But by the approximation just referred to and the right continuity of the
paths it will suffice to show that (6.1) is valid when 7(¢) is replaced by r\(¢)
and ¢(T) by N'¢x(T) on the left, and when ¢ is replaced by s\(¢) and T
by ¥a(T) on the right. To do this define the potential operators V and W
on bounded continuous functions by

A" 1gn(T)
(6.2) Vf.(z) = E, f (X (@) dt,
and

¥a(T)
(63) Wi(z) = B f F(X((8))) de.

These are the potential operators for X (r\(f)) under P, and X (s\(¢)) under
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P} respectively. Now by changes of variables

Vf(x) = E, forf(X(u)))\"l dpn(u), and

WiGe) = B [ 50X () du.

By Theorem 5.7 these two transformations are then the same. They are
bounded transformations, having a norm not exceeding 1/A. Thus one may
conclude the proof using the uniqueness argument carried out by Hunt on
pages 352-353 of [6, II]. Specifically, his argument shows that if

K, z,f) = B(f(X(n(8));t <N (T)) and
Lt,z,f) = EZ(f(X(a(1))5t < ¥a(T)),

then for each positive 7,

0

[ kG ana=[ Lz a
0 0

The uniqueness theorem for Laplace transforms, together with the fact that
K(t, x,f) and L(t, x, f) are right continuous in ¢, when f is continuous, shows
that K and L agree. This completes the proof.

What we have proved so far is that locally the processes X and X™ are
equivalent after a suitable continuous time change in one of them.

7. The complete time change

In this section we will connect the local time changes relating X to X™ to
obtain a global time change. We need some preliminary material.

Let C and C’ be open subsets of E with compact closures K and K’ con-
tained in E, and let T and T” be the hitting times of £ — K and £ — K’
respectively. Suppose that for each z the hitting times 7 and 7" are finite
almost everywhere P} . Let gh(z) = Ei(e™") and gr(z) = EX(e"),
and let ¢ and ¢’ be the continuous additive functionals constructed in Section
5 relative to T and T respectively. We wish to show that these two func-
tionals are compatible in the sense that if S denotes the minimum of 7" and
T’, then for each x with P, probability 1, ¢(t) = ¢'(¢) forallt < S. Note
that S is the hitting time of £ — (K n K’). Since the functional which
equals ¢ on the interval [0, S] and is equal to ¢(S) thereafter is additive rela-
tive to (X, S), with a similar statement holding for ¢, the desired compati-
bility will follow from Meyer’s uniqueness theorem and Theorem 5.8 once we
prove the following proposition.

ProrosITION 7.1. For each x and bounded ®-measurable f we have

B, [ 1(XO)E0) dn(® = . [ (X)X ©) a0,
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Proof. If we write the left side of the desired equality as

EzfoT—Ezj:,

and the right side in the same way with 7 replaced by 7", then use the strong
Markov property, the identity of the hitting distributions, and Theorem
5.7, we find that each side is equal to

M2 [ SXAE )X 0) .

A point z is called a trap if P;(Tae < ©) = 0. Note that A is a trap.
Let { N} be a family of open sets forming a base for the topology of £, and let

u(z) = fow e~ P (¢, x, Ny) dt.

Observe that u; is ®-measurable, and that since it is l-excessive the sets
{u; > a} and {u; < a} are nearly open. The point z is not a trap if and only
if it lies in some N, such that u;(z) < 1. Thus the traps form a Borel set C,
andwelet ¢/ = T¢. Let W;; = N.n{u; S 1 — 1/}, and with ¢ and j fixed
for a moment let T be the hitting time of £ — W,;. This set is nearly open,
so by some remarks from Section 2, Ef T is ®-measurable. It is also bounded
according to the argument on p. 640 of [8]. As usual we delete from each
W ;; the points regular for its complement and enumerate the resulting sets in
some order as {V,}. Define a function N from E — C to the positive integers
by N(z) = min{s:z ¢ V;}. Each V,is a nearly open Borel set; and we have
associated with each z not in C' a nearly open set Vy(,) containing it in such
a way that {#:Vyw = Vi isin 8. Let T; = Ty, and let ¢; be the con-
tinuous additive functional constructed as in Section 5, but relative to the
terminal time T'; .

In what follows, continuity of an additive functional is defined relative to
the topology of the extended real line. Also we will set X () = A.

THEOREM 7.2. Let X and X* be Hunt processes with identical hitting dis-
tributions. Then there is a continuous additive functional ¢ of X with
o(t) = ¢(d’) for t = o such that (1) for each x with P, probability 1, ¢ is
strictly increasing in [0, o'}, and (ii) if 7 is the inverse to ¢, that s,

T(#) = s if ¢(s) =4 t = ¢(a'),
=d, t > ¢(d),
then for each positive t, x in E and B in ® we have
P.(X(r(t)) eB) = P;(X(t) ¢B).
Proof. We need only show that
P.(X(7(1)) eB,t < ¢(o')) = PI(X(t) ¢B, t < o)
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because X and X™ have identical hitting distributions and ¢(¢’) is the time
at which X (7(t)) reaches a trap. Also for the sake of clarity we intend to
carry out the proof of Theorem 7.2 under a mild additional assumption.
Then we will give the argument for the general case, omitting some of the
details.

So assume now that there is a sequence {G,} of open subsets of £ with com-
pact closures G, such that (1) E = U3l G., (2) G, is contained in Gy,
(3) for each n and z we have P,(T" < «) = 1, where T" is the hitting time
of E — G,. Let ¢" be the additive functional constructed in the previous
sections, where the K of those sections is taken to be G, . The compatibility
argument at the beginning of this section shows that if m is greater than =,
then for each z with P, probability 1, ¢"(t) = ¢"(¢) for allt < T". Now
we may define ¢(¢, w) as lim,.,¢"(¢, w). The limit exists because of the
compatibility just established. Clearly P,(T" — ¢) = 1 for all z since the
original process it a Hunt process, and so the ¢ we have just defined is an
additive functional continuous and strictly increasing in [0, o], the lastassertion
holding almost everywhere. The functional 7 inverse to ¢ is continuous and

strictly increasing in [0, ¢(o)]. By the results of Section 6 we have for each
n, z,t and B in &

P.(X(7(t)) eB,t < ¢(T")) = P3(X(t) eB,t < T").

The proof is then completed by letting n — «, noting that ¢’ = ¢ in the pres-
ent situation and using the fact that P} (T" — ¢) = P.(¢(T") —¢(s)) = 1.

We now proceed to the general case. Recalling the material in the second
paragraph before the statement of the theorem, we wish to connect the func-
tionals ¢; in such a way that we get the desired time change. To do this let

Ri(w) = Twxow X (0, w) ¢C,
=0, X(0, w) €C,

and proceed inductively as follows: if « is an ordinal of the first or second
class, and if R has been defined for all 8 < «, then set

Ra(w) = Ra—l(w) + Rl(oRa—-l(w))

provided « has an immediate predecessor o« — 1. Otherwise set B, = sup R,
the supremum being over all 3 < a. Clearly each R, is a stopping time, and,
since the V; are nearly open, for each @ < B and x we have P,(R, < Rg) > 0
unless P,(R., = ¢’) = 1. The argument in Theorem 7.2 of [3] shows that
for each z, P.(R, = ¢’) = 1 for some ordinal « of the first or second class.
We define ¢ on [0, ¢'] by induction:

é(t, w) = én(xow)(t, w), 0 =t= Ri(w).

Suppose ¢ has been defined in [0, Rg] for each 8 < « in such a way that (1)
the functional agreeing with ¢ in [0, Rs] and equal to ¢(Rs) thereafter is a
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continuous additive functional of (X, Rg), (2) the function ¢ — ¢(t) is with
P, probability 1 strictly increasing in [0, Rgl, (3) X (¢ '(f)) terminated at
#(R;) is equivalent to X* () terminated at Rs. We then extend the defini-
tion of ¢ to [0, R,] by setting ¢(R., w) = lim ¢(¢, w) as ¢ increases to B.(w),
provided « is a limit ordinal, and otherwise we define

o(t, w) = ¢(Ra, W) + dnx0.05,_jwn(t = Ba(w), Oz, ,)

in the interval R,; <t < R,. Obviously the desired properties (1) through
(3) carry over if « is a limit ordinal, but otherwise their validity is rather
tedious to verify. One finds that the verification amounts to showing that
for each , j and z not in C we have ¢;(t) = ¢;(t) for every t < min (7;, T;),
almost everywhere P,. But this is merely the compatibility established at
the beginning of this section. Thus we have defined ¢ on [0, ¢’], and we may
take ¢(¢) to equal ¢(o’) for ¢t > o’. The functional inverse to ¢ is the desired
time change, so the proof is complete.

8. A remark on the hypothesis

If X and X™ have identical hitting distributions, then they have the same
class of excessive functions. This is an immediate consequence of Dynkin’s
theorem in Section 4. It is worthwhile to remark that in some cases the
converse is also true.

TurorEM 8.1. Suppose X and X* are Hunt processes which also satisfy
hypotheses (C) and (E) of Hunt [6, p. 89 and p. 330). If X and X™ have the
same class of excessive functions, then they have identical hitting distributions.

Proof. For simplicity we assume that the terminal time o is infinite. Let
B be an open subset of F with compact closure. By Proposition 6.1 of [6]
wehave Hy f = Hy f if f isexcessive. Thus if U denotes the potential kernel
for X, we have

[ Hatw, ap U, 0) = [ B3, aUG, 4)

for all z in E. By Proposition 14.1 of [6] we then have H3(z, -) = Hx(z, -)
Now let K be compact, and let {B,} be open sets which contain K, which
have compact closures and which shrink down to K. If T, = T, and
T = Tk, then P,(T, — T) = Py(T, — T) = 1, and by Proposition 12.5
of [6], Po(T, < o for all n, T = ») = 0, and similarly for PZ .
Since X (T,) — X(T) almost everywhere P, and Pj on {T < =}, we have
for all bounded continuous f

E(f(X(T)); T < ©) = liMyse E(f(X(T0)); Tn < =)
= EZ(f(X(1)); T < =),
which proves the equality of the hitting distributions.
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The theorem must be reformulated for recurrent processes, as one sees by

considering the stable processes of index greater than 1 on the real line.
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